Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Immunol Rev ; 324(1): 95-103, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747455

RESUMO

Fat is stored in distinct depots with unique features in both mice and humans and B cells reside in all adipose depots. We have shown that B cells modulate cardiometabolic disease through activities in two of these key adipose depots: visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT). VAT refers to the adipose tissue surrounding organs, within the abdomen and thorax, and is comprised predominantly of white adipocytes. This depot has been implicated in mediating obesity-related dysmetabolism. PVAT refers to adipose tissue surrounding major arteries. It had long been thought to exist to provide protection and insulation for the vessel, yet recent work demonstrates an important role for PVAT in harboring immune cells, promoting their function and regulating the biology of the underlying vessel. The role of B-2 cells and adaptive immunity in adipose tissue biology has been nicely reviewed elsewhere. Given that, the predominance of B-1 cells in adipose tissue at homeostasis, and the emerging role of B-1 cells in a variety of disease states, we will focus this review on how B-1 cells function in VAT and PVAT depots to promote homeostasis and limit inflammation linked to cardiometabolic disease and factors that regulate this function.


Assuntos
Tecido Adiposo , Imunidade Inata , Inflamação , Humanos , Animais , Inflamação/imunologia , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/imunologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Obesidade/imunologia , Obesidade/metabolismo , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/imunologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Imunomodulação
2.
J Cell Physiol ; 239(5): e31229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426269

RESUMO

RNA-binding proteins (RBPs) play a crucial role in the regulation of posttranscriptional RNA networks, which can undergo dysregulation in many pathological conditions. Human antigen R (HuR) is a highly researched RBP that plays a crucial role as a posttranscriptional regulator. HuR plays a crucial role in the amplification of inflammatory signals by stabilizing the messenger RNA of diverse inflammatory mediators and key molecular players. The noteworthy correlations between HuR and its target molecules, coupled with the remarkable impacts reported on the pathogenesis and advancement of multiple diseases, position HuR as a promising candidate for therapeutic intervention in diverse inflammatory conditions. This review article examines the significance of HuR as a member of the RBP family, its regulatory mechanisms, and its implications in the pathophysiology of inflammation and cardiometabolic illnesses. Our objective is to illuminate potential directions for future research and drug development by conducting a comprehensive analysis of the existing body of research on HuR.


Assuntos
Doenças Cardiovasculares , Proteína Semelhante a ELAV 1 , Inflamação , Humanos , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Inflamação/genética , Inflamação/patologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Animais , Regulação da Expressão Gênica , Doenças Metabólicas/genética , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Transdução de Sinais , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
Liver Transpl ; 30(6): 647-658, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38315054

RESUMO

This review discusses long-term complications from immunosuppressants after liver transplantation and the management of these complications. Common complications of calcineurin inhibitors include nephrotoxicity and metabolic diseases. Nephrotoxicity can be managed by targeting a lower drug level and/or adding an immunosuppressant of a different class. Metabolic disorders can be managed by treating the underlying condition and targeting a lower drug level. Gastrointestinal adverse effects and myelosuppression are common complications of antimetabolites that are initially managed with dose reduction or discontinuation if adverse events persist. Mammalian targets of rapamycin inhibitors are associated with myelosuppression, proteinuria, impaired wound healing, and stomatitis, which may require dose reduction or discontinuation. Induction agents and agents used for steroid-refractory rejection or antibody-mediated rejection are reviewed. Other rare complications of immunosuppressants are discussed as well.


Assuntos
Rejeição de Enxerto , Imunossupressores , Transplante de Fígado , Humanos , Imunossupressores/efeitos adversos , Transplante de Fígado/efeitos adversos , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Inibidores de Calcineurina/efeitos adversos , Nefropatias/induzido quimicamente , Nefropatias/imunologia , Terapia de Imunossupressão/efeitos adversos , Terapia de Imunossupressão/métodos , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/imunologia , Doenças Metabólicas/terapia , Inibidores de MTOR/efeitos adversos
4.
J Physiol Biochem ; 80(2): 249-260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38158555

RESUMO

N6-methyladenosine (m6A) is one of the most abundant epitranscriptomic modifications on eukaryotic mRNA. Evidence has highlighted that m6A is altered in response to inflammation-related factors and it is closely associated with various inflammation-related diseases. Multiple subpopulations of myeloid cells, such as macrophages, dendritic cells, and granulocytes, are crucial for the regulating of immune process in inflammation-related diseases. Recent studies have revealed that m6A plays an important regulatory role in the functional of multiple myeloid cells. In this review, we comprehensively summarize the function of m6A modification in myeloid cells from the perspective of myeloid cell production, activation, polarization, and migration. Furthermore, we discuss how m6A-mediated myeloid cell function affects the progression of inflammation-related diseases, including autoimmune diseases, chronic metabolic diseases, and malignant tumors. Finally, we discuss the challenges encountered in the study of m6A in myeloid cells, intended to provide a new direction for the study of the pathogenesis of inflammation-related diseases.


Assuntos
Adenosina , Adenosina/análogos & derivados , Inflamação , Células Mieloides , Adenosina/metabolismo , Humanos , Inflamação/metabolismo , Células Mieloides/metabolismo , Animais , Doenças Autoimunes/metabolismo , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/imunologia , Neoplasias/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/imunologia , Doenças Metabólicas/patologia
5.
Front Immunol ; 14: 1153915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153549

RESUMO

Macrophage infiltration into adipose tissue is a key pathological factor inducing adipose tissue dysfunction and contributing to obesity-induced inflammation and metabolic disorders. In this review, we aim to present the most recent research on macrophage heterogeneity in adipose tissue, with a focus on the molecular targets applied to macrophages as potential therapeutics for metabolic diseases. We begin by discussing the recruitment of macrophages and their roles in adipose tissue. While resident adipose tissue macrophages display an anti-inflammatory phenotype and promote the development of metabolically favorable beige adipose tissue, an increase in pro-inflammatory macrophages in adipose tissue has negative effects on adipose tissue function, including inhibition of adipogenesis, promotion of inflammation, insulin resistance, and fibrosis. Then, we presented the identities of the newly discovered adipose tissue macrophage subtypes (e.g. metabolically activated macrophages, CD9+ macrophages, lipid-associated macrophages, DARC+ macrophages, and MFehi macrophages), the majority of which are located in crown-like structures within adipose tissue during obesity. Finally, we discussed macrophage-targeting strategies to ameliorate obesity-related inflammation and metabolic abnormalities, with a focus on transcriptional factors such as PPARγ, KLF4, NFATc3, and HoxA5, which promote macrophage anti-inflammatory M2 polarization, as well as TLR4/NF-κB-mediated inflammatory pathways that activate pro-inflammatory M1 macrophages. In addition, a number of intracellular metabolic pathways closely associated with glucose metabolism, oxidative stress, nutrient sensing, and circadian clock regulation were examined. Understanding the complexities of macrophage plasticity and functionality may open up new avenues for the development of macrophage-based treatments for obesity and other metabolic diseases.


Assuntos
Tecido Adiposo , Macrófagos , Doenças Metabólicas , Obesidade , Tecido Adiposo/imunologia , Macrófagos/classificação , Macrófagos/imunologia , Obesidade/imunologia , Obesidade/terapia , Doenças Metabólicas/imunologia , Doenças Metabólicas/terapia , Humanos , Inflamação/imunologia , Inflamação/terapia , Adipogenia/imunologia , Polaridade Celular
6.
Front Immunol ; 12: 762564, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675940

RESUMO

Accumulating evidences support that amino acids direct the fate decision of immune cells. Glycine is a simple structural amino acid acting as an inhibitory neurotransmitter. Besides, glycine receptors as well as glycine transporters are found in macrophages, indicating that glycine alters the functions of macrophages besides as an inhibitory neurotransmitter. Mechanistically, glycine shapes macrophage polarization via cellular signaling pathways (e.g., NF-κB, NRF2, and Akt) and microRNAs. Moreover, glycine has beneficial effects in preventing and/or treating macrophage-associated diseases such as colitis, NAFLD and ischemia-reperfusion injury. Collectively, this review highlights the conceivable role of glycinergic signaling for macrophage polarization and indicates the potential application of glycine supplementation as an adjuvant therapy in macrophage-associated diseases.


Assuntos
Glicina/imunologia , Macrófagos/imunologia , Animais , Colite/imunologia , Glicina/metabolismo , Humanos , Doenças Metabólicas/imunologia , MicroRNAs , Neoplasias/imunologia , Traumatismo por Reperfusão/imunologia , Transdução de Sinais
7.
Eur J Endocrinol ; 184(6): 857-865, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34552304

RESUMO

OBJECTIVE: Obese and overweight body mass index (BMI) categories have been associated with increased immune-related adverse events (irAEs) in patients with cancer receiving immune checkpoint inhibitors (ICIs); however, the impact of being overweight in conjunction with related metabolic syndrome-associated factors on irAEs have not been investigated. We aimed to evaluate the impact of overweight and obese BMI according to metabolic disease burden on the development of irAEs. DESIGN AND METHODS: We conducted a retrospective observational study of patients receiving ICIs at a cancer center. Our main study outcome was development of ≥grade 2 (moderate) irAEs. Our main predictor was weight/metabolic disease risk category: (1) normal weight (BMI 18.5-24.9 kg/m2)/low metabolic risk (<2 metabolic diseases [diabetes, dyslipidemia, hypertension]), (2) normal weight/high metabolic risk (≥2 metabolic diseases), (3) overweight (BMI ≥25 kg/m2)/low metabolic risk, and (4) overweight/high metabolic risk. RESULTS: Of 411 patients in our cohort, 374 were eligible for analysis. Overall, 111 (30%) patients developed ≥grade 2 irAEs. In Cox analysis, overweight/low metabolic risk was significantly associated with ≥grade 2 irAEs (hazard ratio [HR]: 2.0, 95% confidence interval [95% CI]: 1.2-3.4) when compared to normal weight/low metabolic risk, while overweight/high metabolic risk (HR: 1.3, 95% CI: 0.7-2.2) and normal weight/high metabolic risk (HR: 1.5, 95% CI: 0.7-3.0) were not. CONCLUSIONS: Overweight patients with fewer metabolic comorbidities were at increased risk for irAEs. This study provides an important insight that BMI should be evaluated in the context of associated metabolic comorbidities in assessing risk of irAE development and ICI immune response.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Inibidores de Checkpoint Imunológico/efeitos adversos , Doenças Metabólicas/epidemiologia , Neoplasias/tratamento farmacológico , Neoplasias/epidemiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Estudos de Coortes , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/imunologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Feminino , Seguimentos , Humanos , Inibidores de Checkpoint Imunológico/administração & dosagem , Masculino , Doenças Metabólicas/complicações , Doenças Metabólicas/imunologia , Síndrome Metabólica/complicações , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/imunologia , Pessoa de Meia-Idade , Neoplasias/complicações , Neoplasias/imunologia , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/imunologia , Sobrepeso/complicações , Sobrepeso/epidemiologia , Sobrepeso/imunologia , Estudos Retrospectivos , Medição de Risco , Índice de Gravidade de Doença , Adulto Jovem
8.
Biomolecules ; 11(7)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34356595

RESUMO

Infectious and many non-infectious diseases share common molecular mechanisms. Among them, oxidative stress and the subsequent inflammatory reaction are of particular note. Metabolic disorders induced by external agents, be they bacterial or viral pathogens, excessive calorie intake, poor-quality nutrients, or environmental factors produce an imbalance between the production of free radicals and endogenous antioxidant systems; the consequence being the oxidation of lipids, proteins, and nucleic acids. Oxidation and inflammation are closely related, and whether oxidative stress and inflammation represent the causes or consequences of cellular pathology, both produce metabolic alterations that influence the pathogenesis of the disease. In this review, we highlight two key molecules in the regulation of these processes: Paraoxonase-1 (PON1) and chemokine (C-C motif) ligand 2 (CCL2). PON1 is an enzyme bound to high-density lipoproteins. It breaks down lipid peroxides in lipoproteins and cells, participates in the protection conferred by HDL against different infectious agents, and is considered part of the innate immune system. With PON1 deficiency, CCL2 production increases, inducing migration and infiltration of immune cells in target tissues and disturbing normal metabolic function. This disruption involves pathways controlling cellular homeostasis as well as metabolically-driven chronic inflammatory states. Hence, an understanding of these relationships would help improve treatments and, as well, identify new therapeutic targets.


Assuntos
Arildialquilfosfatase/metabolismo , Quimiocina CCL2/metabolismo , Doenças Metabólicas/metabolismo , Arildialquilfosfatase/fisiologia , Quimiocina CCL2/fisiologia , Homeostase , Humanos , Inflamação , Ligantes , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Doenças Metabólicas/imunologia , Doenças Metabólicas/fisiopatologia , Oxirredução , Estresse Oxidativo
9.
Signal Transduct Target Ther ; 6(1): 247, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34210954

RESUMO

Inflammasomes are protein complexes of the innate immune system that initiate inflammation in response to either exogenous pathogens or endogenous danger signals. Inflammasome multiprotein complexes are composed of three parts: a sensor protein, an adaptor, and pro-caspase-1. Activation of the inflammasome leads to the activation of caspase-1, which cleaves pro-inflammatory cytokines such as IL-1ß and IL-18, leading to pyroptosis. Effectors of the inflammasome not only provide protection against infectious pathogens, but also mediate control over sterile insults. Aberrant inflammasome signaling has been implicated in the development of cardiovascular and metabolic diseases, cancer, and neurodegenerative disorders. Here, we review the role of the inflammasome as a double-edged sword in various diseases, and the outcomes can be either good or bad depending on the disease, as well as the genetic background. We highlight inflammasome memory and the two-shot activation process. We also propose the M- and N-type inflammation model, and discuss how the inflammasome pathway may be targeted for the development of novel therapy.


Assuntos
Doenças Cardiovasculares , Inflamassomos/imunologia , Doenças Metabólicas , Neoplasias , Doenças Neurodegenerativas , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/terapia , Humanos , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Doenças Metabólicas/imunologia , Doenças Metabólicas/terapia , Neoplasias/imunologia , Neoplasias/terapia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/terapia , Piroptose/imunologia
10.
Mol Cell Biochem ; 476(11): 3935-3950, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34181183

RESUMO

Extracellular matrix (ECM) plays an important role in the structural organization of tissue and delivery of external cues to the cell. Biglycan, a class I small leucine-rich proteoglycans (SLRP), is a key component of the ECM that participates in scaffolding the collagen fibrils and mediates cell signaling. Dysregulation of biglycan expression can result in wide range of clinical conditions such as metabolic disorder, inflammatory disorder, musculoskeletal defects and malignancies. In this review, we aim to update our current understanding regarding the link between altered expression of biglycan and different clinicopathological states. Biglycan interacts with toll like receptors (TLR)-2 and TLR-4 on the immune cells which initiates inflammation and aggravates inflammatory disorders. ECM unbound soluble biglycan acts as a DAMP (danger associated molecular pattern) resulting in sterile inflammation. Dysregulation of biglycan expression is also observed in inflammatory metabolic conditions such as atherosclerosis and obesity. In cancer, high-biglycan expression facilitates tumor growth, invasion and metastasis which is associated with poor clinical outcome. As a pivotal structural component of the ECM, biglycan strengthens the musculoskeletal system and its absence is associated with musculoskeletal defects. Thus, SLRP biglycan is a potential marker which is significantly altered in different clinicopathological states.


Assuntos
Biglicano/metabolismo , Inflamação/imunologia , Doenças Metabólicas/imunologia , Neoplasias/metabolismo , Proteoglicanos Pequenos Ricos em Leucina/metabolismo , Animais , Biomarcadores/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Neoplasias/imunologia , Neoplasias/patologia , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
11.
Nat Commun ; 12(1): 2598, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972511

RESUMO

The intestinal immune system is an important modulator of glucose homeostasis and obesity-associated insulin resistance. Dietary factors, the intestinal microbiota and their metabolites shape intestinal immunity during obesity. The intestinal immune system in turn affects processes such as intestinal permeability, immune cell trafficking, and intestinal hormone availability, impacting systemic insulin resistance. Understanding these pathways might identify mechanisms underlying treatments for insulin resistance, such as metformin and bariatric surgery, or aid in developing new therapies and vaccination approaches. Here, we highlight evolving concepts centered on intestinal immunity, diet, and the microbiota to provide a working model of obesity-related metabolic disease.


Assuntos
Microbioma Gastrointestinal/imunologia , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Obesidade/metabolismo , Animais , Linfócitos B/imunologia , Citocinas/metabolismo , Dietoterapia , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Resistência à Insulina/imunologia , Doenças Metabólicas/microbiologia , Doenças Metabólicas/terapia , Obesidade/dietoterapia , Obesidade/imunologia , Obesidade/terapia , Linfócitos T/imunologia
12.
Cells ; 10(5)2021 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923175

RESUMO

Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue (AT) accompanied with alterations in the immune response that affects virtually all age and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation, type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA (miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages, and modulates the immune response. miRs are essential for insulin resistance, maintaining the tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation of AT, T-cells, and macrophage miRs may change the function of different organs including the pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated, the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning, adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease progression and therapeutic targets for obesity.


Assuntos
Adipócitos/patologia , Linfócitos/imunologia , Macrófagos/imunologia , Doenças Metabólicas/patologia , MicroRNAs/genética , Obesidade/patologia , Animais , Humanos , Doenças Metabólicas/genética , Doenças Metabólicas/imunologia , Obesidade/genética , Obesidade/imunologia , Transdução de Sinais
13.
Gut Microbes ; 13(1): 1-28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33874858

RESUMO

Clostridium butyricum is a butyrate-producing human gut symbiont that has been safely used as a probiotic for decades. C. butyricum strains have been investigated for potential protective or ameliorative effects in a wide range of human diseases, including gut-acquired infection, intestinal injury, irritable bowel syndrome, inflammatory bowel disease, neurodegenerative disease, metabolic disease, and colorectal cancer. In this review we summarize the studies on C. butyricum supplementation with special attention to proposed mechanisms for the associated health benefits and the supporting experimental evidence. These mechanisms center on molecular signals (especially butyrate) as well as immunological signals in the digestive system that cascade well beyond the gut to the liver, adipose tissue, brain, and more. The safety of probiotic C. butyricum strains appears well-established. We identify areas where additional human randomized controlled trials would provide valuable further data related to the strains' utility as an intervention.


Assuntos
Butiratos/metabolismo , Clostridium butyricum/imunologia , Clostridium butyricum/metabolismo , Imunidade , Probióticos , Animais , Suplementos Nutricionais , Interações entre Hospedeiro e Microrganismos , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Síndrome do Intestino Irritável/imunologia , Síndrome do Intestino Irritável/microbiologia , Doenças Metabólicas/imunologia , Doenças Metabólicas/microbiologia , Neoplasias/imunologia , Neoplasias/microbiologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/microbiologia , Simbiose
14.
Nutrients ; 13(3)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807621

RESUMO

Flavanols are natural occurring polyphenols abundant in fruits and vegetables to which have been attributed to beneficial effects on health, and also against metabolic diseases, such as diabetes, obesity and metabolic syndrome. These positive properties have been associated to the modulation of different molecular pathways, and importantly, to the regulation of immunological reactions (pro-inflammatory cytokines, chemokines, adhesion molecules, nuclear factor-κB [NF-κB], inducible enzymes), and the activity of cells of the immune system. In addition, flavanols can modulate the composition and function of gut microbiome in a prebiotic-like manner, resulting in the positive regulation of metabolic pathways and immune responses, and reduction of low-grade chronic inflammation. Moreover, the biotransformation of flavanols by gut bacteria increases their bioavailability generating a number of metabolites with potential to affect human metabolism, including during metabolic diseases. However, the exact mechanisms by which flavanols act on the microbiota and immune system to influence health and disease remain unclear, especially in humans where these connections have been scarcely explored. This review seeks to summarize recent advances on the complex interaction of flavanols with gut microbiota, immunity and inflammation focus on metabolic diseases.


Assuntos
Anti-Inflamatórios/farmacocinética , Flavonoides/farmacocinética , Microbioma Gastrointestinal/efeitos dos fármacos , Sistema Imunitário/efeitos dos fármacos , Doenças Metabólicas/terapia , Disponibilidade Biológica , Dieta/métodos , Humanos , Inflamação , Doenças Metabólicas/imunologia , Doenças Metabólicas/microbiologia
15.
Nat Immunol ; 22(5): 550-559, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33707781

RESUMO

The NLRP3 inflammasome is a multimeric cytosolic protein complex that assembles in response to cellular perturbations. This assembly leads to the activation of caspase-1, which promotes maturation and release of the inflammatory cytokines interleukin-1ß (IL-1ß) and IL-18, as well as inflammatory cell death (pyroptosis). The inflammatory cytokines contribute to the development of systemic low-grade inflammation, and aberrant NLRP3 activation can drive a chronic inflammatory state in the body to modulate the pathogenesis of inflammation-associated diseases. Therefore, targeting NLRP3 or other signaling molecules downstream, such as caspase-1, IL-1ß or IL-18, has the potential for great therapeutic benefit. However, NLRP3 inflammasome-mediated inflammatory cytokines play dual roles in mediating human disease. While they are detrimental in the pathogenesis of inflammatory and metabolic diseases, they have a beneficial role in numerous infectious diseases and some cancers. Therefore, fine tuning of NLRP3 inflammasome activity is essential for maintaining proper cellular homeostasis and health. In this Review, we will cover the mechanisms of NLRP3 inflammasome activation and its divergent roles in the pathogenesis of inflammation-associated diseases such as cancer, atherosclerosis, diabetes and obesity, highlighting the therapeutic potential of targeting this pathway.


Assuntos
Inflamassomos/metabolismo , Doenças Metabólicas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias/metabolismo , Animais , Citocinas/metabolismo , Humanos , Inflamassomos/imunologia , Doenças Metabólicas/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Neoplasias/imunologia , Transdução de Sinais , Microambiente Tumoral
16.
Biochem Pharmacol ; 187: 114419, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33460626

RESUMO

P2Y receptors are G protein-coupled receptors whose physiological agonists are the nucleotides ATP, ADP, UTP, UDP and UDP-glucose. Eight P2Y receptors have been cloned in humans: P2Y1R, P2Y2R, P2Y4R, P2Y6R, P2Y11R, P2Y12R, P2Y13R and P2Y14R. P2Y receptors are expressed in lymphoid tissues such as thymus, spleen and bone marrow where they are expressed on lymphocytes, macrophages, dendritic cells, neutrophils, eosinophils, mast cells, and platelets. P2Y receptors regulate many aspects of immune cell function, including phagocytosis and killing of pathogens, antigen presentation, chemotaxis, degranulation, cytokine production, and lymphocyte activation. Consequently, P2Y receptors shape the course of a wide range of infectious, autoimmune, and inflammatory diseases. P2Y12R ligands have already found their way into the therapeutic arena, and we envision additional ligands as future drugs for the treatment of diseases caused by or associated with immune dysregulation.


Assuntos
Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/metabolismo , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Receptores Purinérgicos P2Y/imunologia , Receptores Purinérgicos P2Y/metabolismo , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Eosinófilos/imunologia , Eosinófilos/metabolismo , Humanos , Imunidade Celular/fisiologia , Mastócitos/imunologia , Mastócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fagocitose/fisiologia , Transdução de Sinais/fisiologia
17.
PLoS Pathog ; 17(1): e1009198, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33417618

RESUMO

Macrophages have a defined role in the pathogenesis of metabolic disease and cholesterol metabolism where alternative activation of macrophages is thought to be beneficial to both glucose and cholesterol metabolism during high fat diet induced disease. It is well established that helminth infection protects from metabolic disease, but the mechanisms underlying protection are not well understood. Here, we investigated the effects of Schistosoma mansoni infection and cytokine activation in the metabolic signatures of bone marrow derived macrophages using an approach that integrated transcriptomics, metabolomics, and lipidomics in a metabolic disease prone mouse model. We demonstrate that bone marrow derived macrophages (BMDM) from S. mansoni infected male ApoE-/- mice have dramatically increased mitochondrial respiration compared to those from uninfected mice. This change is associated with increased glucose and palmitate shuttling into TCA cycle intermediates, increased accumulation of free fatty acids, and decreased accumulation of cellular cholesterol esters, tri and diglycerides, and is dependent on mgll activity. Systemic injection of IL-4 complexes is unable to recapitulate either reductions in systemic glucose AUC or the re-programing of BMDM mitochondrial respiration seen in infected males. Importantly, the metabolic reprogramming of male myeloid cells is transferrable via bone marrow transplantation to an uninfected host, indicating maintenance of reprogramming in the absence of sustained antigen exposure. Finally, schistosome induced metabolic and bone marrow modulation is sex-dependent, with infection protecting male, but not female mice from glucose intolerance and obesity. Our findings identify a transferable, long-lasting sex-dependent reprograming of the metabolic signature of macrophages by helminth infection, providing key mechanistic insight into the factors regulating the beneficial roles of helminth infection in metabolic disease.


Assuntos
Antígenos/imunologia , Linhagem da Célula , Macrófagos/metabolismo , Doenças Metabólicas/prevenção & controle , Células Mieloides/metabolismo , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/metabolismo , Animais , Reprogramação Celular , Dieta Hiperlipídica/efeitos adversos , Feminino , Metabolismo dos Lipídeos , Macrófagos/imunologia , Macrófagos/parasitologia , Masculino , Doenças Metabólicas/imunologia , Doenças Metabólicas/parasitologia , Metaboloma , Camundongos , Camundongos Knockout para ApoE , Células Mieloides/imunologia , Células Mieloides/parasitologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia
18.
Immunology ; 163(2): 128-144, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33368269

RESUMO

Dysfunction of the immune system underlies a plethora of human diseases, requiring the development of immunomodulatory therapeutic intervention. To date, most strategies employed have been focusing on the modification of T lymphocytes, and although remarkable improvement has been obtained, results often fall short of the intended outcome. Recent cutting-edge technologies have highlighted macrophages as potential targets for disease control. Macrophages play central roles in development, homeostasis and host defence, and their dysfunction and dysregulation have been implicated in the onset and pathogenesis of multiple disorders including cancer, neurodegeneration, autoimmunity and metabolic diseases. Recent advancements have led to a greater understanding of macrophage origin, diversity and function, in both health and disease. Over the last few years, a variety of strategies targeting macrophages have been developed and these open new therapeutic opportunities. Here, we review the progress in macrophage reprogramming in various disorders and discuss the potential implications and challenges for macrophage-targeted approaches in human disease.


Assuntos
Doenças Autoimunes/imunologia , Imunoterapia/tendências , Macrófagos/imunologia , Doenças Metabólicas/imunologia , Neoplasias/imunologia , Doenças Neurodegenerativas/imunologia , Animais , Doenças Autoimunes/terapia , Diferenciação Celular , Reprogramação Celular , Humanos , Doenças Metabólicas/terapia , Neoplasias/terapia , Doenças Neurodegenerativas/terapia
19.
Arterioscler Thromb Vasc Biol ; 41(3): 1032-1046, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33380171

RESUMO

Innate immune cells can develop exacerbated immunologic response and long-term inflammatory phenotype following brief exposure to endogenous or exogenous insults, which leads to an altered response towards a second challenge after the return to a nonactivated state. This phenomenon is known as trained immunity (TI). TI is not only important for host defense and vaccine response but also for chronic inflammations such as cardiovascular and metabolic diseases such as atherosclerosis. TI can occur in innate immune cells such as monocytes/macrophages, natural killer cells, endothelial cells (ECs), and nonimmune cells, such as fibroblast. In this brief review, we analyze the significance of TI in ECs, which are also considered as innate immune cells in addition to macrophages. TI can be induced by a variety of stimuli, including lipopolysaccharides, BCG (bacillus Calmette-Guerin), and oxLDL (oxidized low-density lipoprotein), which are defined as risk factors for cardiovascular and metabolic diseases. Furthermore, TI in ECs is functional for inflammation effectiveness and transition to chronic inflammation. Rewiring of cellular metabolism of the trained cells takes place during induction of TI, including increased glycolysis, glutaminolysis, increased accumulation of tricarboxylic acid cycle metabolites and acetyl-coenzyme A production, as well as increased mevalonate synthesis. Subsequently, this leads to epigenetic remodeling, resulting in important changes in chromatin architecture that enables increased gene transcription and enhanced proinflammatory immune response. However, TI pathways and inflammatory pathways are separated to ensure memory stays when inflammation undergoes resolution. Additionally, reactive oxygen species play context-dependent roles in TI. Therefore, TI plays significant roles in EC and macrophage pathology and chronic inflammation. However, further characterization of TI in ECs and macrophages would provide novel insights into cardiovascular disease pathogenesis and new therapeutic targets. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Células Endoteliais/imunologia , Macrófagos/imunologia , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/imunologia , Citocinas/biossíntese , Metabolismo Energético , Epigênese Genética , Humanos , Imunidade Inata , Memória Imunológica , Infecções/etiologia , Infecções/imunologia , Inflamação/etiologia , Inflamação/imunologia , Doenças Metabólicas/etiologia , Doenças Metabólicas/imunologia , Redes e Vias Metabólicas/imunologia , Modelos Imunológicos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/imunologia , Fatores de Risco
20.
Arterioscler Thromb Vasc Biol ; 41(1): 48-54, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207931

RESUMO

Until recently, immunologic memory was considered an exclusive characteristic of adaptive immunity. However, recent advances suggest that the innate arm of the immune system can also mount a type of nonspecific memory responses. Innate immune cells can elicit a robust response to subsequent inflammatory challenges after initial activation by certain stimuli, such as fungal-derived agents or vaccines. This type of memory, termed trained innate immunity (also named innate immune memory), is associated with epigenetic and metabolic alterations. Hematopoietic progenitor cells, which are the cells responsible for the generation of mature myeloid cells at steady-state and during inflammation, have a critical contribution to the induction of innate immune memory. Inflammation-triggered alterations in cellular metabolism, the epigenome and transcriptome of hematopoietic progenitor cells in the bone marrow promote long-lasting functional changes, resulting in increased myelopoiesis and consequent generation of trained innate immune cells. In the present brief review, we focus on the involvement of hematopoietic progenitors in the process of trained innate immunity and its possible role in cardiometabolic disease.


Assuntos
Medula Óssea/imunologia , Doenças Cardiovasculares/imunologia , Células-Tronco Hematopoéticas/imunologia , Imunidade Inata , Memória Imunológica , Doenças Metabólicas/imunologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Mielopoese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA