Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Redox Biol ; 72: 103150, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599016

RESUMO

Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by impaired motor coordination due to neurological defects and cerebellar dysfunction caused by the accumulation of cholesterol in endolysosomes. Besides the increase in lysosomal cholesterol, mitochondria are also enriched in cholesterol, which leads to decreased membrane fluidity, impaired mitochondrial function and loss of GSH, and has been shown to contribute to the progression of NPC disease. S-Adenosyl-l-methionine (SAM) regulates membrane physical properties through the generation of phosphatidylcholine (PC) from phosphatidylethanolamine (PE) methylation and functions as a GSH precursor by providing cysteine in the transsulfuration pathway. However, the role of SAM in NPC disease has not been investigated. Here we report that Npc1-/- mice exhibit decreased brain SAM levels but unchanged S-adenosyl-l-homocysteine content and lower expression of Mat2a. Brain mitochondria from Npc1-/- mice display decreased mitochondrial GSH levels and liquid chromatography-high resolution mass spectrometry analysis reveal a lower PC/PE ratio in mitochondria, contributing to increased mitochondrial membrane order. In vivo treatment of Npc1-/- mice with SAM restores SAM levels in mitochondria, resulting in increased PC/PE ratio, mitochondrial membrane fluidity and subsequent replenishment of mitochondrial GSH levels. In vivo SAM treatment improves the decline of locomotor activity, increases Purkinje cell survival in the cerebellum and extends the average and maximal life spam of Npc1-/- mice. These findings identify SAM as a potential therapeutic approach for the treatment of NPC disease.


Assuntos
Encéfalo , Glutationa , Fluidez de Membrana , Membranas Mitocondriais , Doença de Niemann-Pick Tipo C , S-Adenosilmetionina , Animais , Camundongos , S-Adenosilmetionina/metabolismo , Membranas Mitocondriais/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Glutationa/metabolismo , Encéfalo/metabolismo , Mitocôndrias/metabolismo , Proteína C1 de Niemann-Pick , Modelos Animais de Doenças , Camundongos Knockout , Fosfatidilcolinas/metabolismo
2.
Clin Transl Med ; 13(8): e1350, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37620691

RESUMO

BACKGROUND: Niemann-Pick disease type C (NPC) is a fatal neurodegenerative disorder caused by abnormal intracellular cholesterol trafficking. Cyclodextrins (CDs), the most promising therapeutic candidates for NPC, but with concerns about ototoxicity, are cyclic oligosaccharides with dual functions of unesterified cholesterol (UC) shuttle and sink that catalytically enhance the bidirectional flux and net efflux of UC, respectively, between the cell membrane and the extracellular acceptors. However, the properties of CDs that regulate these functions and how they could be used to improve treatments for NPC are unclear. METHODS: We estimated CD-UC complexation for nine CD derivatives derived from native α-, ß-, and γ-CD with different cavity sizes, using solubility and molecular docking analyses. The stoichiometry and complexation ability of the resulting complexes were investigated in relation to the therapeutic effectiveness and toxicity of each CD derivative in NPC experimental models. FINDINGS: We found that shuttle and sink activities of CDs are dependent on cavity size-dependent stoichiometry and substituent-associated stability of CD-UC complexation. The ability of CD derivatives to form 1:1 and 2:1 complexes with UC were correlated with their ability to normalize intracellular cholesterol trafficking serving as shuttle and with their cytotoxicity associated with cellular UC efflux acting as sink, respectively, in NPC model cells. Notably, the ability of CD derivatives to form an inclusion complex with UC was responsible for not only efficacy but ototoxicity, while a representative derivative without this ability negligibly affected auditory function, underscoring its preventability. CONCLUSIONS: Our findings highlight the importance of strategies for optimizing the molecular structure of CDs to overcome this functional dilemma in the treatment of NPC.


Assuntos
Ciclodextrinas , Doença de Niemann-Pick Tipo C , Ototoxicidade , Humanos , Ciclodextrinas/farmacologia , Simulação de Acoplamento Molecular , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Colesterol
3.
J Am Soc Mass Spectrom ; 34(4): 668-675, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36920149

RESUMO

Niemann-Pick, type C (NPC) is a fatal, neurovisceral lysosomal storage disorder with progressive neurodegeneration and no FDA-approved therapy. Significant efforts have been focused on the development of therapeutic options, and 2-hydroxypropyl-ß-cyclodextrin (HP-b-CD) has emerged as a promising candidate. In cell culture, HP-b-CD ameliorates cholesterol storage in endo/lysosomes, a hallmark of the disorder. Furthermore, in animal studies, treatment with HP-b-CD delays neurodegeneration and extends lifespan. While HP-b-CD has been promising in vitro and in vivo, a clear understanding of the mechanism(s) of action is lacking. Utilizing a neuron-like cell culture model of SH-SY5Y differentiated cells and U18666A to induce the NPC phenotype, we report here a large-scale mass-spectrometry-based proteomic study to evaluate proteome changes upon treatment with these small molecules. In this study, we show that differentiated SH-SY5Y cells display morphological changes representative of neuronal-like cells along with increased levels of proliferation markers. Inhibition of the NPC cholesterol transporter 1 protein by U18666A resulted in increased levels of known NPC markers including SCARB2/LIMP2 and LAMP2. Finally, investigation of HP-b-CD treatment was performed where we observe that, although HP-b-CD reduces cholesterol storage, levels of NPC1 and NPC2 are not normalized to control levels. This finding further supports the need for a proteostasis strategy for NPC drug development. Moreover, proteins that were dysregulated in the U18666A model of NPC and normalized to control levels suggest that HP-b-CD promotes exocytosis in this neuron-like model. Utilizing state of the art mass spectrometry analysis, these data demonstrate newly reported changes with pharmacological perturbations related to NPC disease and provide insight into the mechanisms of HP-b-CD as a potential therapeutic.


Assuntos
Neuroblastoma , Doença de Niemann-Pick Tipo C , beta-Ciclodextrinas , Animais , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , beta-Ciclodextrinas/farmacologia , beta-Ciclodextrinas/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Proteômica , Neuroblastoma/metabolismo , Neurônios , Colesterol
4.
Naunyn Schmiedebergs Arch Pharmacol ; 396(7): 1563-1569, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36795166

RESUMO

Niemann-Pick type C1 (NP-C1) is a lysosomal storage disease (LSD) caused by mutations in NPC1 gene that lead to defective synthesis of the respective lysosomal transporter protein and cholesterol accumulation in late endosomes/lysosomes (LE/L) compartments, as well as glycosphingolipids GM2 and GM3 in the central nervous system (CNS). Clinical presentation varies according to the age of onset and includes visceral and neurological symptoms, such as hepatosplenomegaly and psychiatric disorders. Studies have been associating the pathophysiology of NP-C1 with oxidative damage to lipids and proteins, as well as evaluating the benefits of adjuvant therapy with antioxidants for this disease. In this work, we evaluated the DNA damage in fibroblasts culture from patients with NP-C1 treated with miglustat, as well as the in vitro effect of the antioxidant compounds N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10), using the alkaline comet assay. Our preliminary results demonstrate that NP-C1 patients have increased DNA damage compared to healthy individuals and that the treatments with antioxidants can mitigate it. DNA damage may be due to an increase in reactive species since it has been described that NP-C1 patients have increased peripheral markers of damage to other biomolecules. Our study suggests that NP-C1 patients could benefit from the use of adjuvant therapy with NAC and CoQ10, which should be better evaluated in a future clinical trial.


Assuntos
Doença de Niemann-Pick Tipo C , Humanos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Dano ao DNA
5.
Biomed Pharmacother ; 155: 113698, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116252

RESUMO

Niemann-Pick disease type C (NPC) is a fatal disorder with abnormal intracellular cholesterol trafficking resulting in neurodegeneration and hepatosplenomegaly. A cyclic heptasaccharide with different degrees of substitution of 2-hydroxypropyl groups, 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD), acts as a strong cholesterol solubilizer and is under investigation for treating this disease in clinical trials, but its physicochemical properties and ototoxicity remain a concern. Here, we evaluated the potential of mono-6-O-α-maltosyl-γ-CD (G2-γ-CD), a single-maltose-branched cyclic octasaccharide with a larger cavity than HP-ß-CD, for treating NPC. We identified that G2-γ-CD ameliorated NPC manifestations in model mice and showed lower ototoxicity in mice than HP-ß-CD. To investigate the molecular mechanisms of action behind the differential ototoxicity of these CDs, we performed cholesterol solubility analysis, proton nuclear magnetic resonance spectroscopy, and molecular modeling, and estimated that the cholesterol inclusion mode of G2-γ-CD maintained solely the 1:1 inclusion complex, whereas that of HP-ß-CD shifted to the highly-soluble 2:1 complex at higher concentrations. We predicted the associations of these differential complexations of CDs with cholesterol with the profile of disease attenuation and of the auditory cell toxicity using specific cell models. We proposed that G2-γ-CD can serve as a fine-tuned cholesterol solubilizer for treating NPC, being highly biocompatible and physicochemically suitable for clinical application.


Assuntos
Perda Auditiva , Doença de Niemann-Pick Tipo C , Ototoxicidade , gama-Ciclodextrinas , Camundongos , Animais , Doença de Niemann-Pick Tipo C/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/química , Maltose/uso terapêutico , Prótons , Colesterol/uso terapêutico , Excipientes/uso terapêutico , Perda Auditiva/tratamento farmacológico
6.
Exp Cell Res ; 416(2): 113175, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35487270

RESUMO

Niemann Pick type C is an inborn error of metabolism (IEM), classified as a lysosomal storage disease (LSD) caused by a dysfunction in NPC transport protein, that leads to intracellular accumulation of non-esterified cholesterol and other lipids. Clinical manifestations are ample, with visceral and neurological symptoms. Miglustat, a molecule that reversibly inhibits glucosylceramide synthase is used as treatment for this disorder. Studies demonstrated the influence of oxidative stress and inflammation in IEM, as well in animal model of NP-C disease. Nonetheless, literature lacks data on patients, so our work aimed to investigate if there is influence of chronic inflammation in the pathophysiology of NP-C disease, and the effect of miglustat, N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). We evaluated the plasmatic cytokines in NPC patients at diagnosis and during the treatment with miglustat. Additionally, we performed an in vitro study with antioxidants NAC (1 mM and 2.5 mM) and CoQ10 (5 µM and 10 µM), where we could verify its effect on inflammatory parameters, as well as in cholesterol accumulation. Our results showed that NP-C patients have higher plasmatic levels of pro and anti-inflammatory cytokines (IL-6, IL-8, and IL-10) at diagnosis and the treatment with miglustat was able to restore it. In vitro study showed that treatment with antioxidants in higher concentrations significantly decrease cholesterol accumulation, and NAC at 2.5 mM normalized the level of pro-inflammatory cytokines. Although the mechanism is not completely clear, it can be related to restoration in lipid traffic and decrease in oxidative stress caused by antioxidants.


Assuntos
Doença de Niemann-Pick Tipo C , 1-Desoxinojirimicina/análogos & derivados , Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Colesterol , Citocinas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Inflamação/tratamento farmacológico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Ubiquinona/análogos & derivados
7.
Sci Transl Med ; 13(622): eabg2919, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34851695

RESUMO

Lysosome dysfunction is a shared feature of rare lysosomal storage diseases and common age-related neurodegenerative diseases. Microglia, the brain-resident macrophages, are particularly vulnerable to lysosome dysfunction because of the phagocytic stress of clearing dying neurons, myelin, and debris. CD22 is a negative regulator of microglial homeostasis in the aging mouse brain, and soluble CD22 (sCD22) is increased in the cerebrospinal fluid of patients with Niemann-Pick type C disease (NPC). However, the role of CD22 in the human brain remains unknown. In contrast to previous findings in mice, here, we show that CD22 is expressed by oligodendrocytes in the human brain and binds to sialic acid­dependent ligands on microglia. Using unbiased genetic and proteomic screens, we identify insulin-like growth factor 2 receptor (IGF2R) as the binding partner of sCD22 on human myeloid cells. Targeted truncation of IGF2R revealed that sCD22 docks near critical mannose 6-phosphate­binding domains, where it disrupts lysosomal protein trafficking. Interfering with the sCD22-IGF2R interaction using CD22 blocking antibodies ameliorated lysosome dysfunction in human NPC1 mutant induced pluripotent stem cell­derived microglia-like cells without harming oligodendrocytes in vitro. These findings reinforce the differences between mouse and human microglia and provide a candidate microglia-directed immunotherapeutic to treat NPC.


Assuntos
Microglia , Doença de Niemann-Pick Tipo C , Animais , Humanos , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Microglia/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Proteômica , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/uso terapêutico
8.
Lipids Health Dis ; 20(1): 104, 2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34511128

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a malignancy of the large intestine, whose development and prognosis have been demonstrated to be associated with altered lipid metabolism. High cholesterol intake is associated with an increased risk of CRC, and elevated serum cholesterol levels are known to be correlated with risk of developing CRC. Niemann-Pick C1-Like 1 (NPC1L1), a target of ezetimibe, plays an essential role in the absorption of intestinal cholesterol. However, whether the altered expression of NPC1L1 affects CRC development and prognosis is currently unknown. METHODS: Data corresponding to patients with CRC were obtained from The Cancer Genome Atlas (TCAG). Datasets from the Genome Data Analysis Center (GDAC) platform were analyzed to compare the expression of NPC1L1 in normal and CRC tissues using the Mann-Whitney U test and chi-square test. Further, the datasets from the Gene Expression Omnibus (GEO) database were analyzed. The log-rank test and multivariate Cox proportional hazard regression analysis were performed to determine whether NPC1L1 significantly affects the prognosis of CRC. RESULTS: The expression of NPC1L1 was found to be upregulated in CRC and was significantly associated with the N and pathological stages but not with the histological type, age, and sex. Increased NPC1L1 expression in CRC was related to poor patient survival, as evidenced by the Kaplan-Meier and multivariate regression analyses. CONCLUSIONS: As high expression of NPC1L1 was associated with CRC development, pathological stage, and prognosis, NPC1L1 can serve as an independent prognostic marker for CRC.


Assuntos
Biomarcadores Tumorais/genética , Colesterol/sangue , Neoplasias Colorretais/genética , Proteínas de Membrana Transportadoras/genética , Doença de Niemann-Pick Tipo C/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Anticolesterolemiantes/uso terapêutico , Atlas como Assunto , Biomarcadores Tumorais/sangue , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/mortalidade , Conjuntos de Dados como Assunto , Ezetimiba/uso terapêutico , Feminino , Expressão Gênica , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Proteínas de Membrana Transportadoras/sangue , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Fatores Sexuais , Análise de Sobrevida
9.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445564

RESUMO

Niemann-Pick type C (NPC) disease is a wide-spectrum clinical condition classified as a neurovisceral disorder affecting mainly the liver and the brain. It is caused by mutations in one of two genes, NPC1 and NPC2, coding for proteins located in the lysosomes. NPC proteins are deputed to transport cholesterol within lysosomes or between late endosome/lysosome systems and other cellular compartments, such as the endoplasmic reticulum and plasma membrane. The first trait of NPC is the accumulation of unesterified cholesterol and other lipids, like sphingosine and glycosphingolipids, in the late endosomal and lysosomal compartments, which causes the blockade of autophagic flux and the impairment of mitochondrial functions. In the brain, the main consequences of NPC are cerebellar neurodegeneration, neuroinflammation, and myelin defects. This review will focus on myelin defects and the pivotal importance of cholesterol for myelination and will offer an overview of the molecular targets and the pharmacological strategies so far proposed, or an object of clinical trials for NPC. Finally, it will summarize recent data on a new and promising pharmacological perspective involving A2A adenosine receptor stimulation in genetic and pharmacological NPC dysmyelination models.


Assuntos
Agonistas do Receptor A2 de Adenosina/farmacologia , Colesterol/metabolismo , Bainha de Mielina/patologia , Doença de Niemann-Pick Tipo C/patologia , Receptor A2A de Adenosina/metabolismo , Animais , Humanos , Bainha de Mielina/efeitos dos fármacos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo
10.
Hum Mol Genet ; 30(24): 2456-2468, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34296265

RESUMO

The rare, fatal neurodegenerative disorder Niemann-Pick disease type C1 (NPC1) arises from lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. The timing and severity of NPC1 clinical presentation is extremely heterogeneous. This study analyzed RNA-Seq data from 42 NPC1 patient-derived, primary fibroblast cell lines to determine transcriptional changes induced by treatment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD), a compound currently under investigation in clinical trials. A total of 485 HPßCD-responsive genes were identified. Pathway enrichment analysis of these genes showed significant involvement in cholesterol and lipid biosynthesis. Furthermore, immunohistochemistry of the cerebellum as well as measurements of plasma from Npc1m1N null mice treated with HPßCD and adeno-associated virus gene therapy suggests that one of the identified genes, GPNMB, may serve as a useful biomarker of treatment response in NPC1 disease. Overall, this large NPC1 patient-derived dataset provides a comprehensive foundation for understanding the genomic response to HPßCD treatment.


Assuntos
Doença de Niemann-Pick Tipo C , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Biomarcadores , Modelos Animais de Doenças , Proteínas do Olho/genética , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Transcriptoma
11.
BMJ Case Rep ; 14(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962928

RESUMO

We report on a male subject with a diagnosis of Niemann-Pick type C (NPC). He received an experimental medicinal product intrathecally initially via lumbar puncture (LP) and eventually via intrathecal drug delivery device. Shortly after implantation, the device catheter migrated outside of the intrathecal space and coiled subcutaneously. The treatment continued via LP after removal of the device. A subdural haematoma developed after repeated LPs. It was surgically evacuated and the patient recovered with sequelae. Surgically implanted drug delivery devices are designed to bypass the blood-brain barrier and deliver a medicinal product directly into the cerebrospinal fluid circulation. Their use has extended into the field of neurodegenerative disorders. Significant adverse events can occur at any given time after implantation including neurological injury, dislodgement or displacement of any of its components, infection and drug-related complications; all can significantly affect the quality of life of patients. Repeated LPs also carry significant risk.


Assuntos
Doença de Niemann-Pick Tipo C , Preparações Farmacêuticas , Criança , Progressão da Doença , Humanos , Injeções Espinhais , Masculino , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Qualidade de Vida , Punção Espinal
12.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921734

RESUMO

Niemann-Pick type C disease (NPCD) is a lysosomal storage disease (LSD) characterized by abnormal cholesterol accumulation in lysosomes, impaired autophagy flux, and lysosomal dysfunction. The activation of transcription factor EB (TFEB), a master lysosomal function regulator, reduces the accumulation of lysosomal substrates in LSDs where the degradative capacity of the cells is compromised. Genistein can pass the blood-brain barrier and activate TFEB. Hence, we investigated the effect of TFEB activation by genistein toward correcting the NPC phenotype. We show that genistein promotes TFEB translocation to the nucleus in HeLa TFEB-GFP, Huh7, and SHSY-5Y cells treated with U18666A and NPC1 patient fibroblasts. Genistein treatment improved lysosomal protein expression and autophagic flux, decreasing p62 levels and increasing those of the LC3-II in NPC1 patient fibroblasts. Genistein induced an increase in ß-hexosaminidase activity in the culture media of NPC1 patient fibroblasts, suggesting an increase in lysosomal exocytosis, which correlated with a decrease in cholesterol accumulation after filipin staining, including cells treated with U18666A and NPC1 patient fibroblasts. These results support that genistein-mediated TFEB activation corrects pathological phenotypes in NPC models and substantiates the need for further studies on this isoflavonoid as a potential therapeutic agent to treat NPCD and other LSDs with neurological compromise.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Genisteína/uso terapêutico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo , Androstenos/uso terapêutico , Animais , Western Blotting , Linhagem Celular Tumoral , Colesterol/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HeLa , Humanos , Doenças por Armazenamento dos Lisossomos , Lisossomos/metabolismo , Proteína C1 de Niemann-Pick/metabolismo
13.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466390

RESUMO

Niemann-Pick disease type C (NPC) is a recessive hereditary disease caused by mutation of the NPC1 or NPC2 gene. It is characterized by abnormality of cellular cholesterol trafficking with severe neuronal and hepatic injury. In this study, we investigated the potential of glycoprotein nonmetastatic melanoma protein B (GPNMB) to act as a biomarker reflecting the therapeutic effect of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) in an NPC mouse model. We measured serum, brain, and liver expression levels of GPNMB, and evaluated their therapeutic effects on NPC manifestations in the brain and liver after the intracerebroventricular administration of HP-ß-CD in Npc1 gene-deficient (Npc1-/-) mice. Intracerebroventricular HP-ß-CD inhibited cerebellar Purkinje cell damage in Npc1-/- mice and significantly reduced serum and cerebellar GPNMB levels. Interestingly, we also observed that the intracerebral administration significantly reduced hepatic GPNMB expression and elevated serum ALT in Npc1-/- mice. Repeated doses of intracerebroventricular HP-ß-CD (30 mg/kg, started at 4 weeks of age and repeated every 2 weeks) drastically extended the lifespan of Npc1-/- mice compared with saline treatment. In summary, our results suggest that GPNMB level in serum is a potential biomarker for evaluating the attenuation of NPC pathophysiology by intracerebroventricular HP-ß-CD treatment.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Cerebelo/efeitos dos fármacos , Proteínas do Olho/metabolismo , Fígado/efeitos dos fármacos , Melanoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo , Animais , Biomarcadores/metabolismo , Cerebelo/metabolismo , Colesterol/metabolismo , Modelos Animais de Doenças , Feminino , Glicoproteínas/metabolismo , Infusões Intraventriculares , Fígado/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo
14.
Pediatrics ; 144(5)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31649137

RESUMO

Niemann-Pick disease type C is a rare progressive genetic disorder that leads to the abnormal accumulation of lipids within various tissues of the body, including brain tissue and liver. There is a rapid progression of the disease, resulting in severe disability in only a few years after the first symptoms, and survival is not much longer. Spasticity, dystonia, and chronic pain are common findings that severely impact quality of life in these patients. Analgesic management with traditional pain medications is not always effective, and the risk for secondary effects in medically complex patients is high. Liver function is also a limiting factor in these patients. This is a case report of a boy with advanced Niemann-Pick disease type C with developmental regression, cataplexia, and seizures. His severe spasticity made positioning and care difficult, and intense pain required multiple hospitalizations. He had unsuccessfully trialed multiple drugs. An intrathecal baclofen pump was placed without surgical complications and resulted in positive clinical effects. Baclofen pumps have classically been used for spasticity management in adults and children with nonprogressive diseases such as cerebral palsy or spinal cord injury with relatively long life expectancies. In adults, they have been used in patients with multiple sclerosis; however, use in pediatric neurodegenerative diseases has scarcely been reported. The use of intrathecal baclofen in palliative settings might provide an additional resource to provide comfort and quality of life for children with neurodegenerative diseases not only at end-of-life stages but also earlier on.


Assuntos
Baclofeno/administração & dosagem , Relaxantes Musculares Centrais/administração & dosagem , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Cuidados Paliativos , Criança , Evolução Fatal , Humanos , Bombas de Infusão Implantáveis , Injeções Espinhais , Masculino , Espasticidade Muscular/tratamento farmacológico , Espasticidade Muscular/etiologia , Doença de Niemann-Pick Tipo C/complicações
15.
Pract Neurol ; 19(5): 420-423, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31243140

RESUMO

Niemann-Pick type C is an uncommon neurodegenerative lysosomal storage disorder that can cause a progressive neuropsychiatric syndrome associated with supranuclear vertical gaze palsy and a movement disorder. There have been recent developments in testing that make diagnosis easier and new therapies that aim to stabilise the disease process. A new biochemical test to measure serum cholesterol metabolites supersedes the skin biopsy and is practical and robust. It is treatable with miglustat, a drug that inhibits glycosphingolipid synthesis. We describe a patient, aged 22 years, with juvenile-onset Niemann-Pick type C who presented with seizures and a label of 'cerebral palsy'. We describe the approach to this syndrome in general, and highlight the classical features and red flags that should alert a neurologist to this treatable condition.


Assuntos
Doenças por Armazenamento dos Lisossomos/diagnóstico , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/tratamento farmacológico , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapêutico , Adulto , Feminino , Humanos , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/patologia , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/tratamento farmacológico , Pele/patologia , Resultado do Tratamento
16.
J Lipid Res ; 60(4): 832-843, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30709900

RESUMO

In specialized cell types, lysosome-related organelles support regulated secretory pathways, whereas in nonspecialized cells, lysosomes can undergo fusion with the plasma membrane in response to a transient rise in cytosolic calcium. Recent evidence also indicates that lysosome secretion can be controlled transcriptionally and promote clearance in lysosome storage diseases. In addition, evidence is also accumulating that low concentrations of cyclodextrins reduce the cholesterol-storage phenotype in cells and animals with the cholesterol storage disease Niemann-Pick type C, via an unknown mechanism. Here, we report that cyclodextrin triggers the secretion of the endo/lysosomal content in nonspecialized cells and that this mechanism is responsible for the decreased cholesterol overload in Niemann-Pick type C cells. We also find that the secretion of the endo/lysosome content occurs via a mechanism dependent on the endosomal calcium channel mucolipin-1, as well as FYCO1, the AP1 adaptor, and its partner Gadkin. We conclude that endo-lysosomes in nonspecialized cells can acquire secretory functions elicited by cyclodextrin and that this pathway is responsible for the decrease in cholesterol storage in Niemann-Pick C cells.


Assuntos
Ciclodextrinas/farmacologia , Endossomos/efeitos dos fármacos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Colesterol/análise , Endossomos/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Canais de Potencial de Receptor Transitório/metabolismo , Células Tumorais Cultivadas
17.
Cell Death Dis ; 9(10): 1019, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282967

RESUMO

Niemann-Pick type C (NPC) disease is a fatal hereditary neurodegenerative disorder characterized by a massive accumulation of cholesterol in lysosomes and late endosomes due to a defect in intracellular cholesterol trafficking. Dysfunction in intracellular cholesterol trafficking is responsible for about 50 rare inherited lysosomal storage disorders including NPC. The lysosomal proteins NPC1 and NPC2 play a crucial role in trafficking of cholesterol from late endosomes and lysosomes to other cellular compartments. However, the detailed mechanisms of cholesterol trafficking at the late endosomes/lysosomes (LE/LY) are poorly understood. Studies showed that 2-hydroxypropyl-ß-cyclodextrin (HPßCD) alleviates the cholesterol accumulation defect in animal model and has been approved for a phase 2b/3 clinical trial for NPC. HPßCD is known to bind cholesterol; however, the mechanisms how HPßCD mediates the exit of cholesterol from the LE/LY compartments are still unknown. Further, another cyclodextrin (CD) derivative, 2-hydroxypropyl-γ-cyclodextrin (HPγCD), was shown to reduce intracellular cholesterol accumulation in NPC patient cells and NPC mice model. Herein, we identified a number of candidate proteins differentially expressed in NPC patient-derived cells compared to cells derived from a healthy donor using a proteomic approach. Interestingly, both HPßCD and HPγCD treatments modulated the expression of most of these NPC-specific proteins. Data showed that treatment with both CDs induces the expression of the lysosome-associated membrane protein 1 (LAMP-1) in NPC patient-derived cells. Remarkably, LAMP-1 overexpression in HeLa cells rescued U18666A-induced cholesterol accumulation suggesting a role of LAMP-1 in cholesterol trafficking. We propose that HPßCD and HPγCD facilitate cholesterol export from the LE/LY compartments via the LAMP-1 protein, which may play a crucial role in cholesterol trafficking at the LE/LY compartments when there is no functional NPC1 protein. Together, this study uncovers new cellular mechanisms for cholesterol trafficking, which will contribute to development of novel therapeutic approaches for lysosomal storage diseases.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Colesterol/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo , gama-Ciclodextrinas/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos , Transporte Proteico/efeitos dos fármacos , Proteínas/metabolismo , Proteômica/métodos , beta-Ciclodextrinas/farmacologia
18.
Dis Model Mech ; 11(9)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30135069

RESUMO

Niemann-Pick disease type C1 (NPC1) is a rare autosomal recessive lysosomal storage disease primarily caused by mutations in NPC1 NPC1 is characterized by abnormal accumulation of unesterified cholesterol and glycolipids in late endosomes and lysosomes. Common signs include neonatal jaundice, hepatosplenomegaly, cerebellar ataxia, seizures and cognitive decline. Both mouse and feline models of NPC1 mimic the disease progression in humans and have been used in preclinical studies of 2-hydroxypropyl-ß-cyclodextrin (2HPßCD; VTS-270), a drug that appeared to slow neurological progression in a Phase 1/2 clinical trial. However, there remains a need to identify additional therapeutic agents. High-throughput drug screens have been useful in identifying potential therapeutic compounds; however, current preclinical testing is time and labor intensive. Thus, development of a high-capacity in vivo platform suitable for screening candidate drugs/compounds would be valuable for compound optimization and prioritizing subsequent in vivo testing. Here, we generated and characterize two zebrafish npc1-null mutants using CRISPR/Cas9-mediated gene targeting. The npc1 mutants model both the early liver and later neurological disease phenotypes of NPC1. LysoTracker staining of npc1 mutant larvae was notable for intense staining of lateral line neuromasts, thus providing a robust in vivo screen for lysosomal storage. As a proof of principle, we were able to show that treatment of the npc1 mutant larvae with 2HPßCD significantly reduced neuromast LysoTracker staining. These data demonstrate the potential value of using this zebrafish NPC1 model for efficient and rapid in vivo optimization and screening of potential therapeutic compounds.This article has an associated First Person interview with the first author of the paper.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Peixe-Zebra/metabolismo , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Alelos , Animais , Sequência de Bases , Encéfalo/patologia , Colesterol/metabolismo , Modelos Animais de Doenças , Larva/metabolismo , Fígado/patologia , Hepatopatias/patologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Mutação/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/patologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo
19.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1093-1094: 47-51, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29990712

RESUMO

A new methodology, based on high resolution liquid chromatography with light scatterin detector, is applied to analyze Hydroxypropyl-beta-Cyclodextrin (HPßCD) in urine samples of a child affected by Niemann-Pick Type C disease. The treatment not only stopped disease progression, but has also increased the life expectancy and quality of our patient. The pharmacokinetic of HPßCD in the patient was studied with a 92.8% of HPßCD recovered. At 88 h, no HPßCD was found in the urine. During the treatment, HPßCD has not shown toxicity. Before application of the new treatment, injections were given every two weeks but, we have demonstrated that this can be increased to every four days.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Anticolesterolemiantes , Cromatografia Líquida de Alta Pressão/métodos , Doença de Niemann-Pick Tipo C , 2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacocinética , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/urina , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacocinética , Anticolesterolemiantes/uso terapêutico , Anticolesterolemiantes/urina , Pré-Escolar , Humanos , Luz , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo , Produção de Droga sem Interesse Comercial , Reprodutibilidade dos Testes , Espalhamento de Radiação
20.
Lancet ; 390(10104): 1758-1768, 2017 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-28803710

RESUMO

BACKGROUND: Niemann-Pick disease, type C1 (NPC1) is a lysosomal storage disorder characterised by progressive neurodegeneration. In preclinical testing, 2-hydroxypropyl-ß-cyclodextrins (HPßCD) significantly delayed cerebellar Purkinje cell loss, slowed progression of neurological manifestations, and increased lifespan in mouse and cat models of NPC1. The aim of this study was to assess the safety and efficacy of lumbar intrathecal HPßCD. METHODS: In this open-label, dose-escalation phase 1-2a study, we gave monthly intrathecal HPßCD to participants with NPC1 with neurological manifestation at the National Institutes of Health (NIH), Bethesda, MD, USA. To explore the potential effect of 2-week dosing, three additional participants were enrolled in a parallel study at Rush University Medical Center (RUMC), Chicago, IL, USA. Participants from the NIH were non-randomly, sequentially assigned in cohorts of three to receive monthly initial intrathecal HPßCD at doses of 50, 200, 300, or 400 mg per month. A fifth cohort of two participants received initial doses of 900 mg. Participants from RUMC initially received 200 or 400 mg every 2 weeks. The dose was escalated based on tolerance or safety data from higher dose cohorts. Serum and CSF 24(S)-hydroxycholesterol (24[S]-HC), which serves as a biomarker of target engagement, and CSF protein biomarkers were evaluated. NPC Neurological Severity Scores (NNSS) were used to compare disease progression in HPßCD-treated participants relative to a historical comparison cohort of 21 NPC1 participants of similar age range. FINDINGS: Between Sept 21, 2013, and Jan 19, 2015, 32 participants with NPC1 were assessed for eligibility at the National Institutes of Health. 18 patients were excluded due to inclusion criteria not met (six patients), declined to participate (three patients), pursued independent expanded access and obtained the drug outside of the study (three patients), enrolled in the RUMC cohort (one patient), or too late for the trial enrolment (five patients). 14 patients were enrolled and sequentially assigned to receive intrathecal HPßCD at a starting dose of 50 mg per month (three patients), 200 mg per month (three patients), 300 mg per month (three patients), 400 mg per month (three patients), or 900 mg per month (two patients). During the first year, two patients had treatment interrupted for one dose, based on grade 1 ototoxicity. All 14 patients were assessed at 12 months. Between 12 and 18 months, one participant had treatment interrupted at 17 months due to hepatocellular carcinoma, one patient had dose interruption for 2 doses based on caregiver hardship and one patient had treatment interrupted for 1 dose for mastoiditis. 11 patients were assessed at 18 months. Between Dec 11, 2013, and June 25, 2014, three participants were assessed for eligibility and enrolled at RUMC, and were assigned to receive intrathecal HPßCD at a starting dose of 200 mg every 2 weeks (two patients), or 400 mg every two weeks (one patient). There were no dropouts in this group and all 3 patients were assessed at 18 months. Biomarker studies were consistent with improved neuronal cholesterol homoeostasis and decreased neuronal pathology. Post-drug plasma 24(S)-HC area under the curve (AUC8-72) values, an indicator of neuronal cholesterol homoeostasis, were significantly higher than post-saline plasma 24(S)-HC AUC8-72 after doses of 900 mg (p=0·0063) and 1200 mg (p=0·0037). CSF 24(S)-HC concentrations in three participants given either 600 or 900 mg of HPßCD were increased about two fold (p=0·0032) after drug administration. No drug-related serious adverse events were observed. Mid-frequency to high-frequency hearing loss, an expected adverse event, was documented in all participants. When managed with hearing aids, this did not have an appreciable effect on daily communication. The NNSS for the 14 participants treated monthly increased at a rate of 1·22, SEM 0·34 points per year compared with 2·92, SEM 0·27 points per year (p=0·0002) for the 21 patient comparison group. Decreased progression was observed for NNSS domains of ambulation (p=0·0622), cognition (p=0·0040) and speech (p=0·0423). INTERPRETATION: Patients with NPC1 treated with intrathecal HPßCD had slowed disease progression with an acceptable safety profile. These data support the initiation of a multinational, randomised, controlled trial of intrathecal HPßCD. FUNDING: National Institutes of Health, Dana's Angels Research Trust, Ara Parseghian Medical Research Foundation, Hope for Haley, Samantha's Search for the Cure Foundation, National Niemann-Pick Disease Foundation, Support of Accelerated Research for NPC Disease, Vtesse, Janssen Research and Development, a Johnson & Johnson company, and Johnson & Johnson.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Progressão da Doença , Doença de Niemann-Pick Tipo C/tratamento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/efeitos adversos , Adolescente , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Calbindinas/líquido cefalorraquidiano , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Proteína 3 Ligante de Ácido Graxo/líquido cefalorraquidiano , Feminino , Perda Auditiva de Alta Frequência/induzido quimicamente , Humanos , Hidroxicolesteróis/sangue , Hidroxicolesteróis/líquido cefalorraquidiano , Injeções Espinhais , Masculino , Doença de Niemann-Pick Tipo C/sangue , Doença de Niemann-Pick Tipo C/líquido cefalorraquidiano , Doenças Raras/tratamento farmacológico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA