Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
1.
Int J Rheum Dis ; 27(5): e15174, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720423

RESUMO

OBJECTIVES: This study investigates the role of TNF-induced protein 3 (TNFAIP3) and CCAAT/enhancer-binding protein ß (C/EBPß) in alveolar macrophages (AMs) of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) and their influence on pulmonary fibrosis. METHODS: Transfection of HEK293T cells and AMs with plasmids carrying TNFAIP3 and C/EBPß was performed, followed by co-culturing AMs with pulmonary fibroblasts. Immunoblotting analysis was then utilized to assess the expression of TNFAIP3, C/EBPß, and collagen type 1 (Col1). Quantitative PCR analysis was conducted to quantify the mRNA levels of C/EBPß, IL-10, and TGF-ß1. STRING database analysis, and immunoprecipitation assays were employed to investigate the interactions between TNFAIP3 and C/EBPß. RESULTS: TNFAIP3 expression was significantly reduced in SSc-ILD AMs, correlating with increased Col1 production in fibroblasts. Overexpression of TNFAIP3 inhibited this pro-fibrotic activity. Conversely, C/EBPß expression was elevated in SSc-ILD AMs, and its reduction through TNFAIP3 restoration decreased pro-fibrotic cytokines IL-10 and TGFß1 levels. Protein-protein interaction studies confirmed the regulatory relationship between TNFAIP3 and C/EBPß. CONCLUSIONS: This study highlights the important role of TNFAIP3 in regulating pulmonary fibrosis in SSc-ILD by modulating C/EBPß expression in AMs. These findings suggest that targeting TNFAIP3 could be a potential therapeutic strategy for managing SSc-ILD patients.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Técnicas de Cocultura , Fibroblastos , Doenças Pulmonares Intersticiais , Macrófagos Alveolares , Escleroderma Sistêmico , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Fibroblastos/metabolismo , Células HEK293 , Interleucina-10/metabolismo , Interleucina-10/genética , Pulmão/metabolismo , Pulmão/patologia , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/etiologia , Macrófagos Alveolares/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/etiologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/complicações , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Adulto , Idoso
2.
J Transl Med ; 22(1): 457, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745204

RESUMO

BACKGROUND AND PURPOSE: Interstitial lung disease (ILD) represents a significant complication of rheumatoid arthritis (RA) that lacks effective treatment options. This study aimed to investigate the intrinsic mechanism by which resveratrol attenuates rheumatoid arthritis complicated with interstitial lung disease through the AKT/TMEM175 pathway. METHODS: We established an arthritis model by combining chicken type II collagen and complete Freund's adjuvant. Resveratrol treatment was administered via tube feeding for 10 days. Pathological changes in both the joints and lungs were evaluated using HE and Masson staining techniques. Protein expression of TGF-ß1, AKT, and TMEM175 was examined in lung tissue. MRC-5 cells were stimulated using IL-1ß in combination with TGF-ß1 as an in vitro model of RA-ILD, and agonists of AKT, metabolic inhibitors, and SiRNA of TMEM175 were used to explore the regulation and mechanism of action of resveratrol RA-ILD. RESULTS: Resveratrol mitigates fibrosis in rheumatoid arthritis-associated interstitial lung disease and reduces oxidative stress and inflammation in RA-ILD. Furthermore, resveratrol restored cellular autophagy. When combined with the in vitro model, it was further demonstrated that resveratrol could suppress TGF-ß1 expression, and reduce AKT metamorphic activation, consequently inhibiting the opening of AKT/MEM175 ion channels. This, in turn, lowers lysosomal pH and enhances the fusion of autophagosomes with lysosomes, ultimately ameliorating the progression of RA-ILD. CONCLUSION: In this study, we demonstrated that resveratrol restores autophagic flux through the AKT/MEM175 pathway to attenuate inflammation as well as fibrosis in RA-ILD by combining in vivo and in vitro experiments. It further provides a theoretical basis for the selection of therapeutic targets for RA-ILD.


Assuntos
Artrite Reumatoide , Fibrose , Inflamação , Doenças Pulmonares Intersticiais , Proteínas Proto-Oncogênicas c-akt , Resveratrol , Transdução de Sinais , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/metabolismo , Humanos , Inflamação/patologia , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Membrana/metabolismo , Autofagia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Linhagem Celular , Pulmão/patologia , Pulmão/efeitos dos fármacos , Masculino
3.
Cell Rep ; 43(4): 114114, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625791

RESUMO

Patients afflicted with Stimulator of interferon gene (STING) gain-of-function mutations frequently present with debilitating interstitial lung disease (ILD) that is recapitulated in mice expressing the STINGV154M mutation (VM). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in initiating ILD. To identify STING-expressing non-hematopoietic cell types required for the development of ILD, we use a conditional knockin (CKI) model and direct expression of the VM allele to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted VM expression results in enhanced recruitment of immune cells to the lung associated with elevated chemokine expression and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of STING-associated vasculopathy with onset in infancy (SAVI) patients or patients afflicted with other ILD-related disorders.


Assuntos
Células Endoteliais , Mutação com Ganho de Função , Pulmão , Proteínas de Membrana , Animais , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Camundongos , Pulmão/patologia , Pulmão/metabolismo , Linfócitos/metabolismo , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Camundongos Endogâmicos C57BL , Humanos
4.
Front Immunol ; 15: 1328781, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550597

RESUMO

Metabolic changes are coupled with alteration in protein glycosylation. In this review, we will focus on macrophages that are pivotal in the pathogenesis of pulmonary fibrosis and sarcoidosis and thanks to their adaptable metabolism are an attractive therapeutic target. Examples presented in this review demonstrate that protein glycosylation regulates metabolism-driven immune responses in macrophages, with implications for fibrotic processes and granuloma formation. Targeting proteins that regulate glycosylation, such as fucosyltransferases, neuraminidase 1 and chitinase 1 could effectively block immunometabolic changes driving inflammation and fibrosis, providing novel avenues for therapeutic interventions.


Assuntos
Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Sarcoidose , Humanos , Glicosilação , Doenças Pulmonares Intersticiais/metabolismo , Fibrose Pulmonar/etiologia , Sarcoidose/metabolismo , Fibrose
5.
Respir Res ; 24(1): 320, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38111019

RESUMO

BACKGROUND: Pulmonary Langerhans cell histiocytosis (PLCH) is a rare interstitial lung disease (ILD) associated with smoking, whose definitive diagnosis requires the exclusion of other forms of ILD and a compatible surgical lung biopsy. Bronchoalveolar lavage (BAL) is commonly proposed for the diagnosis of ILD, including PLCH, but the diagnostic value of this technique is limited. Here, we have analyzed the levels of a panel of cytokines and chemokines in BAL from PLCH patients, in order to identify a distinct immune profile to discriminate PLCH from other smoking related-ILD (SR-ILD), and comparing the results with idiopathic pulmonary fibrosis (IPF) as another disease in which smoking is considered a risk factor. METHODS: BAL samples were collected from thirty-six patients with different ILD, including seven patients with PLCH, sixteen with SR-ILD and thirteen with IPF. Inflammatory profiles were analyzed using the Human Cytokine Membrane Antibody Array. Principal component analysis (PCA) was performed to reduce dimensionality and protein-protein interaction (PPI) network analysis using STRING 11.5 database were conducted. Finally, Random forest (RF) method was used to build a prediction model. RESULTS: We have found significant differences (p < 0.05) on thirty-two cytokines/chemokines when comparing BAL from PLCH patients with at least one of the other ILD. Four main groups of similarly regulated cytokines were established, identifying distinct sets of markers for each cluster. Exploratory analysis using PCA (principal component analysis) showed clustering and separation of patients, with the two first components capturing 69.69% of the total variance. Levels of TARC/CCL17, leptin, oncostatin M (OSM) and IP-10/CXCL10 were associated with lung function parameters, showing positive correlation with FVC. Finally, random forest (RF) algorithm demonstrates that PLCH patients can be differentiated from the other ILDs based solely on inflammatory profile (accuracy 96.25%). CONCLUSIONS: Our results show that patients with PLCH exhibit a distinct BAL immune profile to SR-ILD and IPF. PCA analysis and RF model identify a specific immune profile useful for discriminating PLCH.


Assuntos
Histiocitose de Células de Langerhans , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Líquido da Lavagem Broncoalveolar , Doenças Pulmonares Intersticiais/diagnóstico , Doenças Pulmonares Intersticiais/etiologia , Doenças Pulmonares Intersticiais/metabolismo , Histiocitose de Células de Langerhans/diagnóstico , Histiocitose de Células de Langerhans/patologia , Fumar/efeitos adversos , Citocinas , Imunoglobulinas , Quimiocinas
6.
Respir Res ; 24(1): 318, 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105232

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease (ILD) with unknown etiology, characterized by sustained damage repair of epithelial cells and abnormal activation of fibroblasts, the underlying mechanism of the disease remains elusive. METHODS: To evaluate the role of Tuftelin1 (TUFT1) in IPF and elucidate its molecular mechanism. We investigated the level of TUFT1 in the IPF and bleomycin-induced mouse models and explored the influence of TUFT1 deficiency on pulmonary fibrosis. Additionally, we explored the effect of TUFT1 on the cytoskeleton and illustrated the relationship between stress fiber and pulmonary fibrosis. RESULTS: Our results demonstrated a significant upregulation of TUFT1 in IPF and the bleomycin (BLM)-induced fibrosis model. Disruption of TUFT1 exerted inhibitory effects on pulmonary fibrosis in both in vivo and in vitro. TUFT1 facilitated the assembly of microfilaments in A549 and MRC-5 cells, with a pronounced association between TUFT1 and Neuronal Wiskott-Aldrich syndrome protein (N-WASP) observed during microfilament formation. TUFT1 can promote the phosphorylation of tyrosine residue 256 (Y256) of the N-WASP (pY256N-WASP). Furthermore, TUFT1 promoted transforming growth factor-ß1 (TGF-ß1) induced fibroblast activation by increasing nuclear translocation of pY256N-WASP in fibroblasts, while wiskostatin (Wis), an N-WASP inhibitor, suppressed these processes. CONCLUSIONS: Our findings suggested that TUFT1 plays a critical role in pulmonary fibrosis via its influence on stress fiber, and blockade of TUFT1 effectively reduces pro-fibrotic phenotypes. Pharmacological targeting of the TUFT1-N-WASP axis may represent a promising therapeutic approach for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Animais , Camundongos , Bleomicina/toxicidade , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Camundongos Endogâmicos C57BL , Fibras de Estresse/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
7.
J Transl Med ; 21(1): 857, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012636

RESUMO

BACKGROUND: The prognosis of patients with lung cancer accompanied by interstitial pneumonia is poorer than that of patients with lung cancer but without interstitial pneumonia. Moreover, the available therapeutic interventions for lung cancer patients with interstitial pneumonia are limited. Therefore, a new treatment strategy for these patients is required. The aim of the present study was to investigate the pathophysiological relationship between interstitial pneumonia and lung cancer and explore potential therapeutic agents. METHODS: A novel hybrid murine model of lung cancer with interstitial pneumonia was established via bleomycin-induced pulmonary fibrosis followed by orthotopic lung cancer cell transplantation into the lungs. Changes in tumor progression, lung fibrosis, RNA expression, cytokine levels, and tumor microenvironment in the lung cancer with interstitial pneumonia model were investigated, and therapeutic agents were examined. Additionally, clinical data and samples from patients with lung cancer accompanied by interstitial pneumonia were analyzed to explore the potential clinical significance of the findings. RESULTS: In the lung cancer with interstitial pneumonia model, accelerated tumor growth was observed based on an altered tumor microenvironment. RNA sequencing analysis revealed upregulation of the hypoxia-inducible factor 1 signaling pathway. These findings were consistent with those obtained for human samples. Moreover, we explored whether ascorbic acid could be an alternative treatment for lung cancer with interstitial pneumonia to avoid the disadvantages of hypoxia-inducible factor 1 inhibitors. Ascorbic acid successfully downregulated the hypoxia-inducible factor 1 signaling pathway and inhibited tumor progression and lung fibrosis. CONCLUSIONS: The hypoxia-inducible factor 1 pathway is critical in lung cancer with interstitial pneumonia and could be a therapeutic target for mitigating interstitial pneumonia-mediated lung cancer progression.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Doenças Pulmonares Intersticiais , Neoplasias Pulmonares , Pneumonia , Fibrose Pulmonar , Animais , Humanos , Camundongos , Ácido Ascórbico , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/patologia , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Neoplasias Pulmonares/genética , Fibrose Pulmonar/patologia , Microambiente Tumoral
8.
Am J Physiol Cell Physiol ; 325(5): C1190-C1200, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661917

RESUMO

Interstitial lung diseases can result in poor patient outcomes, especially in idiopathic pulmonary fibrosis (IPF), a severe interstitial lung disease with unknown causes. The lack of treatment options requires further understanding of the pathological process/mediators. Membrane-associated RING-CH 8 (MARCH8) has been implicated in immune function regulation and inflammation, however, its role in the development of pulmonary fibrosis and particularly the fibroblast to myofibroblast transition (FMT) remains a gap in existing knowledge. In this study, we demonstrated decreased MARCH8 expression in patients with IPF compared with non-PF controls and in bleomycin-induced PF. TGF-ß dose- and time-dependently decreased MARCH8 expression in normal and IPF human lung fibroblast (HLFs), along with induction of FMT markers α-SMA, collagen type I (Col-1), and fibronectin (FN). Interestingly, overexpression of MARCH8 significantly suppressed TGF-ß-induced expression of α-SMA, Col-1, and FN. By contrast, the knockdown of MARCH8 using siRNA upregulated basal expression of α-SMA/Col-1/FN. Moreover, MARCH8 knockdown enhanced TGF-ß-induced FMT marker expression. These data clearly show that MARCH8 is a critical "brake" for FMT and potentially affects PF. We further found that TGF-ß suppressed MARCH8 mRNA expression and the proteasome inhibitor MG132 failed to block MARCH8 decrease induced by TGF-ß. Conversely, TGF-ß decreases mRNA levels of MARCH8 in a dose- and time-dependent manner, suggesting the transcriptional regulation of MARCH8 by TGF-ß. Mechanistically, MARCH8 overexpression suppressed TGF-ß-induced Smad2/3 phosphorylation, which may account for the observed effects. Taken together, this study demonstrated an unrecognized role of MARCH8 in negatively regulating FMT and profibrogenic responses relevant to interstitial lung diseases.NEW & NOTEWORTHY MARCH8 is an important modulator of inflammation, immunity, and other cellular processes. We found that MARCH8 expression is downregulated in the lungs of patients with idiopathic pulmonary fibrosis (IPF) and experimental models of pulmonary fibrosis. Furthermore, TGF-ß1 decreases MARCH8 transcriptionally in human lung fibroblasts (HLFs). MARCH8 overexpression blunts TGF-ß1-induced fibroblast to myofibroblast transition while knockdown of MARCH8 drives this profibrotic change in HLFs. The findings support further exploration of MARCH8 as a novel target in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Miofibroblastos , Regulação para Baixo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibroblastos/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Bleomicina/farmacologia , Inflamação/metabolismo , RNA Mensageiro/metabolismo
9.
Semin Perinatol ; 47(6): 151811, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37775368

RESUMO

Bronchopulmonary dysplasia (BPD) is a multi-factorial disease that results from multiple clinical factors, including lung immaturity, mechanical ventilation, oxidative stress, pulmonary congestion due to increasing cardiac blood shunting, nutritional and immunological factors. Twin studies have indicated that susceptibility to BPD can be strongly inherited in some settings. Studies have reported associations between common genetic variants and BPD in preterm infants. Recent genomic studies have highlighted a potential role for molecular pathways involved in inflammation and lung development in affected infants. Rare mutations in genes encoding the lipid transporter ATP-binding cassette, sub-family A, member 3 (ABCA3 gene) which is involved in surfactant synthesis in alveolar type II cells, as well as surfactant protein B (SFTPB) and C (SFTPC) can also result in severe form of neonatal-onset interstitial lung diseases and may also potentially affect the course of BPD. This chapter summarizes the current state of knowledge on the genetics of BPD.


Assuntos
Displasia Broncopulmonar , Doenças Pulmonares Intersticiais , Lactente , Recém-Nascido , Humanos , Displasia Broncopulmonar/genética , Recém-Nascido Prematuro , Pulmão , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Tensoativos
10.
Inflammation ; 46(6): 2120-2131, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37561311

RESUMO

The effectiveness of corticosteroids (GCs) varies greatly in interstitial lung diseases (ILDs). In this study, we aimed to compare the gene expression profiles of patients with cryptogenic organizing pneumonia (COP), idiopathic pulmonary fibrosis (IPF), and non-specific interstitial pneumonia (NSIP) and identify the molecules and pathways responsible for GCs sensitivity in ILDs. Three datasets (GSE21411, GSE47460, and GSE32537) were selected. Differentially expressed genes (DEGs) among COP, IPF, NSIP, and healthy control (CTRL) groups were identified. Functional enrichment analysis and protein-protein interaction network analysis were performed to examine the potential functions of DEGs. There were 128 DEGs when COP versus CTRL, 257 DEGs when IPF versus CTRL, 205 DEGs when NSIP versus CTRL, and 270 DEGs when COP versus IPF. The DEGs in different ILDs groups were mainly enriched in the inflammatory response. Further pathway analysis showed that "interleukin (IL)-17 signaling pathway" (hsa04657) and "tumor necrosis factor (TNF) signaling pathway" were associated with different types of ILDs. A total of 10 genes associated with inflammatory response were identified as hub genes and their expression levels in the IPF group were higher than those in the COP group. Finally, we identified two GCs' response-related differently expressed genes (FOSL1 and DDIT4). Our bioinformatics analysis demonstrated that the inflammatory response played a pathogenic role in the progression of ILDs. We also illustrated that the inflammatory reaction was more severe in the IPF group compared to the COP group and identified two GCs' response-related differently expressed genes (FOSL1 and DDIT4) in ILDs.


Assuntos
Pneumonias Intersticiais Idiopáticas , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/metabolismo , Pneumonias Intersticiais Idiopáticas/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Esteroides/metabolismo , Inflamação/metabolismo , Pulmão/metabolismo
11.
Front Immunol ; 14: 1098602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409133

RESUMO

Background: Krebs von den Lungen 6 (KL-6) is a potential biomarker for determining the severity of interstitial lung disease (ILD) in patients with connective tissue disease (CTD). Whether KL-6 levels can be affected by potential confounders such as underlying CTD patterns, patient-associated demographics, and comorbidities needs further investigation. Methods: From the database created by Xiangya Hospital, 524 patients with CTD, with or without ILD, were recruited for this retrospective analysis. Recorded data included demographic information, comorbidities, inflammatory biomarkers, autoimmune antibodies, and the KL-6 level at admission. Results of CT and pulmonary function tests were collected one week before or after KL-6 measurements. The percent of predicted diffusing capacity of the lung for carbon monoxide (DLCO%) and computed tomography (CT) scans were used to determine the severity of ILD. Results: Univariate linear regression analysis showed that BMI, lung cancer, TB, lung infections, underlying CTD type, white blood cell (WBC) counts, neutrophil (Neu) counts, and hemoglobin (Hb) were related to KL-6 levels. Multiple linear regression confirmed that Hb and lung infections could affect KL-6 levels independently; the ß were 9.64 and 315.93, and the P values were 0.015 and 0.039, respectively. CTD-ILD patients had higher levels of KL-6 (864.9 vs 463.9, P < 0.001) than those without ILD. KL-6 levels were closely correlated to the severity of ILD assessed both by CT and DLCO%. Additionally, we found that KL-6 level was an independent predictive factor for the presence of ILD and further constructed a decision tree model to rapidly determine the risk of developing ILD among CTD patients. Conclusion: KL-6 is a potential biomarker for gauging the incidence and severity of ILD in CTD patients. To use this typical value of KL-6, however, doctors should take Hb and the presence of lung infections into account.


Assuntos
Doenças do Tecido Conjuntivo , Doenças Pulmonares Intersticiais , Humanos , Estudos Retrospectivos , Doenças do Tecido Conjuntivo/complicações , Doenças do Tecido Conjuntivo/epidemiologia , Doenças Pulmonares Intersticiais/metabolismo , Pulmão/metabolismo , Biomarcadores
12.
Metabolism ; 144: 155587, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156409

RESUMO

BACKGROUND: Systemic sclerosis (SSc) is a chronic and systemic autoimmune disease marked by the skin and visceral fibrosis. Metabolic alterations have been found in SSc patients; however, serum metabolomic profiling has not been thoroughly conducted. Our study aimed to identify alterations in the metabolic profile in both SSc patients before and during treatment, as well as in mouse models of fibrosis. Furthermore, the associations between metabolites and clinical parameters and disease progression were explored. METHODS: High-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS)/MS was performed in the serum of 326 human samples and 33 mouse samples. Human samples were collected from 142 healthy controls (HC), 127 newly diagnosed SSc patients without treatment (SSc baseline), and 57 treated SSc patients (SSc treatment). Mouse serum samples were collected from 11 control mice (NaCl), 11 mice with bleomycin (BLM)-induced fibrosis and 11 mice with hypochlorous acid (HOCl)-induced fibrosis. Both univariate analysis and multivariate analysis (orthogonal partial least-squares discriminate analysis (OPLS-DA)) were conducted to unravel differently expressed metabolites. KEGG pathway enrichment analysis was performed to characterize the dysregulated metabolic pathways in SSc. Associations between metabolites and clinical parameters of SSc patients were identified by Pearson's or Spearman's correlation analysis. Machine learning (ML) algorithms were applied to identify the important metabolites that have the potential to predict the progression of skin fibrosis. RESULTS: The newly diagnosed SSc patients without treatment showed a unique serum metabolic profile compared to HC. Treatment partially corrected the metabolic changes in SSc. Some metabolites (phloretin 2'-O-glucuronide, retinoyl b-glucuronide, all-trans-retinoic acid, and betaine) and metabolic pathways (starch and sucrose metabolism, proline metabolism, androgen and estrogen metabolism, and tryptophan metabolism) were dysregulated in new-onset SSc, but restored upon treatment. Some metabolic changes were associated with treatment response in SSc patients. Metabolic changes observed in SSc patients were mimicked in murine models of SSc, indicating that they may reflect general metabolic changes associated with fibrotic tissue remodeling. Several metabolic changes were associated with SSc clinical parameters. The levels of allysine and all-trans-retinoic acid were negatively correlated, while D-glucuronic acid and hexanoyl carnitine were positively correlated with modified Rodnan skin score (mRSS). In addition, a panel of metabolites including proline betaine, phloretin 2'-O-glucuronide, gamma-linolenic acid and L-cystathionine were associated with the presence of interstitial lung disease (ILD) in SSc. Specific metabolites identified by ML algorithms, such as medicagenic acid 3-O-b-D-glucuronide, 4'-O-methyl-(-)-epicatechin-3'-O-beta-glucuronide, valproic acid glucuronide, have the potential to predict the progression of skin fibrosis. CONCLUSIONS: Serum of SSc patients demonstrates profound metabolic changes. Treatment partially restored the metabolic changes in SSc. Moreover, certain metabolic changes were associated with clinical manifestations such as skin fibrosis and ILD, and could predict the progression of skin fibrosis.


Assuntos
Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Humanos , Camundongos , Animais , Glucuronídeos/efeitos adversos , Doenças Pulmonares Intersticiais/complicações , Doenças Pulmonares Intersticiais/metabolismo , Escleroderma Sistêmico/metabolismo , Fibrose , Biomarcadores , Tretinoína/efeitos adversos
13.
Acta Histochem ; 125(3): 152024, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36958084

RESUMO

Pulmonary fibrosis is a severe condition in interstitial lung diseases (ILD) such as idiopathic pulmonary fibrosis (IPF) and systemic sclerosis-ILD, where the underlying mechanism is not well defined and with no curative treatments available. Serotonin (5-HT) signaling via the 5-HT2B receptor has been recognized as a promising preclinical target for fibrosis. Despite this, the involvement of the 5-HT2B receptor in fibrotic ILD is widely unexplored. This work highlights the spatial pulmonary distribution of the 5-HT2B receptor in patients with IPF and systemic sclerosis-ILD. We show that the 5-HT2B receptor is located in typical pathological structures e.g. honeycomb cysts and weakly in fibroblast foci. Together with immunohistochemistry and immunofluorescence stainings of patient derived distal lung tissues, we identified cell targets for 5-HT2B receptor interference in type II alveolar epithelial cells, endothelial cells and M2 macrophages. Our results emphasize the role of 5-HT2B receptor as a target in lung fibrosis, warranting further consideration in targeting fibrotic ILDs.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Escleroderma Sistêmico , Humanos , Serotonina , Células Endoteliais/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Pulmão/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/patologia , Escleroderma Sistêmico/patologia
14.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36752201

RESUMO

Patients with progressive fibrosing interstitial lung diseases (PF-ILDs) carry a poor prognosis and have limited therapeutic options. A hallmark feature is fibroblast resistance to apoptosis, leading to their persistence, accumulation, and excessive deposition of extracellular matrix. A complex balance of the B cell lymphoma 2 (BCL-2) protein family controlling the intrinsic pathway of apoptosis and fibroblast reliance on antiapoptotic proteins has been hypothesized to contribute to this resistant phenotype. Examination of lung tissue from patients with PF-ILD (idiopathic pulmonary fibrosis and silicosis) and mice with PF-ILD (repetitive bleomycin and silicosis) showed increased expression of antiapoptotic BCL-2 family members in α-smooth muscle actin-positive fibroblasts, suggesting that fibroblasts from fibrotic lungs may exhibit increased susceptibility to inhibition of antiapoptotic BCL-2 family members BCL-2, BCL-XL, and BCL-W with the BH3 mimetic ABT-263. We used 2 murine models of PF-ILD to test the efficacy of ABT-263 in reversing established persistent pulmonary fibrosis. Treatment with ABT-263 induced fibroblast apoptosis, decreased fibroblast numbers, and reduced lung collagen levels, radiographic disease, and histologically evident fibrosis. Our studies provide insight into how fibroblasts gain resistance to apoptosis and become sensitive to the therapeutic inhibition of antiapoptotic proteins. By targeting profibrotic fibroblasts, ABT-263 offers a promising therapeutic option for PF-ILDs.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Silicose , Camundongos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Fibrose Pulmonar Idiopática/patologia , Apoptose/genética , Doenças Pulmonares Intersticiais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fibroblastos/metabolismo , Silicose/metabolismo
15.
J Adv Res ; 51: 109-120, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36347425

RESUMO

INTRODUCTION: Idiopathic pulmonary fibrosis (IPF), a life-threatening interstitial lung disease, is characterized by excessive activation and proliferation of fibroblasts and epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) accompanied by a large amount of extracellular matrix aggregation. There are no therapies to reverse pulmonary fibrosis, and nintedanib and pirfenidone could only slow down the decline of lung function of IPF patients and delay their survival time. Niclosamide (Ncl) is an antihelminthic drug approved by FDA, which has been reported to have pleiotropic pharmacological activities in recent years, but it's almost complete insolubility in water limits its clinical application. OBJECTIVES: To improve the water solubility of Ncl, explore its ability to reverse BLM-induced pulmonary fibrosis and its specific mechanism of action. METHODS: The Niclosamide-loaded nanoparticles (Ncl-NPs) were formed by emulsification solvent evaporation method. A mouse model induced by bleomycin (BLM) was established to evaluate its effects and mechanisms of inhibiting and reversing fibrosis in vivo. The cell models treated by transforming growth factor-ß1 (TGF-ß1) were used to examine the mechanism of Ncl-NPs inhibiting fibrosis in vitro. Flow cytometry, IHC, IL-4-induced macrophage model and co-culture system were used to assess the effect of Ncl-NPs on M2 polarization of macrophages. RESULTS: The Ncl-NPs improved the poor water solubility of Ncl. The lower dose of Ncl-NPs (2.5 mg/kg) showed the same effect of reversing established pulmonary fibrosis as free Ncl (5 mg/kg). Mechanistic studies revealed that Ncl-NPs blocked TGF-ß/Smad and signaling transducer and activator of transcription 3 (Stat3) signaling pathways and inhibited the M2 polarization of macrophages. Additionally, H&E staining of the tissues initially showed the safety of Ncl-NPs. CONCLUSION: These results indicate Ncl-NPs may serve as a new idea for the treatment of pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Camundongos , Animais , Niclosamida/efeitos adversos , Niclosamida/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Matriz Extracelular/metabolismo , Células Epiteliais Alveolares
16.
Eur J Pharmacol ; 941: 175466, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36528072

RESUMO

As one of the most frequent extra-articular manifestations of rheumatoid arthritis (RA), interstitial lung disease (ILD) is still challenging due to unrevealed pathophysiological mechanism. To address this question, in the present study, we used the classical collagen-induced arthritis (CIA) mouse model to determine the related-immune mechanism of lung injury and possible pharmacological treatment for RA-ILD. At the peak of arthritis, we found CIA mice developed apparent lung injury, characterized by interstitial thickening, inflammatory cell infiltration, and lymphocyte follicle formation. Additionally, the endothelial injury occurred as the number of endothelial cells (ECs) and their CD31 expression decreased. Along with those, monocytes, predominantly Ly6Chi monocytes with pro-inflammatory phenotype, were also increased. While in the remission period of arthritis, ECs gradually increased with retrieved CD31 expression, leading to decreased infiltrating monocytes, but boosted Ly6Clo population. Ly6Clo monocytes were prone to locate around damaged ECs, promoted ECs proliferation and vascular tube formation, and lessened the expression of adhesion molecules. In addition, we evaluated angiotensin II type 2 receptor (Agtr2), which has been demonstrated to be protective against lung injury, could be beneficial in RA-ILD. We found elevated Agtr2 in CIA lung tissue, and activation of Agtr2, within its specific agonist C21, alleviated the pulmonary inflammation in vivo, reduced ECs injury, and promoted monocytes conversion from Ly6Chi to Ly6Clo monocytes in vitro. Our data reveal a potential pathological mechanism of RA-ILD that involves ECs damage and inflammatory monocytes infiltration and provide a potential drug target, Agtr2, for RA-ILD treatment.


Assuntos
Artrite Experimental , Artrite Reumatoide , Doenças Pulmonares Intersticiais , Lesão Pulmonar , Camundongos , Animais , Monócitos/metabolismo , Artrite Experimental/patologia , Células Endoteliais/metabolismo , Lesão Pulmonar/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia
17.
Respir Med ; 203: 106992, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36252462

RESUMO

BACKGROUND: Acute exacerbation (AE) is a life-threatening clinical event that occurs during the clinical course of idiopathic pulmonary fibrosis (IPF). Several studies have reported that AE also occurs in interstitial lung disease (ILD) other than IPF. However, the incidence, clinical features, risk factors for AE, and major causes of death in antineutrophil cytoplasmic antibody (ANCA)-associated ILD (ANCA-ILD) patients have not been well established. METHODS: We retrospectively reviewed the data of 54 ANCA-ILD patients and 304 IPF patients. We investigated the frequency of AE, post-AE prognoses, risk factors for AE, and major causes of death in ANCA-ILD patients. We also compared the data of ANCA-ILD with that of IPF. RESULTS: Fourteen (25.9%) ANCA-ILD patients and 84 (27.6%) IPF patients developed AE. The median survival times (MSTs) after AE in ANCA-ILD and IPF patients were 35.5 and 60 days, respectively (p = 0.588, log-rank test). In a multivariate analysis, the percentage of predicted forced vital capacity (%FVC) [O.R. 0.750 (95% CI 0.570, 0.986), p < 0.01] and serum C-reactive protein (CRP) [O.R. 2.202 (95% CI 1.037, 4.674), p < 0.01] were independent risk factors for AE. AE was the most frequent cause of death in ANCA-ILD and IPF patients. CONCLUSION: ANCA-ILD patients could develop AE, and the frequency of AE in ANCA-ILD is similar to that in IPF. AE is the most frequent cause of death in ANCA-ILD patients. A low %FVC and a high serum CRP level were independent predictive factors for AE in ANCA-ILD. The prognosis after AE in ANCA-ILD was poor, as it was in IPF.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos , Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Humanos , Proteína C-Reativa , Progressão da Doença , Fibrose Pulmonar Idiopática/imunologia , Fibrose Pulmonar Idiopática/metabolismo , Doenças Pulmonares Intersticiais/imunologia , Doenças Pulmonares Intersticiais/metabolismo , Prognóstico , Estudos Retrospectivos , Fatores de Risco
18.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077067

RESUMO

Although interstitial lung disease (ILD) is a life-threatening pathological condition that causes respiratory failure, the efficiency of current therapies is limited. This study aimed to investigate the effects of human MIKO-1 (hMIKO-1), a hybrid protein that suppresses the abnormal activation of macrophages, on murine macrophage function and its therapeutic effect in a mouse model of bleomycin-induced ILD (BLM-ILD). To this end, the phenotype of thioglycolate-induced murine peritoneal macrophages co-cultured with hMIKO-1 was examined. The mice were assigned to normal, BLM-alone, or BLM + hMIKO-1 groups, and hMIKO-1 (0.1 mg/mouse) was administered intraperitoneally from day 0 to 14. The mice were sacrificed on day 28, and their lungs were evaluated by histological examination, collagen content, and gene expression levels. hMIKO-1 suppressed the polarization of murine macrophages to M2 predominance in vitro. The fibrosis score of lung pathology and lung collagen content of the BLM + hMIKO-1 group were significantly lower than those in the BLM-alone group. The expression levels of TNF-α, IL-6, IL-1ß, F4/80, and TIMP-1 in the lungs of the BLM + hMIKO-1 group were significantly lower than those in the BLM-alone group. These findings indicate that hMIKO-1 reduces lung fibrosis and may be a future therapeutic candidate for ILD treatment.


Assuntos
Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Colágeno/metabolismo , Modelos Animais de Doenças , Humanos , Pulmão/patologia , Doenças Pulmonares Intersticiais/induzido quimicamente , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo
19.
Front Immunol ; 13: 905727, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35865549

RESUMO

Background: Treatment responsiveness to corticosteroids is excellent for cryptogenic organizing pneumonia (COP) and sarcoidosis, but suboptimal for idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia (UIP). We hypothesise that the differential expression of IL-17 contributes to variable corticosteroid sensitivity in different interstitial lung diseases. Objective: To determine the associations among expression of IL-17, glucocorticoid receptor-ß and responsiveness to corticosteroid treatment in interstitial lung diseases. Methods: Immunohistochemical (IHC) staining was performed on formalin-fixed paraffin-embedded (FFPE) lung tissues obtained by bronchoscopic, CT-guided or surgical biopsies, and quantified by both cell counting (% positive cells) by individuals and by software IHC Profiler plugin of ImageJ (opacity density score). We studied the effect of IL-17 on corticosteroid sensitivity in human fibroblast MRC5 cell line. Results: Compared with specimens from patients with COP (n =13) and sarcoidosis (n =13), those from IPF patients (n = 21) had greater GR-ß and IL-17 expression and neutrophil infiltration. Radiographic progression after oral corticosteroid treatment was positively correlated with the expression in IL-17 and GR-ß/GR-α ratio in all patients (COP, sarcoidosis and IPF) and also within the IPF subgroup only. IL-17 expression level was positively associated with GR-ß and GR-ß/GR-α ratio. In MRC5 cells, exogenous IL-17 increased the production of collagen I and up-regulated GR-ß expression and dexamethasone's suppressive effect on collagen I production was impaired by IL-17, and silencing IL-17 receptor A gene attenuated the effect of IL-17. Conclusion: Up-regulation of GR-ß/GR-α ratio by IL-17 could be associated with the relative corticosteroid-insensitivity of IPF.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Receptores de Glucocorticoides , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Colágeno , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Interleucina-17/genética , Doenças Pulmonares Intersticiais/tratamento farmacológico , Doenças Pulmonares Intersticiais/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Sarcoidose
20.
Respir Res ; 23(1): 12, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057817

RESUMO

BACKGROUND: Fibrotic Interstitial lung diseases (ILD) are a heterogeneous group of chronic lung diseases characterized by diverse degrees of lung inflammation and remodeling. They include idiopathic ILD such as idiopathic pulmonary fibrosis (IPF), and ILD secondary to chronic inflammatory diseases such as connective tissue disease (CTD). Precise differential diagnosis of ILD is critical since anti-inflammatory and immunosuppressive drugs, which are beneficial in inflammatory ILD, are detrimental in IPF. However, differential diagnosis of ILD is still difficult and often requires an invasive lung biopsy. The primary aim of this study is to identify volatile organic compounds (VOCs) patterns in exhaled air to non-invasively discriminate IPF and CTD-ILD. As secondary aim, the association between the IPF and CTD-ILD discriminating VOC patterns and functional impairment is investigated. METHODS: Fifty-three IPF patients, 53 CTD-ILD patients and 51 controls donated exhaled air, which was analyzed for its VOC content using gas chromatograph- time of flight- mass spectrometry. RESULTS: By applying multivariate analysis, a discriminative profile of 34 VOCs was observed to discriminate between IPF patients and healthy controls whereas 11 VOCs were able to distinguish between CTD-ILD patients and healthy controls. The separation between IPF and CTD-ILD could be made using 16 discriminating VOCs, that also displayed a significant correlation with total lung capacity and the 6 min' walk distance. CONCLUSIONS: This study reports for the first time that specific VOC profiles can be found to differentiate IPF and CTD-ILD from both healthy controls and each other. Moreover, an ILD-specific VOC profile was strongly correlated with functional parameters. Future research applying larger cohorts of patients suffering from a larger variety of ILDs should confirm the potential use of breathomics to facilitate fast, non-invasive and proper differential diagnosis of specific ILDs in the future as first step towards personalized medicine for these complex diseases.


Assuntos
Ar/análise , Testes Respiratórios/métodos , Expiração , Doenças Pulmonares Intersticiais/metabolismo , Capacidade Vital/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Diagnóstico Diferencial , Feminino , Humanos , Doenças Pulmonares Intersticiais/diagnóstico , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA