Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 220: 56-66, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697489

RESUMO

Apart from dopaminergic neurotoxicity, exposure to rotenone, a commonly used insecticide in agriculture, also adversely affects hippocampal and cortical neurons, resulting in cognitive impairments in mice. We recently established a role of microglia-mediated neuroinflammation in rotenone-elicited deficits of cognition, yet the mechanisms remain elusive. Here, we investigated the involvement of NADPH oxidase 2 (NOX2) catalytic subunit gp91phox in rotenone-induced cognitive deficits and the associated mechanisms. Our study demonstrated that rotenone exposure elevated expression of gp91phox and phosphorylation of the NOX2 cytosolic subunit p47phox, along with NADPH depletion in the hippocampus and cortex of mice, indicating NOX2 activation. Specific knockdown of gp91phox in microglia via adeno-associated virus delivery resulted in reduced microglial activation, proinflammatory gene expression and improved learning and memory capacity in rotenone-intoxicated mice. Genetic deletion of gp91phox also reversed rotenone-elicited cognitive dysfunction in mice. Furthermore, microglial gp91phox knockdown attenuated neuronal damage and synaptic loss in mice. This intervention also suppressed iron accumulation, disruption of iron-metabolism proteins and iron-dependent lipid peroxidation and restored the balance of ferroptosis-related parameters, including GPX4, SLC711, PTGS2, and ACSL4 in rotenone-lesioned mice. Intriguingly, pharmacological inhibition of ferroptosis with liproxstatin-1 conferred protection against rotenone-induced neurodegeneration and cognitive dysfunction in mice. In summary, our findings underscored the contribution of microglial gp91phox-dependent neuroinflammation and ferroptosis to learning and memory dysfunction in rotenone-lesioned mice. These results provided valuable insights into the pathogenesis of cognitive deficits associated with pesticide-induced Parkinsonism, suggesting potential therapeutic avenues for intervention.


Assuntos
Ferroptose , Transtornos da Memória , Microglia , NADPH Oxidase 2 , Doenças Neuroinflamatórias , Rotenona , Animais , Camundongos , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos dos fármacos , Rotenona/toxicidade , Ferroptose/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/genética , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/patologia , Masculino , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos dos fármacos , Camundongos Knockout
2.
Arterioscler Thromb Vasc Biol ; 44(6): 1246-1264, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660801

RESUMO

BACKGROUND: Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS: We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS: Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS: Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.


Assuntos
Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1 , Modelos Animais de Doenças , Hemangioma Cavernoso do Sistema Nervoso Central , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Hipóxia/metabolismo , Hipóxia/complicações , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/genética
3.
Gene Ther ; 31(5-6): 234-241, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38135787

RESUMO

EPM1 is the most common form of Progressive Myoclonus Epilepsy characterized by late-childhood onset, ever-worsening and disabling myoclonus, seizures, ataxia, psychiatric disease, and shortened lifespan. EPM1 is caused by expansions of a dodecamer repeat sequence in the promoter of CSTB (cystatin B), which dramatically reduces, but does not eliminate, gene expression. The relatively late onset and consistent presence of a minimal amount of protein product makes EPM1 a favorable target for gene replacement therapy. If treated early, these children's normally developed brains could be rescued from the neurodegeneration that otherwise follows, and their cross-reactive immunological material (CRIM) positive status greatly reduces transgene related toxicity. We performed a proof-of-concept CSTB gene replacement study in Cstb knockout mice by introducing full-length human CSTB driven by the CBh promoter packaged in AAV9 and administered at postnatal days 21 and 60. Mice were sacrificed at 2 or 9 months of age, respectively. We observed significant improvements in expression levels of neuroinflammatory pathway genes and cerebellar granule cell layer apoptosis, as well as amelioration of motor impairment. The data suggest that gene replacement is a promising therapeutic modality for EPM1 and could spare affected children and families the ravages of this otherwise severe neurodegenerative disease.


Assuntos
Cistatina B , Terapia Genética , Camundongos Knockout , Doenças Neuroinflamatórias , Animais , Camundongos , Terapia Genética/métodos , Cistatina B/genética , Doenças Neuroinflamatórias/terapia , Doenças Neuroinflamatórias/genética , Humanos , Ataxia/genética , Ataxia/terapia , Epilepsias Mioclônicas Progressivas/genética , Epilepsias Mioclônicas Progressivas/terapia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem
4.
Sci Rep ; 13(1): 14288, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652931

RESUMO

This study is performed to explore the role of P2X4 in intracerebral hemorrhage (ICH) and the association between P2X4 and the NLRP1/Caspase-1 pathway. The mouse ICH model was established via collagenase injection into the right basal ganglia. P2X4 expression in brain tissues was knocked down via intracerebroventricular injection with adeno-associated virus (AAV) harboring shRNA against shP2X4. The gene expression of P2X4 and protein levels related to NLRP1 inflammasome were detected using qRT-PCR and Western blot analysis, respectively. Muramyl dipeptide (an activator of NLRP1) was used to activate NLRP1 in brain tissues. ICH induced high expression of P2X4 in mouse brain tissues. The knockdown of P2X4 alleviated short- and long-term neurological deficits of ICH mice, as well as inhibited the tissue expression and serum levels of pro-inflammatory cytokines, including TNF-α, interleukin (IL)-6, and IL-1ß. Additionally, the expressions of NLRP1, ASC, and pro-Caspase-1 were down-regulated upon P2X4 silencing. Moreover, neurological impairment and the expression and secretion of cytokines after P2X4 silencing were aggravated by the additional administration of MDP. P2X4 knockdown represses neuroinflammation in brain tissues after ICH. Mechanistically, P2X4 inhibition exerts a neuroprotective effect in ICH by blocking the NLRP1/Caspase-1 pathway.


Assuntos
Doenças Neuroinflamatórias , Receptores Purinérgicos P2X4 , Fator de Necrose Tumoral alfa , Animais , Camundongos , Caspase 1/genética , Hemorragia Cerebral/complicações , Hemorragia Cerebral/genética , Citocinas , Modelos Animais de Doenças , Interleucina-6 , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo
5.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835494

RESUMO

Translocase of outer mitochondrial membrane 40 (TOMM40) is located in the outer membrane of mitochondria. TOMM40 is essential for protein import into mitochondria. TOMM40 genetic variants are believed to increase the risk of Alzheimer's disease (AD) in different populations. In this study, three exonic variants (rs772262361, rs157581, and rs11556505) and three intronic variants (rs157582, rs184017, and rs2075650) of the TOMM40 gene were identified from Taiwanese AD patients using next-generation sequencing. Associations between the three TOMM40 exonic variants and AD susceptibility were further evaluated in another AD cohort. Our results showed that rs157581 (c.339T > C, p.Phe113Leu, F113L) and rs11556505 (c.393C > T, p.Phe131Leu, F131L) were associated with an increased risk of AD. We further utilized cell models to examine the role of TOMM40 variation in mitochondrial dysfunction that causes microglial activation and neuroinflammation. When expressed in BV2 microglial cells, the AD-associated mutant (F113L) or (F131L) TOMM40 induced mitochondrial dysfunction and oxidative stress-induced activation of microglia and NLRP3 inflammasome. Pro-inflammatory TNF-α, IL-1ß, and IL-6 released by mutant (F113L) or (F131L) TOMM40-activated BV2 microglial cells caused cell death of hippocampal neurons. Taiwanese AD patients carrying TOMM40 missense (F113L) or (F131L) variants displayed an increased plasma level of inflammatory cytokines IL-6, IL-18, IL-33, and COX-2. Our results provide evidence that TOMM40 exonic variants, including rs157581 (F113L) and rs11556505 (F131L), increase the AD risk of the Taiwanese population. Further studies suggest that AD-associated mutant (F113L) or (F131L) TOMM40 cause the neurotoxicity of hippocampal neurons by inducing the activation of microglia and NLRP3 inflammasome and the release of pro-inflammatory cytokines.


Assuntos
Doença de Alzheimer , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Doenças Neuroinflamatórias , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Inflamassomos/metabolismo , Interleucina-6/metabolismo , Microglia/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/genética , Doenças Neuroinflamatórias/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Variação Genética
6.
J Neuroinflammation ; 19(1): 289, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463233

RESUMO

BACKGROUND: Neuroinflammation is one of the most important processes in secondary injury after traumatic brain injury (TBI). Triggering receptor expressed on myeloid cells 2 (TREM2) has been proven to exert neuroprotective effects in neurodegenerative diseases and stroke by modulating neuroinflammation, and promoting phagocytosis and cell survival. However, the role of TREM2 in TBI has not yet been elucidated. In this study, we are the first to use COG1410, an agonist of TREM2, to assess the effects of TREM2 activation in a murine TBI model. METHODS: Adult male wild-type (WT) C57BL/6 mice and adult male TREM2 KO mice were subjected to different treatments. TBI was established by the controlled cortical impact (CCI) method. COG1410 was delivered 1 h after CCI via tail vein injection. Western blot analysis, immunofluorescence, laser speckle contrast imaging (LSCI), neurological behaviour tests, brain electrophysiological monitoring, Evans blue assays, magnetic resonance imaging (MRI), and brain water content measurement were performed in this study. RESULTS: The expression of endogenous TREM2 peaked at 3 d after CCI, and it was mainly expressed on microglia and neurons. We found that COG1410 improved neurological functions within 3 d, as well as neurological functions and brain electrophysiological activity at 2 weeks after CCI. COG1410 exerted neuroprotective effects by inhibiting neutrophil infiltration and microglial activation, and suppressing neuroinflammation after CCI. In addition, COG1410 treatment alleviated blood brain barrier (BBB) disruption and brain oedema; furthermore, COG1410 promoted cerebral blood flow (CBF) recovery at traumatic injury sites after CCI. In addition, COG1410 suppressed neural apoptosis at 3 d after CCI. TREM2 activation upregulated p-Akt, p-CREB, BDNF, and Bcl-2 and suppressed TNF-α, IL-1ß, Bax, and cleaved caspase-3 at 3 d after CCI. Moreover, TREM2 knockout abolished the effects of COG1410 on vascular phenotypes and microglial states. Finally, the neuroprotective effects of COG1410 were suppressed by TREM2 depletion. CONCLUSIONS: Altogether, we are the first to demonstrate that TREM2 activation by COG1410 alleviated neural damage through activation of Akt/CREB/BDNF signalling axis in microglia after CCI. Finally, COG1410 treatment improved neurological behaviour and brain electrophysiological activity after CCI.


Assuntos
Lesões Encefálicas Traumáticas , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/imunologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/imunologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores Imunológicos/agonistas , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Modelos Animais de Doenças , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/imunologia
7.
Cells ; 11(20)2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36291123

RESUMO

HIV-1 mediated neurotoxicity is thought to be associated with HIV-1 viral proteins activating astrocytes and microglia by inducing inflammatory cytokines leading to the development of HIV-associated neurocognitive disorder (HAND). In the current study, we observe how HIV-1 Nef upregulates the levels of IL-6, IP-10, and TNF-α around 6.0fold in normal human astrocytes (NHAs) compared to cell and empty vector controls. Moderate downregulation in the expression profile of inflammatory cytokines was observed due to RNA interference. Furthermore, we determine the impact of inflammatory cytokines in the upregulation of kynurenine pathway metabolites, such as indoleamine 2,3-dioxygenase (IDO), and 3-hydroxyanthranilic acid oxygenase (HAAO) in NHA, and found the same to be 3.0- and 3.2-fold, respectively. Additionally, the variation in the level of nitric oxide before and after RNA interference was significant. The upregulated cytokines and pathway-specific metabolites could be linked with the neurotoxic potential of HIV-1 Nef. Thus, the downregulation in cytokines and kynurenine metabolites observed after siRNA-Nef interference indicates the possibility of combining the RNA interference approach with current antiretroviral therapy to prevent neurotoxicity development.


Assuntos
Astrócitos , Infecções por HIV , HIV-1 , Doenças Neuroinflamatórias , Produtos do Gene nef do Vírus da Imunodeficiência Humana , Humanos , 3-Hidroxiantranilato 3,4-Dioxigenase/genética , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Astrócitos/metabolismo , Astrócitos/virologia , Quimiocina CXCL10/metabolismo , Citocinas/metabolismo , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interleucina-6/metabolismo , Cinurenina/metabolismo , Óxido Nítrico/metabolismo , RNA Interferente Pequeno/metabolismo , Transcriptoma , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/virologia , Perfilação da Expressão Gênica , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo
8.
Front Immunol ; 13: 964138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091018

RESUMO

Macrophages and microglia play important roles in chronic neuroinflammation following spinal cord injury (SCI). Although macrophages and microglia have similar functions, their phagocytic and homeostatic abilities differ. It is difficult to distinguish between these two populations in vivo, but single-cell analysis can improve our understanding of their identity and heterogeneity. We conducted bioinformatics analysis of the single-cell RNA sequencing dataset GSE159638, identifying apolipoprotein E (APOE) as a hub gene in both macrophages and microglia in the subacute and chronic phases of SCI. We then validated these transcriptomic changes in a mouse model of cervical spinal cord hemi-contusion and observed myelin uptake, lipid droplets, and lysosome accumulation in macrophages and microglia following SCI. Finally, we observed that knocking out APOE aggravated neurological dysfunction, increased neuroinflammation, and exacerbated the loss of white matter. Targeting APOE and the related cholesterol efflux represents a promising strategy for reducing neuroinflammation and promoting recovery following SCI.


Assuntos
Apolipoproteínas E , Macrófagos , Microglia , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/imunologia , Biologia Computacional , Macrófagos/imunologia , Camundongos , Microglia/imunologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/imunologia
9.
CNS Neurosci Ther ; 28(9): 1393-1408, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35702948

RESUMO

AIMS: Visceral hypersensitivity in irritable bowel syndrome (IBS) is widespread, but effective therapies for it remain elusive. As a canonical anti-inflammatory protein, suppressor of cytokine signaling 3 (SOCS3) reportedly relays exchange protein 1 directly activated by cAMP (Epac1) signaling and inhibits the intracellular response to inflammatory cytokines. Despite the inhibitory effect of SOCS3 on the pro-inflammatory response and neuroinflammation in PVN, the systematic investigation of Epac1-SOCS3 signaling involved in visceral hypersensitivity remains unknown. This study aimed to explore Epac1-SOCS3 signaling in the activity of hypothalamic paraventricular nucleus (PVN) corticotropin-releasing factor (CRF) neurons and visceral hypersensitivity in adult rats experiencing neonatal colorectal distension (CRD). METHODS: Rats were subjected to neonatal CRD to simulate visceral hypersensitivity to investigate the effect of Epac1-SOCS3 signaling on PVN CRF neurons. The expression and activity of Epac1 and SOCS3 in nociceptive hypersensitivity were determined by western blot, RT-PCR, immunofluorescence, radioimmunoassay, electrophysiology, and pharmacology. RESULTS: In neonatal-CRD-induced visceral hypersensitivity model, Epac1 and SOCS3 expressions were downregulated and IL-6 levels elevated in PVN. However, infusion of Epac agonist 8-pCPT in PVN reduced CRF neuronal firing rates, and overexpression of SOCS3 in PVN by AAV-SOCS3 inhibited the activation of PVN neurons, reduced visceral hypersensitivity, and precluded pain precipitation. Intervention with IL-6 neutralizing antibody also alleviated the visceral hypersensitivity. In naïve rats, Epac antagonist ESI-09 in PVN increased CRF neuronal firing. Consistently, genetic knockdown of Epac1 or SOCS3 in PVN potentiated the firing rate of CRF neurons, functionality of HPA axis, and sensitivity of visceral nociception. Moreover, pharmacological intervention with exogenous IL-6 into PVN simulated the visceral hypersensitivity. CONCLUSIONS: Inactivation of Epac1-SOCS3 pathway contributed to the neuroinflammation accompanied by the sensitization of CRF neurons in PVN, precipitating visceral hypersensitivity and pain in rats experiencing neonatal CRD.


Assuntos
Fatores de Troca do Nucleotídeo Guanina , Hiperalgesia , Enteropatias , Proteína 3 Supressora da Sinalização de Citocinas , Dor Visceral , Animais , Doenças do Colo/genética , Doenças do Colo/metabolismo , Doenças do Colo/patologia , Hormônio Liberador da Corticotropina/metabolismo , Dilatação Patológica/complicações , Dilatação Patológica/genética , Dilatação Patológica/metabolismo , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Hiperalgesia/etiologia , Hiperalgesia/genética , Hiperalgesia/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Recém-Nascido , Doenças do Recém-Nascido/genética , Doenças do Recém-Nascido/metabolismo , Interleucina-6/metabolismo , Enteropatias/complicações , Enteropatias/genética , Enteropatias/metabolismo , Enteropatias/patologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Neurônios/metabolismo , Dor , Núcleo Hipotalâmico Paraventricular/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Ratos , Ratos Sprague-Dawley , Doenças Retais/genética , Doenças Retais/metabolismo , Doenças Retais/patologia , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Dor Visceral/etiologia , Dor Visceral/genética , Dor Visceral/metabolismo
10.
World Neurosurg ; 162: e427-e435, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35283358

RESUMO

OBJECTIVE: Neuroinflammation triggers sequelae after spinal cord injury (SCI). Inhibition of inflammation promotes recovery after SCI. MicroRNAs regulate many pathophysiological processes, including inflammation. Any role for miR-181a-5p in the inflammatory response after SCI remains unclear. Thus, we evaluated the effects of miR-181a-5p on inflammation in PC12 cells and the underlying mechanism in play. METHODS: Quantitative reverse transcription-polymerase chain reaction was used to measure the levels of miR-181a-5p and high-mobility group box-1 protein (HMGB1) in SCI tissues. Cell-counting kit-8 assays were used to assess the viability of PC12 cells treated with lipopolysaccharide (LPS). Plasmids encoding MiR-181a-5p mimics, an miR-181a-5p inhibitor, or/and the HMGB1 were transfected into PC12 cells. Quantitative reverse transcription-polymerase chain reaction or/and Western blotting were performed to assess the expression of miR-181a-5p, HMGB1, and inflammatory factors in vitro. RESULTS: MiR-181a-5p expression decreased and HMGB1 expression increased in SCI tissues and LPS-induced PC12 cells. Upregulation of miR-181a-5p (via transfection) inhibited inflammation of, and HMGB1 expression by, LPS-induced PC12 cells. HMGB1 overexpression reversed the anti-inflammatory effects of miR-181a-5p. Dual-luciferase assays confirmed that HMGB1 was a direct target of miR-181a-5p. CONCLUSIONS: miR-181a-5p attenuated the inflammatory response of LPS-induced PC12 cells by directly inhibiting HMGB1; thus, miR-181a-5p may serve as a therapeutic target in SCI.


Assuntos
Proteína HMGB1 , MicroRNAs , Doenças Neuroinflamatórias , Traumatismos da Medula Espinal , Animais , Apoptose , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Humanos , Lipopolissacarídeos , MicroRNAs/metabolismo , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Células PC12 , Ratos , Traumatismos da Medula Espinal/complicações
11.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216232

RESUMO

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a broadly expressed neuropeptide which has diverse effects in both the peripheral and central nervous systems. While its neuroprotective effects have been shown in a variety of disease models, both animal and human data support the role of PACAP in migraine generation. Both PACAP and its truncated derivative PACAP(6-38) increased calcium influx in rat trigeminal ganglia (TG) primary sensory neurons in most experimental settings. PACAP(6-38), however, has been described as an antagonist for PACAP type I (known as PAC1), and Vasoactive Intestinal Polypeptide Receptor 2 (also known as VPAC2) receptors. Here, we aimed to compare the signaling pathways induced by the two peptides using transcriptomic analysis. Rat trigeminal ganglion cell cultures were incubated with 1 µM PACAP-38 or PACAP(6-38). Six hours later RNA was isolated, next-generation RNA sequencing was performed and transcriptomic changes were analyzed to identify differentially expressed genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. We found 200 common differentially expressed (DE) genes for these two neuropeptides. Both PACAP-38 and PACAP(6-38) treatments caused significant downregulation of NADH: ubiquinone oxidoreductase subunit B6 and upregulation of transient receptor potential cation channel, subfamily M, member 8. The common signaling pathways induced by both peptides indicate that they act on the same target, suggesting that PACAP activates trigeminal primary sensory neurons via a mechanism independent of the identified and cloned PAC1/VPAC2 receptor, either via another target structure or a different splice variant of PAC1/VPAC2 receptors. Identification of the target could help to understand key mechanisms of migraine.


Assuntos
Mitocôndrias/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores Tipo II de Peptídeo Intestinal Vasoativo/genética , Transcriptoma/efeitos dos fármacos , Gânglio Trigeminal/efeitos dos fármacos , Animais , Células Cultivadas , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Mitocôndrias/genética , Doenças Neuroinflamatórias/genética , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/genética
12.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216387

RESUMO

Quantum dots are nanoparticles with very promising biomedical applications. However, before these applications can be authorized, a complete toxicological assessment of quantum dots toxicity is needed. This work studied the effects of cadmium-selenium quantum dots on the transcriptome of T98G human glioblastoma cells. It was found that 72-h exposure to 40 µg/mL (a dose that reduces cell viability by less than 10%) alters the transcriptome of these cells in biological processes and molecular pathways, which address mainly neuroinflammation and hormonal control of hypothalamus via the gonadotropin-releasing hormone receptor. The biological significance of neuroinflammation alterations is still to be determined because, unlike studies performed with other nanomaterials, the expression of the genes encoding pro-inflammatory interleukins is down-regulated rather than up-regulated. The hormonal control alterations of the hypothalamus pose a new concern about a potential adverse effect of quantum dots on fertility. In any case, more studies are needed to clarify the biological relevance of these findings, and especially to assess the real risk of toxicity derived from quantum dots exposure appearing in physiologically relevant scenarios.


Assuntos
Cádmio/efeitos adversos , Glioblastoma/genética , Hipotálamo/efeitos dos fármacos , Doenças Neuroinflamatórias/genética , Pontos Quânticos/efeitos adversos , Selênio/efeitos adversos , Transcriptoma/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Humanos , Transcriptoma/genética
13.
Viruses ; 14(1)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35062343

RESUMO

The central nervous system (CNS) HIV reservoir is an obstacle to achieving an HIV cure. The basal ganglia harbor a higher frequency of SIV than other brain regions in the SIV-infected rhesus macaques of Chinese-origin (chRMs) even on suppressive combination antiretroviral therapy (ART). Since residual HIV/SIV reservoir is associated with inflammation, we characterized the neuroinflammation by gene expression and systemic levels of inflammatory molecules in healthy controls and SIV-infected chRMs with or without ART. CCL2, IL-6, and IFN-γ were significantly reduced in the cerebrospinal fluid (CSF) of animals receiving ART. Moreover, there was a correlation between levels of CCL2 in plasma and CSF, suggesting the potential use of plasma CCL2 as a neuroinflammation biomarker. With higher SIV frequency, the basal ganglia of untreated SIV-infected chRMs showed an upregulation of secreted phosphoprotein 1 (SPP1), which could be an indicator of ongoing neuroinflammation. While ART greatly reduced neuroinflammation in general, proinflammatory genes, such as IL-9, were still significantly upregulated. These results expand our understanding of neuroinflammation and signaling in SIV-infected chRMs on ART, an excellent model to study HIV/SIV persistence in the CNS.


Assuntos
Terapia Antirretroviral de Alta Atividade , Macaca mulatta/virologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Vírus da Imunodeficiência Símia , Transcriptoma , Animais , Encéfalo , Sistema Nervoso Central , Quimiocinas/metabolismo , China , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Perfilação da Expressão Gênica , HIV , Infecções por HIV/sangue , Infecções por HIV/genética , Infecções por HIV/metabolismo , Vírus da Influenza A , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia
14.
J Med Virol ; 94(2): 480-490, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-31017674

RESUMO

Chandipura virus (CHPV) is a neurotropic virus, known to cause encephalitis in humans. The microRNAs (miRNA/miR) play an important role in the pathogenesis of viral infection. The present study is focused on the role of miRNAs during CHPV (strain 1653514) infection in human microglial cells. The deep sequencing of CHPV-infected human microglial cells identified a total of 12 differentially expressed miRNA (DEMs). To elucidate the role of DEMs, the target gene prediction, Gene Ontology term (GO Term), pathway enrichment analysis, and miRNA-messenger RNA (mRNA) interaction network analysis was performed. The GO terms and pathway enrichment analysis provided 146 enriched genes; which were involved in interferon response, cytokine and chemokine signaling. Further, the WGCNA (weighted gene coexpression network analysis) of the enriched genes were discretely categorized into three modules (blue, brown, and turquoise). The hub genes in the blue module may correlate to CHPV induced neuroinflammation. Altogether, the miRNA-mRNA interaction network and WGCNA study revealed the following pairs, hsa-miR-542-3p and FAF1, hsa-miR-92a-1-5p and MYD88, and hsa-miR-3187-3p and TNFRSF21, which may contribute to neuroinflammation during CHPV infection in human microglial cells.


Assuntos
Redes Reguladoras de Genes/genética , MicroRNAs/genética , Microglia/metabolismo , Vesiculovirus/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/genética , Humanos , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/virologia , Receptores do Fator de Necrose Tumoral/genética , Infecções por Rhabdoviridae/genética , Infecções por Rhabdoviridae/virologia
15.
Pharmacol Res ; 176: 105969, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34758400

RESUMO

Multiple sclerosis (MS) is a Th cell-mediated inflammatory demyelinating autoimmune disease. MS cannot be cured, and long-term drug treatment is still needed for MS patients. In this study, we examined the effect of belinostat, a pan-histone deacetylase inhibitor (HDACi), on experimental autoimmune encephalomyelitis (EAE) and elucidated its mechanism of action. We found that belinostat alleviates the clinical symptoms, histopathological central nervous system (CNS) inflammation and demyelination outcomes in EAE mice. Compared to the MS oral drug dimethyl fumarate (DMF) (100 mg/kg), belinostat (30 mg/kg) treatment exhibited better efficacy in improving the clinical symptoms of EAE mice. Belinostat treatment significantly suppressed the activation of M1 microglia and the proinflammatory cytokine expression; but it had no effects on the M2 microglial polarization. Belinostat also decreased both NO and iNOS levels in LPS-stimulated BV2 microglia. Accordingly, belinostat treatment of EAE mice significantly inhibited activation of the TLR2/MyD88 signaling pathway and downregulated the expression of HDAC3 while upregulating the acetylated NF-κB p65 levels. Taken together, these data demonstrate for the first time that belinostat ameliorates EAE in mice through inhibiting neuroinflammation via suppressing M1 microglial polarization, and implicating belinostat as a potential candidate for the treatment of multiple sclerosis.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Doenças Neuroinflamatórias/tratamento farmacológico , Sulfonamidas/uso terapêutico , Animais , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Sulfonamidas/farmacologia , Receptor 2 Toll-Like/metabolismo , Fator de Transcrição RelA/metabolismo
16.
Int J Biochem Cell Biol ; 143: 106138, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34929396

RESUMO

Nicotinic acetylcholine receptors mediate fast synaptic transmission in neuro-muscular junctions and autonomic ganglia and modulate survival, proliferation and neurotransmitter or cytokine release in the brain and non-excitable cells. The neuronal-type nicotinic acetylcholine receptors are expressed in the outer mitochondria membrane to regulate the release of pro-apoptotic substances like cytochrome c or reactive oxygen species. In the intracellular environment, nicotinic acetylcholine receptor signaling is ion-independent and triggers intramitochondrial kinases, similar to those activated by plasma membrane nicotinic acetylcholine receptors. The present review will describe the data obtained during the last five years including, in particular, post-translational glycosylation as a targeting signal to mitochondria, mechanisms of mitochondrial nicotinic acetylcholine receptor signaling studied with subtype-specific agonists, antagonists, positive allosteric modulators and knockout mice lacking certain nicotinic acetylcholine receptor subunits, interaction of mitochondrial nicotinic acetylcholine receptors with Bcl-2 family proteins and their involvement in important pathologies like neuroinflammation, liver damage and SARS-CoV-2 infection.


Assuntos
COVID-19/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Mitocôndrias/genética , Doenças Neuroinflamatórias/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Receptores Nicotínicos/genética , Regulação Alostérica , Animais , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Mitocôndrias/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Nicotínicos/metabolismo , SARS-CoV-2/patogenicidade , Transdução de Sinais , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
17.
Mol Immunol ; 142: 22-36, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959070

RESUMO

Activation of glial cells and neuroinflammation play an important role in the onset and development of Alzheimer's disease (AD). Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglia-specific receptor in the brain that is involved in regulating neuroinflammation. However, the precise effects of TREM2 on neuroinflammatory responses and its underlying molecular mechanisms in AD have not been studied in detail. Here, we employed a lentiviral-mediated strategy to downregulation of TREM2 expression on microglia in the brain of APPswe/PS1dE9 (APP/PS1) transgenic mice and BV2 cells. Our results showed that downregulation of TREM2 significantly aggravated AD-related neuropathology including Aß accumulation, peri-plaque microgliosis and astrocytosis, as well as neuronal and synapse-associated proteins loss, which was accompanied by a decline in cognitive ability. The further mechanistic study revealed that downregulation of TREM2 expression initiated neuroinflammatory responses through toll-like receptor 4 (TLR4)-mediated mitogen-activated protein kinase (MAPK) signaling pathway and subsequent stimulating the production of pro-inflammatory cytokines in vivo and in vitro. Moreover, blockade of p38, JNK, and ERK1/2 inhibited the release of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) induced by Aß1-42 in TREM2-knocked down BV2 cells. Taken together, these findings indicated that TREM2 might be a potential therapeutic target for AD and other neuroinflammation-related diseases.


Assuntos
Doença de Alzheimer/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Glicoproteínas de Membrana/biossíntese , Doenças Neuroinflamatórias/patologia , Receptores Imunológicos/biossíntese , Receptor 4 Toll-Like/metabolismo , Doença de Alzheimer/genética , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/genética , Feminino , Gliose/patologia , Sistema de Sinalização das MAP Quinases/genética , Masculino , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Transgênicos , Microglia/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neuroglia/citologia , Neuroglia/patologia , Doenças Neuroinflamatórias/genética , Doenças Neuroinflamatórias/imunologia , Placa Amiloide/patologia
18.
J Neuroinflammation ; 18(1): 281, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34861878

RESUMO

BACKGROUND: Neuroinflammation is thought to be a cause of Alzheimer's disease (AD), which is partly caused by inadequate mitophagy. As a receptor of mitophagy, we aimed to reveal the regulatory roles of optineurin (OPTN) on neuroinflammation in the pathogenesis of AD. METHODS: BV2 cells and APP/PS1 transgenic (Tg) mice were used as in vitro and in vivo experimental models to determine the regulatory roles of OPTN in neuroinflammation of AD. Sophisticated molecular technologies including quantitative (q) RT-PCR, western blot, enzyme linked immunosorbent assay (ELISA), co-immunoprecipitation (Co-IP) and immunofluorescence (IF) were employed to reveal the inherent mechanisms. RESULTS: As a consequence, key roles of OPTN in regulating neuroinflammation were identified by depressing the activity of absent in melanoma 2 (AIM2) inflammasomes and receptor interacting serine/threonine kinase 1 (RIPK1)-mediated NF-κB inflammatory mechanisms. In detail, we found that expression of OPTN was downregulated, which resulted in activation of AIM2 inflammasomes due to a deficiency in mitophagy in APP/PS1 Tg mice. By ectopic expression, OPTN blocks the effects of Aß oligomer (Aßo) on activating AIM2 inflammasomes by inhibiting mRNA expression of AIM2 and apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), leading to a reduction in the active form of caspase-1 and interleukin (IL)-1ß in microglial cells. Moreover, RIPK1 was also found to be negatively regulated by OPTN via ubiquitin protease hydrolysis, resulting in the synthesis of IL-1ß by activating the transcriptional activity of NF-κB in BV2 cells. As an E3 ligase, the UBAN domain of OPTN binds to the death domain (DD) of RIPK1 to facilitate its ubiquitination. Based on these observations, ectopically expressed OPTN in APP/PS1 Tg mice deactivated microglial cells and astrocytes via the AIM2 inflammasome and RIPK-dependent NF-κB pathways, leading to reduce neuroinflammation. CONCLUSIONS: These results suggest that OPTN can alleviate neuroinflammation through AIM2 and RIPK1 pathways, suggesting that OPTN deficiency may be a potential factor leading to the occurrence of AD.


Assuntos
Doença de Alzheimer/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Doenças Neuroinflamatórias/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Animais , Apoptose/fisiologia , Encéfalo/metabolismo , Caspase 1/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Interleucina-1beta/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Transgênicos , Doenças Neuroinflamatórias/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
19.
J Neuroinflammation ; 18(1): 304, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34961526

RESUMO

BACKGROUND: Neuroinflammation is a key pathological component of neurodegenerative disease and is characterized by microglial activation and the secretion of proinflammatory mediators. We previously reported that a surge in prostaglandin D2 (PGD2) production and PGD2-induced microglial activation could provoke neuroinflammation. We also reported that a lipid sensor GPR120 (free fatty acid receptor 4), which is expressed in intestine, could be activated by polyunsaturated fatty acids (PUFA), thereby mediating secretion of glucagon-like peptide-1 (GLP-1). Dysfunction of GPR120 results in obesity in both mice and humans. METHODS: To reveal the relationship between PGD2-microglia-provoked neuroinflammation and intestinal PUFA/GPR120 signaling, we investigated neuroinflammation and neuronal function with gene and protein expression, histological, and behavioral analysis in GPR120 knockout (KO) mice. RESULTS: In the current study, we discovered notable neuroinflammation (increased PGD2 production and microglial activation) and neurodegeneration (declines in neurogenesis, hippocampal volume, and cognitive function) in GPR120 KO mice. We also found that Hematopoietic-prostaglandin D synthase (H-PGDS) was expressed in microglia, microglia were activated by PGD2, H-PGDS expression was upregulated in GPR120 KO hippocampus, and inhibition of PGD2 production attenuated this neuroinflammation. GPR120 KO mice exhibited reduced intestinal, plasma, and intracerebral GLP-1 contents. Peripheral administration of a GLP-1 analogue, liraglutide, reduced PGD2-microglia-provoked neuroinflammation and further neurodegeneration in GPR120 KO mice. CONCLUSIONS: Our results suggest that neurological phenotypes in GPR120 KO mice are probably caused by dysfunction of intestinal GPR120. These observations raise the possibility that intestinal GLP-1 secretion, stimulated by intestinal GPR120, may remotely contributed to suppress PGD2-microglia-provoked neuroinflammation in the hippocampus.


Assuntos
Hipocampo/patologia , Microglia/patologia , Doenças Neurodegenerativas/genética , Doenças Neuroinflamatórias/genética , Prostaglandina D2/genética , Receptores Acoplados a Proteínas G/genética , Supressão Genética/genética , Animais , Comportamento Animal , Ácidos Graxos Insaturados/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Liraglutida/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/psicologia , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/psicologia , Prostaglandina D2/biossíntese
20.
J Environ Pathol Toxicol Oncol ; 40(4): 11-19, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34936296

RESUMO

Cerebral ischemic reperfusion (I/R) infarction is mostly associated with serious brain injury, cognitive damage, and neurological deficits. The oxidative stress mechanisms in the neurological region lead to higher reactive oxygen species production followed by oxidative stress, inflammation of neurons, and death of brain cells. The current work aims to evaluate the effect of troxerutin (TXN) on cerebral injury stimulated by I/R-induced ischemic stroke and examines the mechanistic effect of TXN on neuroinflammation in the Sprague Dawley model. The experimental rats were randomized in to four groups: (i) sham control, (ii) I/R + vehicle, (iii) I/R + 10 mg/kg bw TXN, and (iv) I/R + 20 mg/kg bw TXN. In the TXN administration and control, groups were injected intraperitoneally 15 min before reperfusion and every day for 7 days, except the sham group. Orally administered TXN (10 and 20 mg/kg/bw) modulated the water content, lowered the infarct volume, and abrogated score defects of neuron and changes in the brain tissue sample. In our study, the TXN-stimulated cerebral injury exhibited leakage of thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LOOH) of the neuronal sample of tissues and showed higher antioxidant enzymes superoxide dismutase, catalase, the oxidized form of glutathione peroxidase, and the reduced form of glutathione levels. This biochemical result was additionally proved by histopathological assessment. Changes were made in antioxidant and inflammatory markers expressions interleukin-6 (IL-6), IL-4, IL-10, vascular endothelial growth factor, and cerebral induced rats. The overall findings showed that TXN protected the brain tissues from neuroinflammatory oxidative stress by reducing cerebral injury in Sprague Dawley rats. Further, the messenger RNA expression of cerebral I/R-induced animal tissues down-regulated NLRP3, caspase-1, tumor necrosis factor-α, ASC, IL-1ß, and Toll-like receptor 3 (TLR3). Therefore, the TXN action on TLR3 induced brain stroke is an excellent therapeutic approach for brain damage.


Assuntos
Anticoagulantes/farmacologia , Regulação Neoplásica da Expressão Gênica , Hidroxietilrutosídeo/análogos & derivados , Isquemia/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Relação Dose-Resposta a Droga , Hidroxietilrutosídeo/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/genética , Neurônios/imunologia , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA