Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Front Immunol ; 12: 769167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956195

RESUMO

Inflammatory bowel disease (IBD), which include Crohn's disease (CD) and ulcerative colitis (UC), exhibits a complex multifactorial pathogenesis involving genetic susceptibility, imbalance of gut microbiota, mucosal immune disorder and environmental factors. Recent studies reported associations between ubiquitination and deubiquitination and the occurrence and development of inflammatory bowel disease. Ubiquitination modification, one of the most important types of post-translational modifications, is a multi-step enzymatic process involved in the regulation of various physiological processes of cells, including cell cycle progression, cell differentiation, apoptosis, and innate and adaptive immune responses. Alterations in ubiquitination and deubiquitination can lead to various diseases, including IBD. Here, we review the role of E3 ubiquitin ligases and deubiquitinases (DUBs) and their mediated ubiquitination and deubiquitination modifications in the pathogenesis of IBD. We highlight the importance of this type of posttranslational modification in the development of inflammation, and provide guidance for the future development of targeted therapeutics in IBD.


Assuntos
Enzimas Desubiquitinantes/imunologia , Doenças Inflamatórias Intestinais/imunologia , Processamento de Proteína Pós-Traducional/imunologia , Transdução de Sinais/imunologia , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação/imunologia , Imunidade Adaptativa/imunologia , Colite Ulcerativa/enzimologia , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Doença de Crohn/enzimologia , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Enzimas Desubiquitinantes/metabolismo , Humanos , Imunidade Inata/imunologia , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Nat Rev Immunol ; 21(7): 411-425, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33514947

RESUMO

Haem oxygenase 1 (HO-1), an inducible enzyme responsible for the breakdown of haem, is primarily considered an antioxidant, and has long been overlooked by immunologists. However, research over the past two decades in particular has demonstrated that HO-1 also exhibits numerous anti-inflammatory properties. These emerging immunomodulatory functions have made HO-1 an appealing target for treatment of diseases characterized by high levels of chronic inflammation. In this Review, we present an introduction to HO-1 for immunologists, including an overview of its roles in iron metabolism and antioxidant defence, and the factors which regulate its expression. We discuss the impact of HO-1 induction in specific immune cell populations and provide new insights into the immunomodulation that accompanies haem catabolism, including its relationship to immunometabolism. Furthermore, we highlight the therapeutic potential of HO-1 induction to treat chronic inflammatory and autoimmune diseases, and the issues faced when trying to translate such therapies to the clinic. Finally, we examine a number of alternative, safer strategies that are under investigation to harness the therapeutic potential of HO-1, including the use of phytochemicals, novel HO-1 inducers and carbon monoxide-based therapies.


Assuntos
Antioxidantes/metabolismo , Heme Oxigenase-1/metabolismo , Inflamação/enzimologia , Animais , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Monóxido de Carbono/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Indução Enzimática/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/imunologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Modelos Biológicos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/enzimologia , Esclerose Múltipla/imunologia , Compostos Fitoquímicos/uso terapêutico , Pneumonia/tratamento farmacológico , Pneumonia/enzimologia , Pneumonia/imunologia , Psoríase/tratamento farmacológico , Psoríase/enzimologia , Psoríase/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Imunologia de Transplantes
3.
Mediators Inflamm ; 2020: 4694090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733165

RESUMO

BACKGROUND: The aim of our study was to investigate whether serum cholinesterase (ChE) levels were associated with inflammatory bowel disease (IBD). MATERIALS AND METHODS: We conducted a retrospective case-control study to clarify the relationship between serum ChE levels and IBD that included 142 patients with ulcerative colitis (UC), 60 patients with Crohn's disease (CD), and 264 healthy controls (HCs). We used ROC curves to evaluate the diagnostic value of serum ChE levels for IBD. RESULTS: Substantially lower serum ChE levels were detected in patients with UC than in HCs (6376 U/L versus 8418 U/L, P < 0.001) and in patients with CD than in HCs (5181 U/L versus 8418 U/L, P < 0.001). Additionally, patients with CD displayed significantly lower serum ChE levels than patients with UC (5181 U/L versus 6376 U/L, P < 0.01). We also found that there was a negative association between serum ChE levels and the Crohn's Disease Activity Index (CDAI) score of patients with CD (P = 0.011) and the Simple Clinical Colitis Activity Index (SCCAI) score of patients with UC (P = 0.018). The area under the curve (AUC) for serum ChE for the diagnosis of IBD was 0.826, and the AUCs of serum ChE for the diagnosis of CD and UC were 0.890 and 0.800, respectively. CONCLUSIONS: Serum ChE levels have important clinical significance in the diagnosis and assessment of clinical activity in patients with IBD, and the cholinergic anti-inflammatory pathway may provide new ideas for targeted treatment of IBD.


Assuntos
Colinesterases/sangue , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/enzimologia , Adulto , Biomarcadores/sangue , Estudos de Casos e Controles , Colite Ulcerativa/sangue , Colite Ulcerativa/enzimologia , Doença de Crohn/sangue , Doença de Crohn/enzimologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
4.
Gastroenterology ; 159(5): 1763-1777.e14, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32652144

RESUMO

BACKGROUND & AIMS: The mechanisms by which macrophages regulate intestinal epithelial cell (IEC) barrier properties are poorly understood. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) protects the IEC barrier from inflammation-induced disruption and regulates macrophage functions. We investigated whether PTPN2 controls interactions between IECs and macrophages to maintain intestinal barrier function. METHODS: Human IEC (Caco-2BBe/HT-29.cl19a cells) and mouse enteroid monolayers were cocultured with human macrophages (THP-1, U937, primary monocyte-derived macrophages from patients with inflammatory bowel disease [IBD]) or mouse macrophages, respectively. We assessed barrier function (transepithelial electrical resistance [TEER] and permeability to 4-kDa fluorescently labeled dextran or 70-kDa rhodamine B-dextran) and macrophage polarization. We analyzed intestinal tissues from mice with myeloid cell-specific deletion of PTPN2 (Ptpn2-LysMCre mice) and mice without disruption of Ptpn2 (controls); some mice were given injections of a neutralizing antibody against interleukin (IL) 6. Proteins were knocked down in macrophages and/or IECs with small hairpin RNAs. RESULTS: Knockdown of PTPN2 in either macrophages and/or IECs increased the permeability of IEC monolayers, had a synergistic effect when knocked down from both cell types, and increased the development of inflammatory macrophages in macrophage-IEC cocultures. Colon lamina propria from Ptpn2-LysMCre mice had significant increases in inflammatory macrophages; these mice had increased in vivo and ex vivo colon permeability to 4-kDa fluorescently labeled dextran and reduced ex vivo colon TEER. Nanostring analysis showed significant increases in the expression of IL6 in colon macrophages from Ptpn2-LysMCre mice. An IL6-blocking antibody reversed the effects of PTPN2-deficient macrophages, reducing the permeability of IEC monolayers in culture and in Ptpn2-LysMCre mice. Macrophages from patients with IBD carrying a single-nucleotide polymorphism associated with the disease (PTPN2 rs1893217) had the same features of PTPN2-deficient macrophages from mice, including reduced TEER and increased permeability in cocultures with human IEC or mouse enteroid monolayers, which were restored by anti-IL6. CONCLUSIONS: PTPN2 is required for interactions between macrophages and IECs; loss of PTPN2 from either cell type results in intestinal barrier defects, and loss from both cell types has a synergistic effect. We provide a mechanism by which the PTPN2 gene variants compromise intestinal epithelial barrier function and increase the risk of inflammatory disorders such as IBD.


Assuntos
Comunicação Celular , Células Epiteliais/enzimologia , Doenças Inflamatórias Intestinais/enzimologia , Absorção Intestinal , Mucosa Intestinal/enzimologia , Macrófagos/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Adulto , Células CACO-2 , Técnicas de Cocultura , Células Epiteliais/imunologia , Feminino , Humanos , Imunidade Inata , Imunidade nas Mucosas , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Macrófagos/imunologia , Masculino , Pessoa de Meia-Idade , Permeabilidade , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Transdução de Sinais , Células THP-1 , Células U937
5.
Anal Chem ; 92(16): 10971-10978, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32674562

RESUMO

Detecting myeloperoxidase (MPO) activity in living organisms is important because MPO contributes to the pathogenesis of many diseases such as rheumatoid arthritis and other inflammatory diseases, artherosclerosis, neurodegenerative disease, and some cancers. However, rapid and effective methods for the detection of basal MPO activity in living systems have not yet been reported. Herein, we report a near-infrared (NIR) emissive "turn-on" probe FD-301 that can specifically bind to MPO and accurately measure MPO activity in living cells and in vivo via a rapid response to initial hypochlorous acid (HOCl), produced by MPO. Notably, FD-301 could detect the basal level of MPO activity in human promyelocytic leukemia cells (HL-60) and could discriminate between MPO high-expression and low-expression cells. Furthermore, FD-301 was successfully applied to in vivo imaging of MPO in MPO-dependent diseases, such as arthritis and inflammatory bowel disease.


Assuntos
Corantes Fluorescentes/química , Peroxidase/análise , Fenotiazinas/química , Doença Aguda , Animais , Artrite/enzimologia , Colo/patologia , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/efeitos da radiação , Células HL-60 , Humanos , Ácido Hipocloroso/metabolismo , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/patologia , Raios Infravermelhos , Masculino , Camundongos , Imagem Óptica , Peroxidase/metabolismo , Fenotiazinas/metabolismo , Fenotiazinas/efeitos da radiação , Ligação Proteica , Células RAW 264.7
6.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326391

RESUMO

A key morphological feature of inflammatory bowel disease (IBD) is the loss of the barrier function of intestinal epithelial cells. The present study investigates endoplasmic reticulum (ER) stress in addition to alterations in protein and membrane trafficking in a dextran sulfate sodium (DSS)-induced IBD-like phenotype of intestinal Caco-2 cells in culture. DSS treatment significantly reduced the transepithelial electric resistance (TEER) and increased the epithelial permeability of Caco-2 cells, without affecting their viability. This was associated with an alteration in the expression levels of inflammatory factors in addition to an increase in the expression of the ER stress protein markers, namely immunoglobulin-binding protein (BiP), C/EBP homologous protein (CHOP), activation transcription factor 4 (ATF4), and X-box binding protein (XBP1). The DSS-induced ER-stress resulted in impaired intracellular trafficking and polarized sorting of sucrase-isomaltase (SI) and dipeptidyl peptidase-4 (DPPIV), which are normally sorted to the apical membrane via association with lipid rafts. The observed impaired sorting was caused by reduced cholesterol levels and subsequent distortion of the lipid rafts. The data presented confirm perturbation of ER homeostasis in DSS-treated Caco-2 cells, accompanied by impairment of membrane and protein trafficking resulting in altered membrane integrity, cellular polarity, and hence disrupted barrier function.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sulfato de Dextrana/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Doenças Inflamatórias Intestinais/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Proteínas de Bactérias/metabolismo , Células CACO-2 , Morte Celular/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Polaridade Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colesterol/metabolismo , Citocinas/metabolismo , Dipeptidil Peptidase 4/metabolismo , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/enzimologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Microdomínios da Membrana/química , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Transporte Proteico/efeitos dos fármacos , Complexo Sacarase-Isomaltase/metabolismo , Fator de Transcrição CHOP/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , alfa-Glucosidases/metabolismo
7.
Free Radic Biol Med ; 143: 176-192, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31401304

RESUMO

Pyruvate kinase M2 is a critical enzyme that regulates cell metabolism and growth under different physiological conditions. In its metabolic role, pyruvate kinase M2 catalyzes the last glycolytic step which converts phosphoenolpyruvate to pyruvate with the generation of ATP. Beyond this metabolic role in glycolysis, PKM2 regulates gene expression in the nucleus, phosphorylates several essential proteins that regulate major cell signaling pathways, and contribute to the redox homeostasis of cancer cells. The expression of PKM2 has been demonstrated to be significantly elevated in several types of cancer, and the overall inflammatory response. The unusual pattern of PKM2 expression inspired scientists to investigate the unrevealed functions of PKM2 and the therapeutic potential of targeting PKM2 in cancer and other disorders. Therefore, the purpose of this review is to discuss the mechanistic and therapeutic potential of targeting PKM2 with the focus on cancer metabolism, redox homeostasis, inflammation, and metabolic disorders. This review highlights and provides insight into the metabolic and non-metabolic functions of PKM2 and its relevant association with health and disease.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Inflamação/enzimologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Doenças Metabólicas/enzimologia , Hormônios Tireóideos/metabolismo , Trifosfato de Adenosina/metabolismo , Aterosclerose/enzimologia , Proliferação de Células , Glicólise , Homeostase , Humanos , Doenças Inflamatórias Intestinais/enzimologia , Insulina/metabolismo , Nefropatias/enzimologia , Fígado/enzimologia , Naftoquinonas/farmacologia , Metástase Neoplásica , Neoplasias/enzimologia , Neuralgia/enzimologia , Oxidantes/metabolismo , Oxirredução , Isoformas de Proteínas , Sepse/enzimologia , Transdução de Sinais , Distribuição Tecidual , Proteínas de Ligação a Hormônio da Tireoide
8.
Gastroenterology ; 157(4): 1093-1108.e11, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31325428

RESUMO

BACKGROUND & AIMS: Inflammation, injury, and infection up-regulate expression of the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) in the intestinal epithelium. We studied the effects of cell-specific IDO1 expression in the epithelium at baseline and during intestinal inflammation in mice. METHODS: We generated transgenic mice that overexpress fluorescence-tagged IDO1 in the intestinal epithelium under control of the villin promoter (IDO1-TG). We generated intestinal epithelial spheroids from mice with full-length Ido1 (controls), disruption of Ido1 (knockout mice), and IDO1-TG and analyzed them for stem cell and differentiation markers by real-time polymerase chain reaction, immunoblotting, and immunofluorescence. Some mice were gavaged with enteropathogenic Escherichia coli (E2348/69) to induce infectious ileitis, and ileum contents were quantified by polymerase chain reaction. Separate sets of mice were given dextran sodium sulfate or 2,4,6-trinitrobenzenesulfonic acid to induce colitis; intestinal tissues were analyzed by histology. We utilized published data sets GSE75214 and GDS2642 of RNA expression data from ilea of healthy individuals undergoing screening colonoscopies (controls) and patients with Crohn's disease. RESULTS: Histologic analysis of small intestine tissues from IDO1-TG mice revealed increases in secretory cells. Enteroids derived from IDO1-TG intestine had increased markers of stem, goblet, Paneth, enteroendocrine, and tuft cells, compared with control enteroids, with a concomitant decrease in markers of absorptive cells. IDO1 interacted non-enzymatically with the aryl hydrocarbon receptor to inhibit activation of NOTCH1. Intestinal mucus layers from IDO1-TG mice were 2-fold thicker than mucus layers from control mice, with increased proportions of Akkermansia muciniphila and Mucispirillum schaedleri. Compared to controls, IDO1-TG mice demonstrated an 85% reduction in ileal bacteria (P = .03) when challenged with enteropathogenic E coli, and were protected from immune infiltration, crypt dropout, and ulcers following administration of dextran sodium sulfate or 2,4,6-trinitrobenzenesulfonic acid. In ilea of Crohn's disease patients, increased expression of IDO1 correlated with increased levels of MUC2, LYZ1, and aryl hydrocarbon receptor, but reduced levels of SLC2A5. CONCLUSIONS: In mice, expression of IDO1 in the intestinal epithelial promotes secretory cell differentiation and mucus production; levels of IDO1 are positively correlated with secretory cell markers in ilea of healthy individuals and Crohn's disease patients. We propose that IDO1 contributes to intestinal homeostasis.


Assuntos
Bactérias/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Microbioma Gastrointestinal , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/microbiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores Notch/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Casos e Controles , Linhagem Celular , Linhagem da Célula , Modelos Animais de Doenças , Células Epiteliais/enzimologia , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Genótipo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/deficiência , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/patologia , Camundongos Knockout , Fenótipo , Receptores de Hidrocarboneto Arílico/genética , Receptores Notch/genética , Via Secretória , Transdução de Sinais , Células-Tronco/enzimologia , Células-Tronco/microbiologia , Células-Tronco/patologia
9.
Front Immunol ; 10: 507, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30941139

RESUMO

Purinergic signaling modulates systemic and local inflammatory responses. Extracellular nucleotides, including eATP, promote inflammation, at least in part via the inflammasome upon engagement of P2 purinergic receptors. In contrast, adenosine generated during eATP phosphohydrolysis by ectonucleotidases, triggers immunosuppressive/anti-inflammatory pathways. Mounting evidence supports the role of ectonucleotidases, especially ENTPD1/CD39 and CD73, in the control of several inflammatory conditions, ranging from infectious disease, organ fibrosis to oncogenesis. Our experimental data generated over the years have indicated both CD39 and CD73 serve as pivotal regulators of intestinal and hepatic inflammation. In this context, immune cell responses are regulated by the balance between eATP and adenosine, potentially impacting disease outcomes as in gastrointestinal infection, inflammatory bowel disease, ischemia reperfusion injury of the bowel and liver, autoimmune or viral hepatitis and other inflammatory conditions, such as cancer. In this review, we report the most recent discoveries on the role of ENTPD1/CD39, CD73, and other ectonucleotidases in the regulation of intestinal and hepatic inflammation. We discuss the present knowledge, highlight the most intriguing and promising experimental data and comment on important aspects that still need to be addressed to develop purinergic-based therapies for these important illnesses.


Assuntos
5'-Nucleotidase/metabolismo , Apirase/metabolismo , Hepatite Autoimune/enzimologia , Hepatite Viral Humana/enzimologia , Doenças Inflamatórias Intestinais/enzimologia , Traumatismo por Reperfusão/enzimologia , Trifosfato de Adenosina/metabolismo , Animais , Proteínas Ligadas por GPI/metabolismo , Hepatite Autoimune/patologia , Hepatite Viral Humana/patologia , Humanos , Doenças Inflamatórias Intestinais/patologia , Intestinos/enzimologia , Intestinos/patologia , Fígado/enzimologia , Fígado/patologia , Receptores Purinérgicos P2/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
10.
Artigo em Inglês | MEDLINE | ID: mdl-30709874

RESUMO

Whole-genome and whole-exome sequencing of individual patients allow the study of rare and potentially causative genetic variation. In this study, we sequenced DNA of a trio comprising a boy with very-early-onset inflammatory bowel disease (veoIBD) and his unaffected parents. We identified a rare, X-linked missense variant in the NAPDH oxidase NOX1 gene (c.C721T, p.R241C) in heterozygous state in the mother and in hemizygous state in the patient. We discovered that, in addition, the patient was homozygous for a common missense variant in the CYBA gene (c.T214C, p.Y72H). CYBA encodes the p22phox protein, a cofactor for NOX1. Functional assays revealed reduced cellular ROS generation and antibacterial capacity of NOX1 and p22phox variants in intestinal epithelial cells. Moreover, the identified NADPH oxidase complex variants affected NOD2-mediated immune responses, and p22phox was identified as a novel NOD2 interactor. In conclusion, we detected missense variants in a veoIBD patient that disrupt the host response to bacterial challenges and reduce protective innate immune signaling via NOD2. We assume that the patient's individual genetic makeup favored disturbed intestinal mucosal barrier function.


Assuntos
Doenças Inflamatórias Intestinais/genética , Mutação de Sentido Incorreto , NADPH Oxidase 1/genética , NADPH Oxidases/genética , Linhagem Celular Tumoral , Cromossomos Humanos X , Homozigoto , Humanos , Doenças Inflamatórias Intestinais/enzimologia , Masculino , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo de Nucleotídeo Único , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
11.
Genes Immun ; 20(7): 566-576, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30686824

RESUMO

Inflammatory bowel disease (IBD), such as Crohn's disease and ulcerative colitis are devastating chronic immunopathologies of the intestinal mucosa, which are frequently treated by immunosuppressive glucocorticoids. Endogenous glucocorticoids are not only produced by the adrenal glands, but also by the intestinal epithelium. Local glucocorticoid synthesis critically contributes to the immune homeostasis of the intestinal mucosa. As defective intestinal glucocorticoid synthesis has been associated with the development of IBD, we investigated the expression of steroidogenic enzymes and the key transcriptional regulator Liver Receptor Homolog-1 (LRH-1/NR5A2) in ileal and colonic biopsies human pediatric IBD and control patients. Furthermore, the induction of steroidogenic enzymes and their transcriptional regulation by LRH-1 was investigated in a mouse model of experimental colitis. These analyses revealed that colitis-induced expression of steroidogenic enzymes in the murine colon is dependent on the presence of LRH-1, as intestinal deletion of LRH-1 strongly reduced their colitis-induced expression. Similarly, a strong correlation between the expression of LRH-1 and different steroidogenic enzymes was seen in intestinal biopsies of human pediatric patients. Importantly, reduced expression of hydroxysteroid dehydrogenase 11B1 (HSD11B1) was observed in IBD patients compared to control patients, suggesting that defective local reactivation of glucocorticoids could contribute to the pathogenesis of IBD.


Assuntos
Glucocorticoides/biossíntese , Doenças Inflamatórias Intestinais/enzimologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Adolescente , Animais , Criança , Pré-Escolar , Colite Ulcerativa/metabolismo , Doença de Crohn/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Humanos , Hidroxiesteroide Desidrogenases , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Intestinos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética
13.
J Clin Invest ; 128(11): 5056-5072, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30320600

RESUMO

Dysregulated intestinal epithelial apoptosis initiates gut injury, alters the intestinal barrier, and can facilitate bacterial translocation leading to a systemic inflammatory response syndrome (SIRS) and/or multi-organ dysfunction syndrome (MODS). A variety of gastrointestinal disorders, including inflammatory bowel disease, have been linked to intestinal apoptosis. Similarly, intestinal hyperpermeability and gut failure occur in critically ill patients, putting the gut at the center of SIRS pathology. Regulation of apoptosis and immune-modulatory functions have been ascribed to Thirty-eight-negative kinase 1 (TNK1), whose activity is regulated merely by expression. We investigated the effect of TNK1 on intestinal integrity and its role in MODS. TNK1 expression induced crypt-specific apoptosis, leading to bacterial translocation, subsequent septic shock, and early death. Mechanistically, TNK1 expression in vivo resulted in STAT3 phosphorylation, nuclear translocation of p65, and release of IL-6 and TNF-α. A TNF-α neutralizing antibody partially blocked development of intestinal damage. Conversely, gut-specific deletion of TNK1 protected the intestinal mucosa from experimental colitis and prevented cytokine release in the gut. Finally, TNK1 was found to be deregulated in the gut in murine and porcine trauma models and human inflammatory bowel disease. Thus, TNK1 might be a target during MODS to prevent damage in several organs, notably the gut.


Assuntos
Proteínas Fetais/metabolismo , Doenças Inflamatórias Intestinais/enzimologia , Intestinos/enzimologia , Insuficiência de Múltiplos Órgãos/enzimologia , Traumatismo Múltiplo/enzimologia , Proteínas Tirosina Quinases/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/enzimologia , Animais , Modelos Animais de Doenças , Feminino , Proteínas Fetais/genética , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Intestinos/patologia , Camundongos , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/genética , Insuficiência de Múltiplos Órgãos/patologia , Traumatismo Múltiplo/complicações , Traumatismo Múltiplo/genética , Traumatismo Múltiplo/patologia , Proteínas Tirosina Quinases/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Suínos , Síndrome de Resposta Inflamatória Sistêmica/etiologia , Síndrome de Resposta Inflamatória Sistêmica/patologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
14.
Nat Commun ; 9(1): 2639, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980668

RESUMO

The class III PI3-kinase (PIK3C3) is an enzyme responsible for the generation of phosphatidylinositol 3-phosphate (PI3P), a critical component of vesicular membrane. Here, we report that PIK3C3 deficiency in zebrafish results in intestinal injury and inflammation. In pik3c3 mutants, gut tube forms but fails to be maintained. Gene expression analysis reveals that barrier-function-related inflammatory bowel disease (IBD) susceptibility genes (e-cadherin, hnf4a, ttc7a) are suppressed, while inflammatory response genes are stimulated in the mutants. Histological analysis shows neutrophil infiltration into mutant intestinal epithelium and the clearance of gut microbiota. Yet, gut microorganisms appear dispensable as mutants cultured under germ-free condition have similar intestinal defects. Mechanistically, we show that PIK3C3 deficiency suppresses the formation of PI3P and disrupts the polarized distribution of cell-junction proteins in intestinal epithelial cells. These results not only reveal a role of PIK3C3 in gut homeostasis, but also provide a zebrafish IBD model.


Assuntos
Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/patologia , Fosfatidilinositol 3-Quinase/deficiência , Peixe-Zebra/metabolismo , Animais , Animais Recém-Nascidos , Caderinas/metabolismo , Polaridade Celular , Modelos Animais de Doenças , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Endocitose , Enterócitos/patologia , Enterócitos/ultraestrutura , Microbioma Gastrointestinal , Trato Gastrointestinal/patologia , Regulação da Expressão Gênica no Desenvolvimento , Inflamação/patologia , Larva/metabolismo , Larva/ultraestrutura , Camundongos , Mutação/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
15.
BMC Vet Res ; 14(1): 158, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29764431

RESUMO

BACKGROUND: Cyclooxygenase 2 (COX-2) is an inducible isoform by cellular activation, proinflammatory cytokines and growth factors. The aims of the current study were to evaluate COX-2 immunoexpression in epithelial and lamina propria (LP) of cats with inflammatory bowel disease (IBD) and low grade alimentary lymphoma (LGAL), as well as to correlate them with clinical signs and histopathological scoring. Cats diagnosed with IBD and LGAL (2007-2013) were included in the current study. Feline chronic enteropathy activity index (FCEAI) was calculated for all cases. Control group was composed by 3 healthy indoor cats and 5 sick cats died or were euthanized (non-gastrointestinal illness). Diagnosis and classification of IBD and LGAL was established according to the WSAVA gastrointestinal standardization group template and the National Cancer Institute formulation, respectively. Furthermore, a modified WSAVA template was applied for LGAL evaluation. Immunolabelling for COX-2 (polyclonal rabbit anti-murine antibody) was performed on biopsy samples. Epithelial and LP (inflammatory or neoplastic cells) COX-2 immunolabelling was calculated according to the grade and intensity. The most representative segment scored by the WSAVA and the modified WSAVA were used for statistical analysis. RESULTS: Significant difference was found regarding COX-2 intensity overexpression in the epithelial cells of IBD and LGAL groups when compared to control cats, but not between the groups of sick cats, whereas no differences were found regarding the grade of immunoreactivity between groups. No difference was found for COX-2 immunoexpression at the LP between all groups. However, 3 cats from LGAL group showed COX-2 expression in neoplastic cells at the LP. There were no correlations between epithelial or LP COX-2 expression and FCEAI and histological alterations. CONCLUSIONS: Increased COX-2 intensity at the epithelial cells observed in cats with IBD and LGAL may be secondary to the inflammatory response or a protective function in the intestinal reparation. COX-2 expression at the LP was presented in 33% of LGAL. This result provides a reason for further investigation concerning the role of COX-2 expression in feline alimentary lymphoma.


Assuntos
Doenças do Gato/enzimologia , Ciclo-Oxigenase 2/biossíntese , Neoplasias do Sistema Digestório/veterinária , Doenças Inflamatórias Intestinais/veterinária , Mucosa Intestinal/enzimologia , Linfoma/veterinária , Animais , Doenças do Gato/imunologia , Gatos , Sistema Digestório , Neoplasias do Sistema Digestório/complicações , Neoplasias do Sistema Digestório/imunologia , Feminino , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/enzimologia , Linfoma/complicações , Linfoma/enzimologia , Masculino , Estadiamento de Neoplasias/veterinária
16.
Am J Med Sci ; 355(5): 449-455, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29753375

RESUMO

BACKGROUND: Oxidative stress occuring in patients diagnosed with inflammatory bowel disease (IBD), but the relationship between oxidative stress, disease activity and inflammatory markers has not been well established. MATERIALS AND METHODS: A total of 30 patients diagnosed with IBD and 30 volunteers who had normal colonoscopies, selected as controls, were used for this study. The serum levels of antioxidant enzymes (catalase and glutathione peroxidase) and oxidative markers (malondialdehyde [MDA] and total antioxidant capacity) were compared between the 2 groups. Furthermore, their correlations with disease activity scores and inflammatory markers, especially the fecal calprotectin, were examined. RESULTS: Catalase and glutathione peroxidase concentrations were significantly correlated with the level of fecal calprotectin in patients with IBD. Nevertheless, there were no significant correlations between the concentrations of the above-mentioned enzymes and C-reactive protein, erythrocyte sedimentation rate or the activity scores of IBD patients. It should be noted that MDA and total antioxidant capacity levels did not correlate with the inflammatory markers or the disease activity scores. CONCLUSIONS: There was a positive correlation between fecal calprotectin and serum antioxidant enzymes in patients with IBD, but, there was no correlation between antioxidant and oxidative markers in terms of disease activity scores. Hence, the observed significant correlation between the antioxidant enzymes and the fecal calprotectin may be due to either the pro-oxidant potential of calprotectin or its antioxidant role.


Assuntos
Antioxidantes/análise , Catalase/sangue , Fezes/química , Glutationa Peroxidase/sangue , Doenças Inflamatórias Intestinais/diagnóstico , Complexo Antígeno L1 Leucocitário/análise , Adulto , Biomarcadores/análise , Estudos de Casos e Controles , Colonoscopia , Feminino , Humanos , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/enzimologia , Masculino , Índice de Gravidade de Doença
17.
J Physiol ; 596(17): 3899-3913, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29435987

RESUMO

The hypoxia-inducible factor (HIF) co-ordinates the adaptive transcriptional response to hypoxia in metazoan cells. The hypoxic sensitivity of HIF is conferred by a family of oxygen-sensing enzymes termed HIF hydroxylases. This family consists of three prolyl hydroxylases (PHD1-3) and a single asparagine hydroxylase termed factor inhibiting HIF (FIH). It has recently become clear that HIF hydroxylases are functionally non-redundant and have discrete but overlapping physiological roles. Furthermore, altered abundance or activity of these enzymes is associated with a number of pathologies. Pharmacological HIF-hydroxylase inhibitors have recently proven to be both tolerated and therapeutically effective in patients. In this review, we focus on the physiology, pathophysiology and therapeutic potential of the PHD1 isoform, which has recently been implicated in diseases including inflammatory bowel disease, ischaemia and cancer.


Assuntos
Técnicas Biossensoriais , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Hipóxia , Doenças Inflamatórias Intestinais/fisiopatologia , Isquemia/fisiopatologia , Neoplasias/fisiopatologia , Oxigênio/metabolismo , Animais , Humanos , Doenças Inflamatórias Intestinais/enzimologia , Isquemia/enzimologia , Neoplasias/enzimologia
18.
Dig Dis Sci ; 62(12): 3385-3390, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28932959

RESUMO

INTRODUCTION: Glucocorticoids are known to modulate a number of immunological responses including counteracting inflammation. Within tissues expressing the glucocorticoid and mineralocorticoid receptors including the colon, glucocorticoid metabolism is regulated by the isoenzymes of 11ß-hydroxysteroid dehydrogenase (11ß-HSD). 11ß-HSD1 acts as an oxidoreductase converting inactive cortisone into active cortisol, while 11ß-HSD2 acts as a dehydrogenase converting active cortisol to inactive cortisone. Hexose-6 phosphate dehydrogenase (H6PDH) is a key regulator of 11ß-HSD1 activity via its generation of NADPH. Variations in the 11ß-HSD enzyme system in relation to levels of expression and regulation may have a role in IBD. The aim of this study was to investigate possible abnormalities of 11ß-HSD enzyme system in the colon of patients with IBD. METHODS: By using quantitative real-time PCR, we investigated the transcription levels of 11ß-HSD1 and 2 in colonic tissue from IBD patients and healthy controls undergoing a colonoscopy for disease assessment. Disease activity was recorded using clinical (Mayo Score/Harvey-Bradshaw Index), Biochemical (C-reactive protein), histological, and endoscopic parameters. In addition, transcription levels of H6PDH and the glucocorticoid receptor alpha (GR-α) as well as key pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, Rela (subunit for NF Kappa B)) were later examined among this group, and results were correlated with 11ß-HSD2 gene expression. Results and patient demographics were expressed as a mean (and SD), and differences between IBD patients and control groups were analyzed using a Student's t test or Mann-Whitney U test as appropriate, with a p value of ≤0.05 considered significant. Results were controlled for disease activity as outlined above. RESULTS: Results have demonstrated a significant downregulation in 11ß-HSD2 expression in IBD patients compared with controls (13.8 ± 17.1 au vs. 318.4 ± 521.1 au, p = 0.01), whereas levels of 11ß-HSD1 did not appear to vary across the two groups. Among IBD patients, there was a trend toward higher 11ß-HSD1 expression in inflamed tissue compared with matched non-inflamed tissue (422.1 ± 944 au vs. 102.2 ± 103.9, P = 0.09). Levels of H6PDH and the GR-α expression did not appear to vary among active inflamed IBD tissue and controls. As a result, we examined the association between pro-inflammatory cytokines and levels of 11ß-HSD2 expression. Results showed an upregulation of key pro-inflammatory cytokine mRNA expression (TNF-α, IL-1ß, IL-6) during inflammation with an associated downregulation of 11ß-HSD2 mRNA expression when compared to controls. Dysregulation in this pathway could have a potential role in IBD pathogenesis and may account for exogenous glucocorticoid resistance in IBD. Further work assessing the role of the 11ß-HSD enzyme system in steroid-resistant subjects is warranted.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Colo/enzimologia , Doenças Inflamatórias Intestinais/enzimologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Desidrogenases de Carboidrato/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Receptores de Glucocorticoides/metabolismo , Adulto Jovem
19.
Int J Mol Sci ; 18(6)2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28617319

RESUMO

BACKGROUND: In the last few decades, a better knowledge of the inflammatory pathways involved in the pathogenesis of Inflammatory Bowel Disease (IBD) has promoted biological therapy as an important tool to treat IBD patients. However, in spite of a wider spectrum of biological drugs, a significant proportion of patients is unaffected by or lose their response to these compounds, along with increased risks of infections and malignancies. For these reasons there is an urgent need to look for new pharmacological targets. The novel Phosphodiesterase 4 (PDE4) inhibitors have been recently introduced as new modulators of intracellular signals and gene transcription for the treatment of IBD. AIM: To discuss and describe the state of the art of this new class of compounds in the IBD field, with particular attention to apremilast. METHODS: Published articles selected from PubMed were comprehensively reviewed, with key words including apremilast, inflammatory disease, IBD, psoriasis, psoriatic arthritis, pathogenesis, therapies, and treatment. RESULTS: PDE4 inhibitors generate elevated intracellular levels of cyclic Adenosine Monophosphate (cAMP), that consequently down-regulate the release of pro-inflammatory cytokines in the mucosa of IBD patients. The newly developed apremilast is one of these drugs and has already been approved for the treatment of dermatologic/rheumatologic inflammatory conditions; studies in psoriasis and psoriatic arthritis have in fact demonstrated its clinical activity. However, no clinical trials have yet been published on the use of apremilast in IBD. CONCLUSION: In light of the similarity of pro-inflammatory signaling pathways across the gut, the skin, and joints, apremilast is likely supposed to show its efficacy also in IBD.


Assuntos
Doenças Inflamatórias Intestinais/tratamento farmacológico , Inibidores da Fosfodiesterase 4/uso terapêutico , Talidomida/análogos & derivados , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/análise , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Doenças Inflamatórias Intestinais/enzimologia , Terapia de Alvo Molecular/métodos , Inibidores da Fosfodiesterase 4/farmacologia , Talidomida/farmacologia , Talidomida/uso terapêutico
20.
Gastroenterology ; 153(4): 1054-1067, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28642198

RESUMO

BACKGROUND: Intestinal fibrosis resulting in (sub)obstruction is a common complication of Crohn's disease (CD). Rho kinases (ROCKs) play multiple roles in TGFß-induced myofibroblast activation that could be therapeutic targets. Because systemic ROCK inhibition causes cardiovascular side effects, we evaluated the effects of a locally acting ROCK inhibitor (AMA0825) on intestinal fibrosis. METHODS: Fibrosis was assessed in mouse models using dextran sulfate sodium (DSS) and adoptive T-cell transfer. The in vitro and ex vivo effects of AMA0825 were studied in different cell types and in CD biopsy cultures. RESULTS: ROCK is expressed in fibroblastic, epithelial, endothelial, and muscle cells of the human intestinal tract and is activated in inflamed and fibrotic tissue. Prophylactic treatment with AMA0825 inhibited myofibroblast accumulation, expression of pro-fibrotic factors, and accumulation of fibrotic tissue without affecting clinical disease activity and histologic inflammation in 2 models of fibrosis. ROCK inhibition reversed established fibrosis in a chronic DSS model and impeded ex vivo pro-fibrotic protein secretion from stenotic CD biopsies. AMA0825 reduced TGFß1-induced activation of myocardin-related transcription factor (MRTF) and p38 mitogen-activated protein kinase (MAPK), down-regulating matrix metalloproteinases, collagen, and IL6 secretion from fibroblasts. In these cells, ROCK inhibition potentiated autophagy, which was required for the observed reduction in collagen and IL6 production. AMA0825 did not affect pro-inflammatory cytokine secretion from other ROCK-positive cell types, corroborating the selective in vivo effect on fibrosis. CONCLUSIONS: Local ROCK inhibition prevents and reverses intestinal fibrosis by diminishing MRTF and p38 MAPK activation and increasing autophagy in fibroblasts. Overall, our results show that local ROCK inhibition is promising for counteracting fibrosis as an add-on therapy for CD.


Assuntos
Íleo/efeitos dos fármacos , Doenças Inflamatórias Intestinais/prevenção & controle , Obstrução Intestinal/prevenção & controle , Miofibroblastos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Transferência Adotiva , Animais , Autofagia/efeitos dos fármacos , Estudos de Casos e Controles , Colágeno/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Ativação Enzimática , Fibrose , Humanos , Íleo/enzimologia , Íleo/imunologia , Íleo/patologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-6/metabolismo , Obstrução Intestinal/induzido quimicamente , Obstrução Intestinal/enzimologia , Obstrução Intestinal/patologia , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Miofibroblastos/enzimologia , Miofibroblastos/imunologia , Miofibroblastos/patologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/transplante , Fatores de Tempo , Técnicas de Cultura de Tecidos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA