Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
J Peripher Nerv Syst ; 28(4): 620-628, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37897416

RESUMO

BACKGROUND AND AIMS: POLR3B gene encodes a subunit of RNA polymerase III (Pol III). Biallelic mutations in POLR3B are associated with leukodystrophies, but recently de novo heterozygous mutations have been described in early onset peripheral demyelinating neuropathies with or without central involvement. Here, we report the first Italian case carrying a de novo variant in POLR3B with a pure neuropathy phenotype and primary axonal involvement of the largest nerve fibers. METHODS: Nerve conduction studies, sympathetic skin response, dynamic sweat test, tactile and thermal quantitative sensory testing and brain magnetic resonance imaging were performed according to standard procedures. Histopathological examination was performed on skin and sural nerve biopsies. Molecular analysis of the proband and his relatives was performed with Next Generation Sequencing. The impact of the identified variant on the overall protein structure was evaluated through rotamers method. RESULTS: Since his early adolescence, the patient presented with signs of polyneuropathy with severe distal weakness, atrophy, and reduced sensation. Neurophysiological studies showed a sensory-motor axonal polyneuropathy, with confirmed small fiber involvement. In addition, skin biopsy and sural nerve biopsy showed predominant large fibers involvement. A trio's whole exome sequencing revealed a novel de novo variant p.(Arg1046Cys) in POLR3B, which was classified as Probably Pathogenic. Molecular modeling data confirmed a deleterious effect of the variant on protein structure. INTERPRETATION: Neurophysiological and morphological findings suggest a primary axonal involvement of the largest nerve fibers in POLR3B-related neuropathies. A partial loss of function mechanism is proposed for both neuropathy and leukodystrophy phenotypes.


Assuntos
Doenças Desmielinizantes , Doenças do Sistema Nervoso Periférico , Polineuropatias , RNA Polimerase III , Adolescente , Humanos , Axônios , Doenças Desmielinizantes/genética , Mutação , Fibras Nervosas/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Polineuropatias/genética , Proteínas/genética , RNA Polimerase III/genética , RNA Polimerase III/metabolismo
2.
Int J Dev Neurosci ; 83(6): 532-545, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37529938

RESUMO

INTRODUCTION: Epileptic encephalopathies (EEs) are a group of heterogeneous epileptic syndromes characterized by early-onset refractory seizures, specific EEG abnormalities, developmental delay or regression and intellectual disability. The genetic spectrum of EE is very wide with mutations in a number of genes having various functions, such as those encoding AMPA ionotropic and glutamate receptors as well as voltage-gated ion channels. However, the list of EE-responsible genes could certainly be enlarged by next-generation sequencing. PATIENTS AND METHODS: The present study reports a clinical investigation and a molecular analysis by the whole exome sequencing (WES) and pyrosequencing of a patient's family affected by epileptic spasms and severe psychomotor delay. RESULTS: Clinical and radiological investigations revealed that the patient presented clinical features of severe and drug-resistant EE-type infantile epileptic spasm syndrome that evolved to Lennox Gastaut syndrome with radiological findings of hypomyelinated leukodystrophy. The results of WES revealed the presence of a novel heterozygous c.466C>T mutation in exon 4 of the TUBB4A gene in the patient. This transition led to the replacement of arginine by cysteine at position 156 (p.R156C) of the conserved helix 4 among the N-terminal domain of the TUBB4A protein. Bioinformatic tools predicted its deleterious effects on the structural arrangement and stability of the protein. The presence of the mutation in the asymptomatic father suggested the hypothesis of somatic mosaicism that was tested by pyrosequencing of DNA from two tissues of the patient and her father. The obtained results showed a lower rate of mutated alleles in the asymptomatic father compared with the affected daughter in both lymphocytes and buccal mucosa cells, confirming the occurrence of paternal mosaicism. The phenotypic features of the patient were also compared with those of previously described patients presenting TUBB4A mutations. CONCLUSIONS: Our study is the first to report a disease-causing variant in the TUBB4A gene in a patient with EE associated with hypomyelinated leucodystrophy. In addition, we expanded the phenotypic spectrum associated with the TUBB4A gene.


Assuntos
Doenças Desmielinizantes , Espasmos Infantis , Tubulina (Proteína) , Feminino , Humanos , Doenças Desmielinizantes/genética , Mosaicismo , Mutação/genética , Espasmos Infantis/complicações , Espasmos Infantis/diagnóstico por imagem , Espasmos Infantis/genética , Tubulina (Proteína)/genética
3.
Acta Neuropathol Commun ; 10(1): 8, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090578

RESUMO

Multiple sclerosis (MS) is a disease of the central nervous system that is characterized by inflammation and focal areas of demyelination, ultimately resulting in axonal degradation and neuronal loss. Several lines of evidence point towards a role for microglia and other brain macrophages in disease initiation and progression, but exactly how lesion formation is triggered is currently unknown. Here, we characterized early changes in MS brain tissue through transcriptomic analysis of normal appearing white matter (NAWM). We found that NAWM was characterized by enriched expression of genes associated with inflammation and cellular stress derived from brain macrophages. Single cell RNA sequencing confirmed a stress response in brain macrophages in NAWM and identified specific microglia and macrophage subsets at different stages of demyelinating lesions. We identified both phagocytic/activated microglia and CAM clusters that were associated with various MS lesion types. These overall changes in microglia and macrophages associated with lesion development in MS brain tissue may provide therapeutic targets to limit lesion progression and demyelination.


Assuntos
Encéfalo/metabolismo , Doenças Desmielinizantes/metabolismo , Macrófagos/metabolismo , Esclerose Múltipla/metabolismo , Transcriptoma , Substância Branca/metabolismo , Animais , Encéfalo/patologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Feminino , Humanos , Macrófagos/patologia , Masculino , Camundongos , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Substância Branca/patologia
4.
Neurotoxicol Teratol ; 90: 107071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35016995

RESUMO

Epidemiology studies suggest that exposure to ambient air pollution is associated with demyelinating diseases in the central nervous system (CNS), including multiple sclerosis (MS). The pathophysiology of MS results from an autoimmune response involving increased inflammation and demyelination in the CNS, which is higher in young (adult) females. Exposure to traffic-generated air pollution is associated with neuroinflammation and other detrimental outcomes in the CNS; however, its role in the progression of pathologies associated with demyelinating diseases has not yet been fully characterized in a female model. Thus, we investigated the effects of inhalation exposure to mixed vehicle emissions (MVE) in the brains of both ovary-intact (ov+) and ovariectomized (ov-) female Apolipoprotein (ApoE-/-) mice. Ov + and ov- ApoE-/- mice were exposed via whole-body inhalation to either filtered air (FA, controls) or mixed gasoline and diesel vehicle emissions (MVE: 200 PM µg/m3) for 6 h/d, 7 d/wk., for 30 d. We then analyzed MVE-exposure mediated alterations in myelination, the presence of CD4+ and CD8+ T cells, reactive oxygen species (ROS), myelin oligodendrocyte protein (MOG), and expression of estrogen (ERα and ERß) and progesterone (PROA/B) receptors in the CNS. MVE-exposure mediated significant alterations in myelination across multiple regions in the cerebrum, as well as increased CD4+ and CD8+ staining. There was also an increase in ROS production in the CNS of MVE-exposed ov- and ov + ApoE-/- mice. Ov- mice displayed a reduction in cerebral ERα mRNA expression, compared to ov + mice; however, MVE exposure resulted in an even further decrease in ERα expression, while ERß and PRO A/B were unchanged across groups. These findings collectively suggest that inhaled MVE-exposure may mediate estrogen receptor expression alterations associated with increased CD4+/CD8+ infiltration, regional demyelination, and ROS production in the CNS of female ApoE-/- mice.


Assuntos
Poluição do Ar , Doenças Desmielinizantes , Poluição do Ar/efeitos adversos , Animais , Apolipoproteínas E/genética , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/genética , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio , Feminino , Camundongos , Espécies Reativas de Oxigênio , Emissões de Veículos/toxicidade
5.
Nat Commun ; 12(1): 7344, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937876

RESUMO

Manipulating lymphocyte functions with gene silencing approaches is promising for treating autoimmunity, inflammation, and cancer. Although oligonucleotide therapy has been proven to be successful in treating several conditions, efficient in vivo delivery of oligonucleotide to lymphocyte populations remains a challenge. Here, we demonstrate that intravenous injection of a heteroduplex oligonucleotide (HDO), comprised of an antisense oligonucleotide (ASO) and its complementary RNA conjugated to α-tocopherol, silences lymphocyte endogenous gene expression with higher potency, efficacy, and longer retention time than ASOs. Importantly, reduction of Itga4 by HDO ameliorates symptoms in both adoptive transfer and active experimental autoimmune encephalomyelitis models. Our findings reveal the advantages of HDO with enhanced gene knockdown effect and different delivery mechanisms compared with ASO. Thus, regulation of lymphocyte functions by HDO is a potential therapeutic option for immune-mediated diseases.


Assuntos
Linfócitos/metabolismo , Ácidos Nucleicos Heteroduplexes/metabolismo , Oligonucleotídeos/metabolismo , RNA/metabolismo , Administração Intravenosa , Transferência Adotiva , Animais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/imunologia , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Endocitose/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Inativação Gênica , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/imunologia , Humanos , Integrina alfa4/genética , Integrina alfa4/metabolismo , Células Jurkat , Masculino , Camundongos Endogâmicos C57BL , Ácidos Nucleicos Heteroduplexes/administração & dosagem , Ácidos Nucleicos Heteroduplexes/farmacocinética , Ácidos Nucleicos Heteroduplexes/farmacologia , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacocinética , Oligonucleotídeos/farmacologia , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/patologia , Distribuição Tecidual/efeitos dos fármacos
6.
Sci Data ; 8(1): 278, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711861

RESUMO

In the adult mammalian brain, Gli1 expressing neural stem cells reside in the subventricular zone and their progeny are recruited to sites of demyelination in the white matter where they generate new oligodendrocytes, the myelin forming cells. Remarkably, genetic loss or pharmacologic inhibition of Gli1 enhances the efficacy of remyelination by these neural stem cells. To understand the molecular mechanisms involved, we performed a transcriptomic analysis of this Gli1-pool of neural stem cells. We compared murine NSCs with either intact or deficient Gli1 expression from adult mice on a control diet or on a cuprizone diet which induces widespread demyelination. These data will be a valuable resource for identifying therapeutic targets for enhancing remyelination in demyelinating diseases like multiple sclerosis.


Assuntos
Doenças Desmielinizantes/genética , Células-Tronco Neurais/citologia , Transcriptoma , Proteína GLI1 em Dedos de Zinco/genética , Animais , Cuprizona , Camundongos , Oligodendroglia/citologia
7.
Genes (Basel) ; 12(5)2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069712

RESUMO

X-linked adrenoleukodystrophy (X-ALD, OMIM #300100) is the most common peroxisomal disorder clinically characterized by two main phenotypes: adrenomyeloneuropathy (AMN) and the cerebral demyelinating form of X-ALD (cerebral ALD). The disease is caused by defects in the gene for the adenosine triphosphate (ATP)-binding cassette protein, subfamily D (ABCD1) that encodes the peroxisomal transporter of very-long-chain fatty acids (VLCFAs). The defective function of ABCD1 protein prevents ß-oxidation of VLCFAs, which thus accumulate in tissues and plasma, to represent the hallmark of the disease. As in many X-linked diseases, it has been routinely expected that female carriers are asymptomatic. Nonetheless, recent findings indicate that most ABCD1 female carriers become symptomatic, with a motor disability that typically appears between the fourth and fifth decade. In this paper, we report a large family in which affected males died during the first decade, while affected females develop, during the fourth decade, progressive lower limb weakness with spastic or ataxic-spastic gait, tetra-hyperreflexia with sensory alterations. Clinical and genetic evaluations were performed in nine subjects, eight females (five affected and three healthy) and one healthy male. All affected females were carriers of the c.1661G>A (p.Arg554His, rs201568579) mutation. This study strengthens the relevance of clinical symptoms in female carriers of ABCD1 mutations, which leads to a better understanding of the role of the genetic background and the genotype-phenotype correlation. This indicates the relevance to include ABCD1 genes in genetic panels for gait disturbance in women.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Mutação/genética , Adrenoleucodistrofia/genética , Adulto , Idoso , Encéfalo/patologia , Doenças Desmielinizantes/genética , Pessoas com Deficiência , Feminino , Estudos de Associação Genética/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Motores/genética
9.
Oxid Med Cell Longev ; 2021: 5521503, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815654

RESUMO

BACKGROUND: Bu Shen Yi Sui capsule (BSYS) is a traditional Chinese medicine prescription that has shown antineuroinflammatory and neuroprotective effects in treating multiple sclerosis (MS) and its animal model of experimental autoimmune encephalomyelitis (EAE). Microglia play an important role in neuroinflammation. The M1 phenotype of microglia is involved in the proinflammatory process of the disease, while the M2 phenotype plays an anti-inflammatory role. Promoting the polarization of microglia to M2 in MS/EAE is a promising therapeutic strategy. This study is aimed at exploring the effects of BSYS on microglial polarization in mice with EAE. METHODS: The EAE model was established by the intraperitoneal injection of pertussis toxin and subcutaneous injection of myelin oligodendrocyte glycoprotein (MOG)35-55 in C57BL/6J mice. The mice were treated with BSYS (3.02 g/kg), FTY720 (0.3 mg/kg), or distilled water by intragastric administration. H&E and LFB staining, transmission electron microscopy, qRT-PCR, immunofluorescence, ELISA, fluorescence in situ hybridization, and western blotting were used to detect the histological changes in myelin, microglial M1/M2 polarization markers, and the expression of key genes involved in EAE. Results and Conclusions. BSYS treatment of EAE mice increased the body weight, decreased the clinical score, and reduced demyelination induced by inflammatory infiltration. BSYS also inhibited the mRNA expression of M1 microglial markers while increasing the mRNA level of M2 markers. Additionally, BSYS led to a marked decrease in the ratio of M1 microglia (iNOS+/Iba1+) and an obvious increase in the number of M2 microglia (Arg1+/Iba1+). In the EAE mouse model, miR-124 expression was decreased, and miR-155 expression was increased, while BSYS treatment significantly reversed this effect and modulated the levels of C/EBP α, PU.1, and SOCS1 (target genes of miR-124 and miR-155). Therefore, the neuroprotective effect of BSYS against MS/EAE was related to promoting microglia toward M2 polarization, which may be correlated with changes in miR-124 and miR-155 in vivo.


Assuntos
Encéfalo/patologia , Doenças Desmielinizantes/genética , Medicamentos de Ervas Chinesas/farmacologia , Encefalomielite Autoimune Experimental/genética , Inflamação/patologia , MicroRNAs/metabolismo , Microglia/patologia , Animais , Peso Corporal/efeitos dos fármacos , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cápsulas , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/sangue , Encefalomielite Autoimune Experimental/patologia , Exossomos/metabolismo , Feminino , Inflamação/genética , Camundongos Endogâmicos C57BL , MicroRNAs/sangue , MicroRNAs/genética , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Fenótipo , Proteínas Proto-Oncogênicas/metabolismo , Medula Espinal/patologia , Transativadores/metabolismo , Regulação para Cima/genética
10.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33514021

RESUMO

Apolipoprotein D (Apo D) overexpression is a general finding across neurodegenerative conditions so the role of this apolipoprotein in various neuropathologies such as multiple sclerosis (MS) has aroused a great interest in last years. However, its mode of action, as a promising compound for the development of neuroprotective drugs, is unknown. The aim of this work was to address the potential of Apo D to prevent the action of cuprizone (CPZ), a toxin widely used for developing MS models, in oligodendroglial and neuroblastoma cell lines. On one hand, immunocytochemical quantifications and gene expression measures showed that CPZ compromised neural mitochondrial metabolism but did not induce the expression of Apo D, except in extremely high doses in neurons. On the other hand, assays of neuroprotection demonstrated that antipsychotic drug, clozapine, induced an increase in Apo D synthesis only in the presence of CPZ, at the same time that prevented the loss of viability caused by the toxin. The effect of the exogenous addition of human Apo D, once internalized, was also able to directly revert the loss of cell viability caused by treatment with CPZ by a reactive oxygen species (ROS)-independent mechanism of action. Taken together, our results suggest that increasing Apo D levels, in an endo- or exogenous way, moderately prevents the neurotoxic effect of CPZ in a cell model that seems to replicate some features of MS which would open new avenues in the development of interventions to afford MS-related neuroprotection.


Assuntos
Apolipoproteínas D/genética , Doenças Desmielinizantes/genética , Esclerose Múltipla/genética , Oligodendroglia/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cuprizona/toxicidade , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/terapia , Modelos Animais de Doenças , Humanos , Camundongos , Esclerose Múltipla/patologia , Esclerose Múltipla/terapia , Fármacos Neuroprotetores/uso terapêutico , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Espécies Reativas de Oxigênio/metabolismo
11.
Neurobiol Aging ; 100: 120.e1-120.e6, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33339634

RESUMO

Mutations in the valosin-containing protein (VCP) gene are known to cause various neurodegenerative disorders. Here, we report 8 Japanese patients [6 men, 2 women; median age at onset: 49.5 (range, 35-58) years] from 5 unrelated families with VCP missense mutations. Although 7 of 8 patients were diagnosed with either inclusion body myopathy or amyotrophic lateral sclerosis, 1 patient showed demyelinating polyneuropathy, which was confirmed by longitudinal nerve conduction studies. Sural nerve biopsy of the patient revealed intranuclear ubiquitin staining in Schwann cells. Three known pathogenic VCP mutations (p.Arg191Gln, p.Arg155Cys, and p.Ile126Phe) were detected. A novel mutation, c.293 A>T (p.Asp98Val), was also identified in a patient with amyotrophic lateral sclerosis and frontotemporal dementia. This mutation was predicted to be "deleterious" or "disease causing" using in silico mutation analyses. In conclusion, demyelinating polyneuropathy may be a novel phenotype caused by VCP mutations. The p.Asp98Val mutation was found to be a novel pathogenic mutation of VCP proteinopathy. We believe our cases represent a wide clinical spectrum of VCP mutations.


Assuntos
Esclerose Lateral Amiotrófica/genética , Doenças Desmielinizantes/genética , Mutação de Sentido Incorreto/genética , Miosite de Corpos de Inclusão/genética , Polineuropatias/genética , Proteína com Valosina/genética , Adulto , Esclerose Lateral Amiotrófica/diagnóstico , Povo Asiático/genética , Análise Mutacional de DNA/métodos , Doenças Desmielinizantes/diagnóstico , Família , Feminino , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Miosite de Corpos de Inclusão/diagnóstico , Linhagem , Polineuropatias/diagnóstico
12.
Stem Cell Reports ; 15(5): 1047-1055, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33125874

RESUMO

Enhancing repair of myelin is an important therapeutic goal in many neurological disorders characterized by demyelination. In the healthy adult brain, ventral neural stem cells (vNSCs) in the subventricular zone, marked by GLI1 expression, do not generate oligodendrocytes. However, in response to demyelination, their progeny are recruited to lesions where they differentiate into oligodendrocytes and ablation of GLI1 further enhances remyelination. GLI1 and GLI2 are closely related transcriptional activators but the role of GLI2 in remyelination by vNSCs is not clear. Here, we show that genetic ablation of Gli1 in vNSCs increases GLI2 expression and combined loss of both transcription factors decreases the recruitment and differentiation of their progeny in demyelinated lesions. These results indicate that GLI1 and GLI2 have distinct, non-redundant functions in vNSCs and their relative levels play an essential role in the response to demyelination.


Assuntos
Doenças Desmielinizantes/metabolismo , Células-Tronco Neurais/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Animais , Diferenciação Celular , Doenças Desmielinizantes/genética , Ventrículos Laterais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Remielinização , Deleção de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Proteína GLI1 em Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/genética
13.
J Neurosci ; 40(44): 8587-8600, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33060175

RESUMO

Age is a critical risk factor for many neurologic conditions, including progressive multiple sclerosis. Yet the mechanisms underlying the relationship are unknown. Using lysolecithin-induced demyelinating injury to the mouse spinal cord, we characterized the acute lesion and investigated the mechanisms of increased myelin and axon damage with age. We report exacerbated myelin and axon loss in middle-aged (8-10 months of age) compared with young (6 weeks of age) female C57BL/6 mice by 1-3 d of lesion evolution in the white matter. Transcriptomic analysis linked elevated injury to increased expression of Cybb, the gene encoding the catalytic subunit of NADPH oxidase gp91phox. Immunohistochemistry in male and female Cx3cr1CreER/+:Rosa26tdTom/+ mice for gp91phox revealed that the upregulation in middle-aged animals occurred primarily in microglia and not infiltrated monocyte-derived macrophages. Activated NADPH oxidase generates reactive oxygen species and elevated oxidative damage was corroborated by higher malondialdehyde immunoreactivity in lesions from middle-aged compared with young mice. From a previously conducted screen for generic drugs with antioxidant properties, we selected the antihypertensive CNS-penetrant medication indapamide for investigation. We report that indapamide reduced superoxide derived from microglia cultures and that treatment of middle-aged mice with indapamide was associated with a decrease in age-exacerbated lipid peroxidation, demyelination and axon loss. In summary, age-exacerbated acute injury following lysolecithin administration is mediated in part by microglia NADPH oxidase activation, and this is alleviated by the CNS-penetrant antioxidant, indapamide.SIGNIFICANCE STATEMENT Age is associated with an increased risk for the development of several neurologic conditions including progressive multiple sclerosis, which is represented by substantial microglia activation. We demonstrate that in the lysolecithin demyelination model in young and middle-aged mice, the latter group developed greater acute axonal and myelin loss attributed to elevated oxidative stress through NADPH oxidase in lineage-traced microglia. We thus used a CNS-penetrant generic medication used in hypertension, indapamide, as we found it to have antioxidant properties in a previous drug screen. Following lysolecithin demyelination in middle-aged mice, indapamide treatment was associated with decreased oxidative stress and axon/myelin loss. We propose indapamide as a potential adjunctive therapy in aging-associated neurodegenerative conditions such as Alzheimer's disease and progressive multiple sclerosis.


Assuntos
Envelhecimento/fisiologia , Anti-Hipertensivos/farmacologia , Axônios/patologia , Indapamida/farmacologia , Microglia/metabolismo , Bainha de Mielina/patologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Medicamentos Genéricos , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Macrófagos/fisiologia , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2/biossíntese , NADPH Oxidase 2/genética , NADPH Oxidases/metabolismo , Transcriptoma
14.
J Neuroinflammation ; 17(1): 220, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32703234

RESUMO

BACKGROUND: Chondroitin sulfate proteoglycans (CSPGs) are potent inhibitors of axonal regrowth and remyelination. More recently, they have also been highlighted as a modulator of macrophage infiltration into the central nervous system in experimental autoimmune encephalomyelitis, an inflammatory model of multiple sclerosis. METHODS: We interrogated results from single nucleotide polymorphisms (SNPs) lying in or close to genes regulating CSPG metabolism in the summary results from two publicly available systematic studies of multiple sclerosis (MS) genetics. A demyelinating injury model in the spinal cord of exostosin-like 2 deficient  (EXTL2-/-) mice was used to investigate the effects of dysregulation of EXTL2 on remyelination. Cell cultures of bone marrow-derived macrophages and primary oligodendrocyte precursor cells and neurons were supplemented with purified CSPGs or conditioned media to assess potential mechanisms of action. RESULTS: The strongest evidence for genetic association was seen for SNPs mapping to the region containing the glycosyltransferase exostosin-like 2 (EXTL2), an enzyme that normally suppresses CSPG biosynthesis. Six of these SNPs showed genome-wide significant evidence for association in one of the studies with concordant and nominally significant effects in the second study. We then went on to show that a demyelinating injury to the spinal cord of EXTL2-/- mice resulted in excessive deposition of CSPGs in the lesion area. EXTL2-/- mice had exacerbated axonal damage and myelin disruption relative to wild-type mice, and increased representation of microglia/macrophages within lesions. In tissue culture, activated bone marrow-derived macrophages from EXTL2-/- mice overproduce tumor necrosis factor α (TNFα) and matrix metalloproteinases (MMPs). CONCLUSIONS: These results emphasize CSPGs as a prominent modulator of neuroinflammation and they highlight CSPGs accumulating in lesions in promoting axonal injury.


Assuntos
Proteoglicanas de Sulfatos de Condroitina/metabolismo , Doenças Desmielinizantes/patologia , Proteínas de Membrana/metabolismo , Esclerose Múltipla/patologia , N-Acetilglucosaminiltransferases/metabolismo , Animais , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , N-Acetilglucosaminiltransferases/genética , Polimorfismo de Nucleotídeo Único
15.
J Crohns Colitis ; 14(12): 1653-1661, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-32497177

RESUMO

BACKGROUND: Anti-TNF exposure has been linked to demyelination events. We sought to describe the clinical features of demyelination events following anti-TNF treatment and to test whether affected patients were genetically predisposed to multiple sclerosis [MS]. METHODS: We conducted a case-control study to describe the clinical features of demyelination events following anti-TNF exposure. We compared genetic risk scores [GRS], calculated using carriage of 43 susceptibility loci for MS, in 48 cases with 1219 patients exposed to anti-TNF who did not develop demyelination. RESULTS: Overall, 39 [74%] cases were female. The median age [range] of patients at time of demyelination was 41.5 years [20.7-63.2]. The median duration of anti-TNF treatment was 21.3 months [0.5-99.4] and 19 [36%] patients were receiving concomitant immunomodulators. Most patients had central demyelination affecting the brain, spinal cord, or both. Complete recovery was reported in 12 [23%] patients after a median time of 6.8 months [0.1-28.7]. After 33.0 months of follow-up, partial recovery was observed in 29 [55%] patients, relapsing and remitting episodes in nine [17%], progressive symptoms in three [6%]: two [4%] patients were diagnosed with MS. There was no significant difference between MS GRS scores in cases (mean -3.5 × 10-4, standard deviation [SD] 0.0039) and controls [mean -1.1 × 10-3, SD 0.0042] [p = 0.23]. CONCLUSIONS: Patients who experienced demyelination events following anti-TNF exposure were more likely female, less frequently treated with an immunomodulator, and had a similar genetic risk to anti-TNF exposed controls who did not experience demyelination events. Large prospective studies with pre-treatment neuroimaging are required to identify genetic susceptibility loci.


Assuntos
Doenças Desmielinizantes/etiologia , Inibidores do Fator de Necrose Tumoral/efeitos adversos , Adulto , Estudos de Casos e Controles , Doenças Desmielinizantes/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/etiologia , Esclerose Múltipla/genética , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco , Medicina Estatal/organização & administração , Medicina Estatal/estatística & dados numéricos , Inibidores do Fator de Necrose Tumoral/uso terapêutico
16.
J Child Neurol ; 35(7): 433-441, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32180488

RESUMO

The overlapping clinical and neuroimaging phenotypes of leukodystrophies pose a diagnostic challenge to both clinicians and researchers alike. Studies on the application of exome sequencing in the diagnosis of leukodystrophies are emerging. We used targeted gene panel sequencing of 6440 genes to investigate the genetic etiology in a cohort of 50 children with neuroimaging diagnosis of leukodystrophy/genetic leukoencephalopathy of unknown etiology. These 50 patients without a definite biochemical or genetic diagnosis were derived from a cohort of 88 patients seen during a 2.5-year period (2015 January-2017 June). Patients who had diagnosis by biochemical or biopsy confirmation (n = 17) and patients with incomplete data or lack of follow-up (n = 21) were excluded. Exome sequencing identified variants in 30 (60%) patients, which included pathogenic or likely pathogenic variants in 28 and variants of unknown significance in 2. Among the patients with pathogenic or likely pathogenic variants, classic leukodystrophies constituted 13 (26%) and genetic leukoencephalopathies 15 (30%). The clinical and magnetic resonance imaging (MRI) findings and genetic features of the identified disorders are discussed.


Assuntos
Doenças Desmielinizantes , Leucoencefalopatias , Doenças por Armazenamento dos Lisossomos , Doenças Neurodegenerativas , Doenças Desmielinizantes/genética , Exoma/genética , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Imageamento por Ressonância Magnética , Doenças Neurodegenerativas/genética , Sequenciamento do Exoma
17.
Brain Res ; 1728: 146572, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31790684

RESUMO

Charcot-Marie-Tooth disease (CMT) encompasses numerous genetically heterogeneous inherited neuropathies, which together are one of the commonest neurogenetic disorders. Axonal CMT types result from mutations in neuronally expressed genes, whereas demyelinating CMT forms mostly result from mutations in genes expressed by myelinating Schwann cells. The demyelinating forms are the most common, and may be caused by dominant mutations and gene dosage effects (as in CMT1), as well as by recessive mutations and loss of function mechanisms (as in CMT4). The discovery of causative genes and increasing insights into molecular mechanisms through the study of experimental disease models has provided the basis for the development of gene therapy approaches. For demyelinating CMT, gene silencing or gene replacement strategies need to be targeted to Schwann cells. Progress in gene replacement for two different CMT forms, including CMT1X caused by GJB1 gene mutations, and CMT4C, caused by SH3TC2 gene mutations, has been made through the use of a myelin-specific promoter to restrict expression in Schwann cells, and by lumbar intrathecal delivery of lentiviral viral vectors to achieve more widespread biodistribution in the peripheral nervous system. This review summarizes the molecular-genetic mechanisms of selected demyelinating CMT neuropathies and the progress made so far, as well as the remaining challenges in the path towards a gene therapy to treat these disorders through the use of optimal gene therapy tools including clinically translatable delivery methods and adeno-associated viral (AAV) vectors.


Assuntos
Doença de Charcot-Marie-Tooth/terapia , Conexinas/genética , Doenças Desmielinizantes/terapia , Terapia Genética/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Células de Schwann/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doenças Desmielinizantes/genética , Humanos , Mutação , Regiões Promotoras Genéticas , Proteína beta-1 de Junções Comunicantes
18.
BMC Neurol ; 19(1): 89, 2019 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053103

RESUMO

BACKGROUND: Missense mutations in SAMD9L gene is associated with ataxia-pancytopenia syndrome (ATXPC), OMIM#159550. Common clinical features in these patients include neurological and hematological symptoms. The phenotype and age of onset is variable. CASE PRESENTATION: In this case report whole exome sequencing (WES) revealed a not previously reported de novo variant c.2686 T > G, p.(Phe896Val) in SAMD9L in a patient with widespread findings of slow developing pathology in the peripheral and central nervous system. The clinical picture was dominated by neurological symptoms, unlike previously described cases, and in addition dural ectasias and multiple cysts in the brain was observed using magnetic resonance imaging. CONCLUSIONS: This case underscores the effect of variable expressivity, i.e. different mutations in the same gene can cause different phenotypes.


Assuntos
Doenças Desmielinizantes/genética , Leucoencefalopatias/genética , Doenças do Sistema Nervoso Periférico/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Criança , Pré-Escolar , Cistos/genética , Feminino , Humanos , Lactente , Recém-Nascido , Mutação , Mutação de Sentido Incorreto , Fenótipo
19.
EBioMedicine ; 43: 473-486, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31060905

RESUMO

BACKGROUND: Exposure to anesthetics during early life may impair cognitive functions. However, the underlying mechanisms remain largely unknown. We set out to determine effects of sevoflurane anesthesia on folate metabolism and myelination in young non-human primates, mice and children. METHODS: Young rhesus macaque and mice received 2.5 to 3% sevoflurane daily for three days. DNA and RNA sequencing and immunohistochemistry among others were used in the studies. We performed unbiased transcriptome profiling in prefrontal cortex of rhesus macaques and mice after the sevoflurane anesthesia. We constructed a brain blood barrier-crossing AAV-PHP.EB vector to harbor ERMN expression in rescue studies. We measured blood folate levels in children after anesthesia and surgery. FINDINGS: We found that thymidylate synthase (TYMS) gene was downregulated after the sevoflurane anesthesia in both rhesus macaque and mice. There was a reduction in blood folate levels in children after the anesthesia and surgery. Combined with transcriptome and genome-wide DNA methylation analysis, we identified that ERMN was the primary target of the disrupted folate metabolism. Myelination was compromised by the anesthesia in the young mice, which was rescued by systematic administration of folic acid or expression of ERMN in the brain through brain-specific delivery of the adeno-associated virus. Moreover, folic acid and expression of ERMN alleviated the cognitive impairment caused by the sevoflurane anesthesia in the mice. INTERPRETATION: General anesthesia leads to disrupted folate metabolism and subsequently defects in myelination in the developmental brain, and ERMN is the important target affected by the anesthesia via epigenetic mechanisms.


Assuntos
Anestesia/efeitos adversos , Biomarcadores , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/metabolismo , Epigênese Genética , Ácido Fólico/metabolismo , Regulação da Expressão Gênica , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Biologia Computacional/métodos , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Genoma , Genômica/métodos , Macaca mulatta , Masculino , Aprendizagem em Labirinto , Camundongos , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Transdução de Sinais , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
20.
Nat Commun ; 10(1): 1467, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931926

RESUMO

In contrast to acute peripheral nerve injury, the molecular response of Schwann cells in chronic neuropathies remains poorly understood. Onion bulb structures are a pathological hallmark of demyelinating neuropathies, but the nature of these formations is unknown. Here, we show that Schwann cells induce the expression of Neuregulin-1 type I (NRG1-I), a paracrine growth factor, in various chronic demyelinating diseases. Genetic disruption of Schwann cell-derived NRG1 signalling in a mouse model of Charcot-Marie-Tooth Disease 1A (CMT1A), suppresses hypermyelination and the formation of onion bulbs. Transgenic overexpression of NRG1-I in Schwann cells on a wildtype background is sufficient to mediate an interaction between Schwann cells via an ErbB2 receptor-MEK/ERK signaling axis, which causes onion bulb formations and results in a peripheral neuropathy reminiscent of CMT1A. We suggest that diseased Schwann cells mount a regeneration program that is beneficial in acute nerve injury, but that overstimulation of Schwann cells in chronic neuropathies is detrimental.


Assuntos
Doenças Desmielinizantes/genética , Neuregulina-1/genética , Comunicação Parácrina , Células de Schwann/metabolismo , Nervo Sural/metabolismo , Animais , Animais Geneticamente Modificados , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Diabetes Mellitus Tipo 1/complicações , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/patologia , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Atividade Motora , Proteínas da Mielina/genética , Neuregulina-1/metabolismo , Neurite Autoimune Experimental/genética , Neurite Autoimune Experimental/metabolismo , Neurite Autoimune Experimental/patologia , Neuroglia/metabolismo , Ratos , Receptor ErbB-2/metabolismo , Células de Schwann/ultraestrutura , Nervo Isquiático/lesões , Transdução de Sinais , Nervo Sural/ultraestrutura , Nervo Tibial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA