Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
ACS Chem Neurosci ; 15(11): 2265-2282, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743607

RESUMO

Prion diseases are invariably fatal neurodegenerative diseases of humans and other animals for which there are no effective treatment options. Previous work from our laboratory identified phenethylpiperidines as a novel class of anti-prion compounds. While working to identify the molecular target(s) of these molecules, we unexpectedly discovered ten novel antiprion compounds based on their known ability to bind to the sigma receptors, σ1R and σ2R, which are currently being tested as therapeutic or diagnostic targets for cancer and neuropsychiatric disorders. Surprisingly, however, knockout of the respective genes encoding σ1R and σ2R (Sigmar1 and Tmem97) in prion-infected N2a cells did not alter the antiprion activity of these compounds, demonstrating that these receptors are not the direct targets responsible for the antiprion effects of their ligands. Further investigation of the most potent molecules established that they are efficacious against multiple prion strains and protect against downstream prion-mediated synaptotoxicity. While the precise details of the mechanism of action of these molecules remain to be determined, the present work forms the basis for further investigation of these compounds in preclinical studies. Given the therapeutic utility of several of the tested compounds, including rimcazole and haloperidol for neuropsychiatric conditions, (+)-pentazocine for neuropathic pain, and the ongoing clinical trials of SA 4503 and ANAVEX2-73 for ischemic stroke and Alzheimer's disease, respectively, this work has immediate implications for the treatment of human prion disease.


Assuntos
Doenças Priônicas , Receptores sigma , Receptores sigma/metabolismo , Receptores sigma/efeitos dos fármacos , Animais , Ligantes , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Camundongos , Humanos , Príons/efeitos dos fármacos , Príons/metabolismo , Receptor Sigma-1 , Linhagem Celular Tumoral
2.
PLoS One ; 17(7): e0270915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35776750

RESUMO

It is widely anticipated that a reduction of brain levels of the cellular prion protein (PrPC) can prolong survival in a group of neurodegenerative diseases known as prion diseases. To date, efforts to decrease steady-state PrPC levels by targeting this protein directly with small molecule drug-like compounds have largely been unsuccessful. Recently, we reported Na,K-ATPases to reside in immediate proximity to PrPC in the brain, unlocking an opportunity for an indirect PrPC targeting approach that capitalizes on the availability of potent cardiac glycosides (CGs). Here, we report that exposure of human co-cultures of neurons and astrocytes to non-toxic nanomolar levels of CGs causes profound reductions in PrPC levels. The mechanism of action underpinning this outcome relies primarily on a subset of CGs engaging the ATP1A1 isoform, one of three α subunits of Na,K-ATPases expressed in brain cells. Upon CG docking to ATP1A1, the ligand receptor complex, and PrPC along with it, is internalized by the cell. Subsequently, PrPC is channeled to the lysosomal compartment where it is digested in a manner that can be rescued by silencing the cysteine protease cathepsin B. These data signify that the repurposing of CGs may be beneficial for the treatment of prion disorders.


Assuntos
Glicosídeos Cardíacos , Doenças Priônicas , Príons , Adenosina Trifosfatases , Glicosídeos Cardíacos/farmacologia , Humanos , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Príons/metabolismo
3.
Sci Rep ; 12(1): 7923, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562591

RESUMO

Each prion strain has its own characteristics and the efficacy of anti-prion drugs varies. Screening of prion disease therapeutics is typically evaluated by measuring amounts of protease-resistant prion protein (PrP-res). However, it remains unclear whether such measurements correlate with seeding activity, which is evaluated by real-time quaking-induced conversion (RT-QuIC). In this study, the effects of anti-prion compounds pentosan polysulfate (PPS), Congo red, and alprenolol were measured in N2a58 cells infected with Fukuoka-1 (FK1) or 22L strain. The compounds abolished PrP-res and seeding activity, except for N2a58/FK1 treated with PPS. Interestingly, the seeding activity of N2a58/FK1, which was reduced in the presence of PPS, was not lost and remained at low levels. However, upon removal of PPS, both were gradually restored to their original levels. These results indicate that low-level persistent prion infection keeping measurable seeding activity is induced by PPS in a strain-dependent manner. Furthermore, for protein misfolding cyclic amplification (PMCA), the anti-prion effect of PPS decreased in FK1 compared to 22L, suggesting that the differences occur at the level of the direct conversion. Our findings demonstrate that the advantages of RT-QuIC and PMCA can be exploited for more accurate assessment of therapeutic drug screening, reflecting strain differences.


Assuntos
Doenças Priônicas , Príons , Animais , Camundongos , Poliéster Sulfúrico de Pentosana/farmacologia , Poliéster Sulfúrico de Pentosana/uso terapêutico , Proteínas PrPSc/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Príons/metabolismo
4.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613636

RESUMO

Prion diseases are neurodegenerative disorders in humans and animals for which no therapies are currently available. Here, we report that Curcuma phaeocaulis Valeton (Zingiberaceae) (CpV) extract was partly effective in decreasing prion aggregation and propagation in both in vitro and in vivo models. CpV extract inhibited self-aggregation of recombinant prion protein (PrP) in a test tube assay and decreased the accumulation of scrapie PrP (PrPSc) in ScN2a cells, a cultured neuroblastoma cell line with chronic prion infection, in a concentration-dependent manner. CpV extract also modified the course of the disease in mice inoculated with mouse-adapted scrapie prions, completely preventing the onset of prion disease in three of eight mice. Biochemical and neuropathological analyses revealed a statistically significant reduction in PrPSc accumulation, spongiosis, astrogliosis, and microglia activation in the brains of mice that avoided disease onset. Furthermore, PrPSc accumulation in the spleen of mice was also reduced. CpV extract precluded prion infection in cultured cells as demonstrated by the modified standard scrapie cell assay. This study suggests that CpV extract could contribute to investigating the modulation of prion propagation.


Assuntos
Doenças Priônicas , Príons , Scrapie , Zingiberaceae , Animais , Camundongos , Curcuma/metabolismo , Modelos Animais , Extratos Vegetais/farmacologia , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas , Príons/metabolismo , Scrapie/metabolismo , Ovinos
5.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34769172

RESUMO

Prion diseases are a group of fatal neurodegenerative disorders caused by accumulation of proteinaceous infectious particles, or prions, which mainly consist of the abnormally folded, amyloidogenic prion protein, designated PrPSc. PrPSc is produced through conformational conversion of the cellular isoform of prion protein, PrPC, in the brain. To date, no effective therapies for prion diseases have been developed. In this study, we incidentally noticed that mouse neuroblastoma N2a cells persistently infected with 22L scrapie prions, termed N2aC24L1-3 cells, reduced PrPSc levels when cultured in advanced Dulbecco's modified eagle medium (DMEM) but not in classic DMEM. PrPC levels remained unchanged in prion-uninfected parent N2aC24 cells cultured in advanced DMEM. These results suggest that advanced DMEM may contain an anti-prion compound(s). We then successfully identified ethanolamine in advanced DMEM has an anti-prion activity. Ethanolamine reduced PrPSc levels in N2aC24L1-3 cells, but not PrPC levels in N2aC24 cells. Also, oral administration of ethanolamine through drinking water delayed prion disease in mice intracerebrally inoculated with RML scrapie prions. These results suggest that ethanolamine could be a new anti-prion compound.


Assuntos
Encéfalo/metabolismo , Etanolamina/farmacologia , Proteínas PrPSc , Doenças Priônicas , Animais , Linhagem Celular Tumoral , Camundongos , Camundongos Endogâmicos ICR , Proteínas PrPSc/antagonistas & inibidores , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/genética , Doenças Priônicas/metabolismo
6.
Expert Rev Neurother ; 21(9): 969-982, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34470561

RESUMO

INTRODUCTION: The cellular prion protein (PrPC) is well known for its pathogenic roles in prion diseases, several other neurodegenerative diseases (such as Alzheimer's disease), and multiple types of cancer, but the beneficial aspects of PrPC and its cleavage products received much less attention. AREAS COVERED: Here the authors will systematically review the literatures on the negative as well as protective aspects of PrPC and its derivatives (especially PrP N-terminal N1 peptide and shed PrP). The authors will dissect the current findings on N1 and shed PrP, including evidence for their neuroprotective effects, the categories of PrPC cleavage, and numerous cleavage enzymes involved. The authors will also discuss the protective effects and therapeutic potentials of PrPC-rich exosomes. The cited articles were obtained from extensive PubMed searches of recent literature, including peer-reviewed original articles and review articles. EXPERT OPINION: PrP and its N-terminal fragments have strong neuroprotective activities that should be explored for therapeutics and prophylactics development against prion disease, Alzheimer's disease and a few other neurodegenerative diseases. The strategies to develop PrP-based therapeutics and prophylactics for these neurodegenerative diseases will be discussed in a companion article (Part II).


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Proteínas PrPC , Doenças Priônicas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas
7.
Molecules ; 26(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361762

RESUMO

Amyloidosis is a group of diseases that includes Alzheimer's disease, prion diseases, transthyretin (ATTR) amyloidosis, and immunoglobulin light chain (AL) amyloidosis. The mechanism of organ dysfunction resulting from amyloidosis has been a topic of debate. This review focuses on the ultrastructure of tissue damage resulting from amyloid deposition and therapeutic insights based on the pathophysiology of amyloidosis. Studies of nerve biopsy or cardiac autopsy specimens from patients with ATTR and AL amyloidoses show atrophy of cells near amyloid fibril aggregates. In addition to the stress or toxicity attributable to amyloid fibrils themselves, the toxicity of non-fibrillar states of amyloidogenic proteins, particularly oligomers, may also participate in the mechanisms of tissue damage. The obscuration of the basement and cytoplasmic membranes of cells near amyloid fibrils attributable to an affinity of components constituting these membranes to those of amyloid fibrils may also play an important role in tissue damage. Possible major therapeutic strategies based on pathophysiology of amyloidosis consist of the following: (1) reducing or preventing the production of causative proteins; (2) preventing the causative proteins from participating in the process of amyloid fibril formation; and/or (3) eliminating already-deposited amyloid fibrils. As the development of novel disease-modifying therapies such as short interfering RNA, antisense oligonucleotide, and monoclonal antibodies is remarkable, early diagnosis and appropriate selection of treatment is becoming more and more important for patients with amyloidosis.


Assuntos
Doença de Alzheimer/patologia , Neuropatias Amiloides Familiares/patologia , Amiloide/imunologia , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Miocárdio/patologia , Nervos Periféricos/patologia , Doenças Priônicas/patologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Amiloide/antagonistas & inibidores , Amiloide/genética , Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/imunologia , Benzoxazóis/uso terapêutico , Diflunisal/uso terapêutico , Humanos , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/tratamento farmacológico , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Amiloidose de Cadeia Leve de Imunoglobulina/imunologia , Fatores Imunológicos/uso terapêutico , Miocárdio/imunologia , Fármacos Neuroprotetores/uso terapêutico , Oligonucleotídeos/uso terapêutico , Nervos Periféricos/efeitos dos fármacos , Nervos Periféricos/imunologia , Pré-Albumina/antagonistas & inibidores , Pré-Albumina/genética , Pré-Albumina/imunologia , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/genética , Doenças Priônicas/imunologia , RNA Interferente Pequeno/uso terapêutico
8.
Biomolecules ; 11(6)2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34067472

RESUMO

A cellular prion protein (PrPC) is a ubiquitous cell surface glycoprotein, and its physiological functions have been receiving increased attention. Endogenous PrPC is present in various kidney tissues and undergoes glomerular filtration. In prion diseases, abnormal prion proteins are found to accumulate in renal tissues and filtered into urine. Urinary prion protein could serve as a diagnostic biomarker. PrPC plays a role in cellular signaling pathways, reno-protective effects, and kidney iron uptake. PrPC signaling affects mitochondrial function via the ERK pathway and is affected by the regulatory influence of microRNAs, small molecules, and signaling proteins. Targeting PrPC in acute and chronic kidney disease could help improve iron homeostasis, ameliorate damage from ischemia/reperfusion injury, and enhance the efficacy of mesenchymal stem/stromal cell or extracellular vesicle-based therapeutic strategies. PrPC may also be under the influence of BMP/Smad signaling and affect the progression of TGF-ß-related renal fibrosis. PrPC conveys TNF-α resistance in some renal cancers, and therefore, the coadministration of anti-PrPC antibodies improves chemotherapy. PrPC can be used to design antibody-drug conjugates, aptamer-drug conjugates, and customized tissue inhibitors of metalloproteinases to suppress cancer. With preclinical studies demonstrating promising results, further research on PrPC in the kidney may lead to innovative PrPC-based therapeutic strategies for renal disease.


Assuntos
Injúria Renal Aguda , Antineoplásicos/uso terapêutico , Neoplasias Renais , Proteínas de Neoplasias , Proteínas PrPC , Doenças Priônicas , Insuficiência Renal Crônica , Transdução de Sinais/efeitos dos fármacos , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Fibrose , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Proteínas PrPC/antagonistas & inibidores , Proteínas PrPC/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/patologia
9.
Biochem Biophys Res Commun ; 560: 105-111, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-33984767

RESUMO

Anti-prion effects of cellulose ether (CE) are reported in rodents, but the molecular mechanism is fully unknown. Here, we investigated the genetic background of CE effectiveness by proteomic and genetic analysis in mice. Proteomic analysis in the two mouse lines showing a dramatic difference in CE effectiveness revealed a distinct polymorphism in the glia maturation factor ß gene. This polymorphism was significantly associated with the CE effectiveness in various prion-infected mouse lines. Sequencing of this gene and its vicinity genes also revealed several other polymorphisms that were significantly related to the CE effectiveness. These polymorphisms are useful as genetic markers for finding more suitable mouse lines and exploring the genetic factors of CE effectiveness.


Assuntos
Fator de Maturação da Glia/genética , Derivados da Hipromelose/uso terapêutico , Doenças Priônicas/tratamento farmacológico , Animais , Encéfalo/metabolismo , Marcadores Genéticos , Genômica , Masculino , Camundongos , Polimorfismo Genético , Doenças Priônicas/genética , Doenças Priônicas/metabolismo , Proteômica
10.
Front Immunol ; 11: 579000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33162994

RESUMO

The proliferation and activation of microglia, the resident macrophages in the brain, is a hallmark of many neurodegenerative diseases such as Alzheimer's disease (AD) and prion disease. Colony stimulating factor 1 receptor (CSF1R) is critically involved in regulating microglial proliferation, and CSF1R blocking strategies have been recently used to modulate microglia in neurodegenerative diseases. However, CSF1R is broadly expressed by many cell types and the impact of its inhibition on the innate immune system is still unclear. CSF1R can be activated by two independent ligands, CSF-1 and interleukin 34 (IL-34). Recently, it has been reported that microglia development and maintenance depend on IL-34 signaling. In this study, we evaluate the inhibition of IL-34 as a novel strategy to reduce microglial proliferation in the ME7 model of prion disease. Selective inhibition of IL-34 showed no effects on peripheral macrophage populations in healthy mice, avoiding the side effects observed after CSF1R inhibition on the systemic compartment. However, we observed a reduction in microglial proliferation after IL-34 inhibition in prion-diseased mice, indicating that microglia could be more specifically targeted by reducing IL-34. Overall, our results highlight the challenges of targeting the CSF1R/IL34 axis in the systemic and central compartments, important for framing any therapeutic effort to tackle microglia/macrophage numbers during brain disease.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/farmacologia , Encéfalo/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Interleucinas/antagonistas & inibidores , Microglia/efeitos dos fármacos , Degeneração Neural , Doenças Priônicas/tratamento farmacológico , Animais , Anticorpos Monoclonais/toxicidade , Anticorpos Neutralizantes/toxicidade , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Genes fms , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interleucinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Microglia/patologia , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Transdução de Sinais
11.
Sci Signal ; 13(644)2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32788341

RESUMO

Chronic activation of the unfolded protein response (UPR), notably the branch comprising the kinase PERK and the translation initiation factor eIF2α, is a pathological feature of many neurodegenerative diseases caused by protein misfolding. Partial reduction of UPR signaling at the level of phosphorylated eIF2α is neuroprotective and avoids the pancreatic toxicity caused by full inhibition of PERK kinase activity. However, other stress pathways besides the UPR converge on phosphorylated eIF2α in the integrated stress response (ISR), which is critical to normal cellular function. We explored whether partial inhibition of PERK signaling may be a better therapeutic option. PERK-mediated phosphorylation of eIF2α requires its binding to the insert loop within PERK's kinase domain, which is, itself, phosphorylated at multiple sites. We found that, as expected, Akt mediates the phosphorylation of Thr799 in PERK. This phosphorylation event reduced eIF2α binding to PERK and selectively attenuated downstream signaling independently of PERK activity and the broader ISR. Induction of Thr799 phosphorylation with a small-molecule activator of Akt similarly reduced PERK signaling and increased both neuronal and animal survival without measurable pancreatic toxicity in a mouse model of prion disease. Thus, promoting PERK phosphorylation at Thr799 to partially down-regulate PERK-eIF2α signaling while avoiding widespread ISR inhibition may be a safe therapeutic approach in neurodegenerative disease.


Assuntos
Modelos Animais de Doenças , Fator de Iniciação 2 em Eucariotos/metabolismo , Doenças Priônicas/metabolismo , Transdução de Sinais , eIF-2 Quinase/metabolismo , Acetatos/farmacologia , Animais , Benzopiranos/farmacologia , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Células HEK293 , Humanos , Estimativa de Kaplan-Meier , Camundongos , Fosforilação/efeitos dos fármacos , Doenças Priônicas/tratamento farmacológico , Resposta a Proteínas não Dobradas/efeitos dos fármacos
12.
Neurotherapeutics ; 17(4): 1836-1849, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32767031

RESUMO

The accumulation of abnormal prion protein (PrPSc) produced by the structure conversion of PrP (PrPC) in the brain induces prion disease. Although the conversion process of the protein is still not fully elucidated, it has been known that the intramolecular chemical bridging in the most fragile pocket of PrP, known as the "hot spot," stabilizes the structure of PrPC and inhibits the conversion process. Using our original structure-based drug discovery algorithm, we identified the low molecular weight compounds that predicted binding to the hot spot. NPR-130 and NPR-162 strongly bound to recombinant PrP in vitro, and fragment molecular orbital (FMO) analysis indicated that the high affinity of those candidates to the PrP is largely dependent on nonpolar interactions, such as van der Waals interactions. Those NPRs showed not only significant reduction of the PrPSc levels but also remarkable decrease of the number of aggresomes in persistently prion-infected cells. Intriguingly, treatment with those candidate compounds significantly prolonged the survival period of prion-infected mice and suppressed prion disease-specific pathological damage, such as vacuole degeneration, PrPSc accumulation, microgliosis, and astrogliosis in the brain, suggesting their possible clinical use. Our results indicate that in silico drug discovery using NUDE/DEGIMA may be widely useful to identify candidate compounds that effectively stabilize the protein.


Assuntos
Simulação por Computador , Progressão da Doença , Descoberta de Drogas/métodos , Doenças Priônicas/diagnóstico , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Doenças Priônicas/genética , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Ligação Proteica/fisiologia , Relação Estrutura-Atividade
13.
Aging (Albany NY) ; 12(11): 11139-11151, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32526704

RESUMO

Prion diseases are neurodegenerative diseases associated with neuron damage and behavioral disorders in animals and humans. Melatonin is a potent antioxidant and is used to treat a variety of diseases. We investigated the neuroprotective effect of melatonin on prion-induced damage in N2a cells. N2a cells were pretreated with 10 µM melatonin for 1 hour followed by incubation with 100 µM PrP106-126 for 24 hours. Melatonin markedly alleviated PrP106-126-induced apoptosis of N2a cells, and inhibited PrP106-126-induced mitochondrial abnormality and dysfunction, including mitochondrial fragmentation and overproduction of reactive oxygen species (ROS), suppression of ATP, reduced mitochondrial membrane potential (MMP), and altered mitochondrial dynamic proteins dynamin-related protein 1 (DRP1) and optic atrophy protein 1 (OPA1). Our findings identify that pretreatment with melatonin prevents the deleterious effects of PrPSc on mitochondrial function and dynamics, protects synapses and alleviates neuron damage. Melatonin could be a novel and effective medication in the therapy of prion diseases.


Assuntos
Apoptose/efeitos dos fármacos , Melatonina/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Dinaminas/genética , Dinaminas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/patologia , Espécies Reativas de Oxigênio/metabolismo
14.
Drug Discov Today ; 25(1): 15-21, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31560948

RESUMO

Prion disease dementias are currently not practically treatable. However, a proposed treatment approach using specifically targeted dual-peptide ligand masks can mask prion surface proteins and treat specific prion diseases. Different approaches might be used to treat these prion diseases. One treatment introduces genetically modified cells into the gastrointestinal tract or other locations to produce dual-peptide ligand masks; and another treatment introduces only the dual-peptide ligand masks into the center of prion infections to mask prion surface proteins. An independent group introduced genetically modified therapeutic bacteria into large numbers of mammals, including several human volunteers, with safe and effective experimental results, without long-term colonization by the bacteria, which experimentally supports the feasibility of the first treatment. These approaches offer several advantages compared with other potential treatments against prion diseases in humans.


Assuntos
Demência/tratamento farmacológico , Peptídeos/uso terapêutico , Doenças Priônicas/tratamento farmacológico , Animais , Demência/imunologia , Demência/prevenção & controle , Humanos , Memória Imunológica , Ligantes , Microrganismos Geneticamente Modificados , Doenças Priônicas/diagnóstico , Doenças Priônicas/imunologia , Doenças Priônicas/prevenção & controle , Proteínas Priônicas , Vacinas
15.
Biofactors ; 45(5): 666-689, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31185140

RESUMO

Curcumin is widely consumed in Asia either as turmeric directly or as one of the culinary ingredients in food recipes. The benefits of curcumin in different organ systems have been reported extensively in several neurological diseases and cancer. Curcumin has got its global recognition because of its strong antioxidant, anti-inflammatory, anti-cancer, and antimicrobial activities. Additionally, it is used in diabetes and arthritis as well as in hepatic, renal, and cardiovascular diseases. Recently, there is growing attention on usage of curcumin to prevent or delay the onset of neurodegenerative diseases. This review summarizes available data from several recent studies on curcumin in various neurological diseases such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, Huntington's disease, Prions disease, stroke, Down's syndrome, autism, Amyotrophic lateral sclerosis, anxiety, depression, and aging. Recent advancements toward increasing the therapeutic efficacy of curcuma/curcumin formulation and the novel delivery strategies employed to overcome its minimal bioavailability and toxicity studies have also been discussed. This review also summarizes the ongoing clinical trials on curcumin for different neurodegenerative diseases and patent details of curcuma/curcumin in India.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Curcumina/farmacologia , Demência/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Transtorno Autístico/tratamento farmacológico , Transtorno Autístico/metabolismo , Transtorno Autístico/fisiopatologia , Disponibilidade Biológica , Curcuma/química , Curcumina/isolamento & purificação , Demência/metabolismo , Demência/fisiopatologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/fisiopatologia , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/fisiopatologia , Humanos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Doença de Huntington/fisiopatologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/fisiopatologia , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatologia , Fármacos Neuroprotetores/isolamento & purificação , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Patentes como Assunto , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Doenças Priônicas/fisiopatologia , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia
16.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845718

RESUMO

Transcription factors play a significant role during the symptomatic onset and progression of prion diseases. We previously showed the immunomodulatory and nuclear factor of activated T cells' (NFAT) suppressive effects of an immunosuppressant, FK506, in the symptomatic stage and an antibiotic, minocycline, in the pre-symptomatic stage of prion infection in hamsters. Here we used for the first time, a combinatory FK506+minocycline treatment to test its transcriptional modulating effects in the symptomatic stage of prion infection. Our results indicate that prolonged treatment with FK506+minocycline was effective in alleviating astrogliosis and neuronal death triggered by misfolded prions. Specifically, the combinatory therapy with FK506+minocycline lowered the expression of the astrocytes activation marker GFAP and of the microglial activation marker IBA-1, subsequently reducing the level of pro-inflammatory cytokines interleukin 1 beta (IL-1ß) and tumor necrosis factor alpha (TNF-α), and increasing the levels of anti-inflammatory cytokines IL-10 and IL-27. We further found that FK506+minocycline treatment inhibited mitogen-activated protein kinase (MAPK) p38 phosphorylation, NF-kB nuclear translocation, caspase expression, and enhanced phosphorylated cAMP response element-binding protein (pCREB) and phosphorylated Bcl2-associated death promoter (pBAD) levels to reduce cognitive impairment and apoptosis. Interestingly, FK506+minocycline reduced mitochondrial fragmentation and promoted nuclear factor⁻erythroid2-related factor-2 (NRF2)-heme oxygenase 1 (HO-1) pathway to enhance survival. Taken together, our results show that a therapeutic cocktail of FK506+minocycline is an attractive candidate for prolonged use in prion diseases and we encourage its further clinical development as a possible treatment for this disease.


Assuntos
Minociclina/administração & dosagem , Doenças Priônicas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Tacrolimo/administração & dosagem , Animais , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Cricetinae , Modelos Animais de Doenças , Regulação para Baixo , Quimioterapia Combinada , Proteína Glial Fibrilar Ácida/metabolismo , Minociclina/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Doenças Priônicas/imunologia , Doenças Priônicas/metabolismo , Tacrolimo/farmacologia
17.
Curr Opin Pharmacol ; 44: 20-27, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30684854

RESUMO

Prion diseases are untreatable and invariably fatal, making the discovery of effective therapeutic interventions a priority. Most candidate molecules have been discovered based on their ability to reduce the levels of PrPSc, the infectious form of the prion protein, in cultured neuroblastoma cells. We have employed an alternative assay, based on an abnormal cellular phenotype associated with a mutant prion protein, to discover a novel class of anti-prion compounds, the phenethyl piperidines. Using an assay that monitors the acute toxic effects of PrPSc on the synapses of cultured hippocampal neurons, we have identified p38 MAPK as a druggable pharmacological target that is already being pursued for the treatment of other human diseases. Organotypic brain slices, which can propagate prions and mimic several neuropathological features of the disease, have also been used to test inhibitory compounds. An effective anti-prion regimen will involve synergistic combination of drugs acting at multiple steps of the pathogenic process, resulting not only in reduction in prion levels but also suppression of neurotoxic signaling.


Assuntos
Bioensaio , Descoberta de Drogas , Doenças Priônicas/tratamento farmacológico , Proteínas Priônicas/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos
18.
Sci Rep ; 8(1): 13063, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-30166585

RESUMO

Conformational conversion of the normal cellular isoform of the prion protein PrPC into an infectious isoform PrPSc causes pathogenesis in prion diseases. To date, numerous antiprion compounds have been developed to block this conversion and to detect the molecular mechanisms of prion inhibition using several computational studies. Thus far, no suitable drug has been identified for clinical use. For these reasons, more accurate and predictive approaches to identify novel compounds with antiprion effects are required. Here, we have applied an in silico approach that integrates our previously described pharmacophore model and fragment molecular orbital (FMO) calculations, enabling the ab initio calculation of protein-ligand complexes. The FMO-based virtual screening suggested that two natural products with antiprion activity exhibited good binding interactions, with hotspot residues within the PrPC binding site, and effectively reduced PrPSc levels in a standard scrapie cell assay. Overall, the outcome of this study will be used as a promising strategy to discover antiprion compounds. Furthermore, the SAR-by-FMO approach can provide extremely powerful tools in quickly establishing virtual SAR to prioritise compounds for synthesis in further studies.


Assuntos
Produtos Biológicos/uso terapêutico , Doenças Priônicas/tratamento farmacológico , Produtos Biológicos/química , Linhagem Celular Tumoral , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Proteínas PrPSc/metabolismo
19.
Prion ; 12(3-4): 226-233, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30074430

RESUMO

Transmissible spongiform encephalopathies (TSEs) are a group of lethal neurodegenerative diseases involving the structural conversion of cellular prion protein (PrPC) into the pathogenic isoform (PrPSc) for which no effective treatment is currently available. Previous studies have implicated that a polymeric molecule with a repeating unit, such as pentosane polysulfate and polyamidoamide dendrimers, exhibits a potent anti-prion activity, suggesting that poly-(amino acid)s could be a candidate molecule for inhibiting prion propagation. Here, by screening a series of poly-(amino acid)s in a prion-infected neuroblastoma cell line (GTFK), we identified poly-L-His as a novel anti-prion compound with an IC50 value of 1.8 µg/mL (0.18 µM). This potent anti-prion activity was specific to a high-molecular-weight poly-L-His and absent in monomeric histidine or low-molecular-weight poly-L-His. Solution NMR data indicated that poly-L-His directly binds to the loop region connecting Helix 2 and Helix 3 of PrPC and sterically blocks the structural conversion toward PrPSc. Poly-L-His, however, did not inhibit prion propagation in a prion-infected mouse when administered intraperitoneally, suggesting that the penetration of blood-brain barrier and/or the chemical stability of this polypeptide must be addressed before its application in vivo. Taken together, this study revealed the potential use of poly-L-His as a novel treatment against TSEs. (203 words).


Assuntos
Histidina/uso terapêutico , Animais , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo
20.
Cell Mol Life Sci ; 75(19): 3521-3538, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30030591

RESUMO

Protein misfolding and aggregation into fibrillar deposits is a common feature of a large group of degenerative diseases affecting the central nervous system or peripheral organs, termed protein misfolding disorders (PMDs). Despite their established toxic nature, clinical trials aiming to reduce misfolded aggregates have been unsuccessful in treating or curing PMDs. An interesting possibility for disease intervention is the regular intake of natural food or herbal extracts, which contain active molecules that inhibit aggregation or induce the disassembly of misfolded aggregates. Among natural compounds, phenolic molecules are of particular interest, since most have dual activity as amyloid aggregation inhibitors and antioxidants. In this article, we review many phenolic natural compounds which have been reported in diverse model systems to have the potential to delay or prevent the development of various PMDs, including Alzheimer's and Parkinson's diseases, prion diseases, amyotrophic lateral sclerosis, systemic amyloidosis, and type 2 diabetes. The lower toxicity of natural compounds compared to synthetic chemical molecules suggest that they could serve as a good starting point to discover protein misfolding inhibitors that might be useful for the treatment of various incurable diseases.


Assuntos
Produtos Biológicos/farmacologia , Fenóis/farmacologia , Agregação Patológica de Proteínas/prevenção & controle , Dobramento de Proteína/efeitos dos fármacos , Deficiências na Proteostase/prevenção & controle , Amiloidose/tratamento farmacológico , Amiloidose/metabolismo , Amiloidose/patologia , Animais , Produtos Biológicos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Fenóis/uso terapêutico , Doenças Priônicas/tratamento farmacológico , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Deficiências na Proteostase/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA