Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 391
Filtrar
1.
Poult Sci ; 103(8): 103898, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936216

RESUMO

Exosome-mediated horizontal and vertical transmission of subgroup J avian leukosis virus (ALV-J) in poultry flocks can lead to growth inhibition and severe immunosuppression. However, there are few reports on the early infection of chicken embryonic stem cells (cESCs) with ALV-J. In this study, we confirmed that early infection with ALV-J can accelerate the differentiation of cESCs and promote the secretion of exosomes. To investigate the modulation strategy of ALV-J in cESCs, circRNA sequencing was performed for further analysis. A total of 305 differentially expressed circRNAs (DECs) were obtained, including 71 upregulated DECs. Circ-CCDC7 was found to be the most upregulated DEC and was assessed by qRT-PCR, with the result consistent with the result of circRNA-seq. Based on qRT-PCR, gga-miR-6568-3p was found to be the target of the top 3 DECs, including circ-CCDC7, and the stem cell marker gene Pax7 was identified as the target gene of gga-miR-6568-3p. This study demonstrated that exosomal circ-CCDC7/gga-miR-6568-3p/Pax7 accelerates the differentiation of cESCs after early infection with ALV-J.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Diferenciação Celular , Galinhas , Exossomos , MicroRNAs , RNA Circular , Animais , Vírus da Leucose Aviária/fisiologia , Exossomos/metabolismo , Exossomos/virologia , Exossomos/genética , RNA Circular/genética , RNA Circular/metabolismo , Leucose Aviária/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Células-Tronco Embrionárias/virologia , Células-Tronco Embrionárias/fisiologia , Embrião de Galinha , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo
2.
Gigascience ; 132024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38837944

RESUMO

Hepatic steatosis is the initial manifestation of abnormal liver functions and often leads to liver diseases such as nonalcoholic fatty liver disease in humans and fatty liver syndrome in animals. In this study, we conducted a comprehensive analysis of a large chicken population consisting of 705 adult hens by combining host genome resequencing; liver transcriptome, proteome, and metabolome analysis; and microbial 16S ribosomal RNA gene sequencing of each gut segment. The results showed the heritability (h2 = 0.25) and duodenal microbiability (m2 = 0.26) of hepatic steatosis were relatively high, indicating a large effect of host genetics and duodenal microbiota on chicken hepatic steatosis. Individuals with hepatic steatosis had low microbiota diversity and a decreased genetic potential to process triglyceride output from hepatocytes, fatty acid ß-oxidation activity, and resistance to fatty acid peroxidation. Furthermore, we revealed a molecular network linking host genomic variants (GGA6: 5.59-5.69 Mb), hepatic gene/protein expression (PEMT, phosphatidyl-ethanolamine N-methyltransferase), metabolite abundances (folate, S-adenosylmethionine, homocysteine, phosphatidyl-ethanolamine, and phosphatidylcholine), and duodenal microbes (genus Lactobacillus) to hepatic steatosis, which could provide new insights into the regulatory mechanism of fatty liver development.


Assuntos
Galinhas , Fígado Gorduroso , Microbioma Gastrointestinal , Animais , Galinhas/microbiologia , Microbioma Gastrointestinal/genética , Fígado Gorduroso/genética , Fígado Gorduroso/microbiologia , Fígado Gorduroso/veterinária , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Fígado/microbiologia , Transcriptoma , Genoma , Metaboloma , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/genética
3.
Microbiol Spectr ; 12(8): e0030924, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38888361

RESUMO

The tumor suppressor p53, primarily functioning as a transcription factor, has exhibited antiviral capabilities against various viruses in chickens, including infectious bursal disease virus (IBDV), avian leukosis virus subgroup J (ALV-J), and avian infectious laryngotracheitis virus (ILTV). Nevertheless, the existence of a universal antiviral mechanism employed by chicken p53 (chp53) against these viruses remains uncertain. This study conducted a comprehensive comparison of molecular networks involved in chp53's antiviral function against IBDV, ALV-J, and ILTV. This was achieved through an integrated analysis of ChIP-seq data, examining chp53's genome-wide chromatin occupancy, and RNA-seq data from chicken cells infected with these viruses. The consistent observation of chp53 target gene enrichment in metabolic pathways, confirmed via ChIP-qPCR, suggests a ubiquitous regulation of host cellular metabolism by chp53 across different viruses. Further genome binding motif conservation analysis and transcriptional co-factor prediction suggest conserved transcriptional regulation mechanism by which chp53 regulates host cellular metabolism during viral infection. These findings offer novel insights into the antiviral role of chp53 and propose that targeting the virus-host metabolic interaction through regulating p53 could serve as a universal strategy for antiviral therapies in chickens.IMPORTANCEThe current study conducted a comprehensive analysis, comparing molecular networks underlying chp53's antiviral role against infectious bursal disease virus (IBDV), avian leukosis virus subgroup J (ALV-J), and avian infectious laryngotracheitis virus (ILTV). This was achieved through a combined assessment of ChIP-seq and RNA-seq data obtained from infected chicken cells. Notably, enrichment of chp53 target genes in metabolic pathways was consistently observed across viral infections, indicating a universal role of chp53 in regulating cellular metabolism during diverse viral infections. These findings offer novel insights into the antiviral capabilities of chicken p53, laying a foundation for the potential development of broad-spectrum antiviral therapies in chickens.


Assuntos
Vírus da Leucose Aviária , Galinhas , Herpesvirus Galináceo 1 , Vírus da Doença Infecciosa da Bursa , RNA-Seq , Proteína Supressora de Tumor p53 , Animais , Galinhas/virologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Vírus da Leucose Aviária/genética , Vírus da Leucose Aviária/fisiologia , Vírus da Doença Infecciosa da Bursa/genética , Vírus da Doença Infecciosa da Bursa/fisiologia , Herpesvirus Galináceo 1/genética , Sequenciamento de Cromatina por Imunoprecipitação , Antivirais/farmacologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Regulação da Expressão Gênica
4.
PLoS Pathog ; 20(5): e1012232, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743760

RESUMO

Infectious bronchitis virus (IBV) is a coronavirus that infects chickens, which exhibits a broad tropism for epithelial cells, infecting the tracheal mucosal epithelium, intestinal mucosal epithelium, and renal tubular epithelial cells. Utilizing single-cell RNA sequencing (scRNA-seq), we systematically examined cells in renal, bursal, and tracheal tissues following IBV infection and identified tissue-specific molecular markers expressed in distinct cell types. We evaluated the expression of viral RNA in diverse cellular populations and subsequently ascertained that distal tubules and collecting ducts within the kidney, bursal mucosal epithelial cells, and follicle-associated epithelial cells exhibit susceptibility to IBV infection through immunofluorescence. Furthermore, our findings revealed an upregulation in the transcription of proinflammatory cytokines IL18 and IL1B in renal macrophages as well as increased expression of apoptosis-related gene STAT in distal tubules and collecting duct cells upon IBV infection leading to renal damage. Cell-to-cell communication unveiled potential interactions between diverse cell types, as well as upregulated signaling pathways and key sender-receiver cell populations after IBV infection. Integrating single-cell data from all tissues, we applied weighted gene co-expression network analysis (WGCNA) to identify gene modules that are specifically expressed in different cell populations. Based on the WGCNA results, we identified seven immune-related gene modules and determined the differential expression pattern of module genes, as well as the hub genes within these modules. Our comprehensive data provides valuable insights into the pathogenesis of IBV as well as avian antiviral immunology.


Assuntos
Comunicação Celular , Galinhas , Infecções por Coronavirus , Redes Reguladoras de Genes , Vírus da Bronquite Infecciosa , Análise de Célula Única , Animais , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/fisiologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Análise de Sequência de RNA , Células Epiteliais/virologia , Células Epiteliais/metabolismo
5.
Poult Sci ; 103(6): 103671, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569240

RESUMO

N6-methyladenosine (m6A) methylation in transcripts has been suggested to influence tumorigenesis in liver tumors caused by the avian leukosis virus subgroup J (ALV-J). However, m6A modifications during ALV-J infection in vitro remain unclear. Herein, we performed m6A and RNA sequencing in ALV-J-infected chicken fibroblasts (DF-1). A total of 51 differentially expressed genes containing differentially methylated peaks were identified, which were markedly enriched in microRNAs (miRNAs) in cancer cells as well as apoptosis, mitophagy and autophagy, RNA degradation, and Hippo and MAPK signaling pathways. Correlation analysis indicated that YTHDC1 (m6A-reader gene) plays a key role in m6A modulation during ALV-J infection. The env gene of ALV-J harbored the strongest peak, and untranslated regions and long terminal repeats also contained peaks of different degrees. To the best of our knowledge, this is the first thorough analysis of m6A patterns in ALV-J-infected DF-1 cells. Combined with miRNA profiles, this study provides a useful basis for future research into the key pathways of ALV-J infection associated with m6A alteration.


Assuntos
Adenosina , Vírus da Leucose Aviária , Leucose Aviária , Galinhas , MicroRNAs , Doenças das Aves Domésticas , Transcriptoma , Animais , Vírus da Leucose Aviária/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Leucose Aviária/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Fibroblastos/virologia
6.
Viruses ; 16(4)2024 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675946

RESUMO

Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host-pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea.


Assuntos
Galinhas , Infecções por Coronavirus , Perfilação da Expressão Gênica , Vírus da Bronquite Infecciosa , Doenças das Aves Domésticas , Traqueia , Animais , Traqueia/virologia , Traqueia/imunologia , Galinhas/virologia , Vírus da Bronquite Infecciosa/fisiologia , Vírus da Bronquite Infecciosa/imunologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/genética , Células Epiteliais/virologia , Células Epiteliais/imunologia , Transcriptoma , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/genética , Replicação Viral , Organismos Livres de Patógenos Específicos
7.
Poult Sci ; 103(6): 103617, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547674

RESUMO

Avian leukosis virus Subgroup J (ALV-J) exhibits high morbidity and pathogenicity, affecting approximately 20% of poultry farms. It induces neoplastic diseases and immunosuppression. Phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1), a proapoptotic mitochondrial protein in the B-cell lymphoma-2 (Bcl-2) family, plays a role in apoptosis in cancer cells. However, the connection between the PMAIP1 gene and ALV-J pathogenicity remains unexplored. This study investigates the potential impact of the PMAIP1 gene on ALV-J replication and its regulatory mechanisms. Initially, we examined PMAIP1 expression using quantitative real-time PCR (qRT-PCR) in vitro and in vivo. Furthermore, we manipulated PMAIP1 expression in chicken fibroblast cells (DF-1) and assessed its effects on ALV-J infection through qRT-PCR, immunofluorescence assay (IFA), and western blotting (WB). Our findings reveal a significant down-regulation of PMAIP1 in the spleen, lung, and kidney, coupled with an up-regulation in the bursa and liver of ALV-J infected chickens compared to uninfected ones. Additionally, DF-1 cells infected with ALV-J displayed a notable up-regulation of PMAIP1 at 6, 12, 24, 48, 74, and 108 h. Over-expression of PMAIP1 enhanced ALV-J replication, interferon expression, and proinflammatory factors. Conversely, interference led to contrasting results. Furthermore, we observed that PMAIP1 promotes virus replication by modulating mitochondrial function. In conclusion, the PMAIP1 gene facilitates virus replication by regulating mitochondrial function, thereby enriching our understanding of mitochondria-related genes and their involvement in ALV-J infection, offering valuable insights for avian leukosis disease resistance strategies.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Galinhas , Mitocôndrias , Doenças das Aves Domésticas , Replicação Viral , Animais , Vírus da Leucose Aviária/fisiologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Mitocôndrias/metabolismo , Leucose Aviária/virologia , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo
8.
BMC Vet Res ; 20(1): 49, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326918

RESUMO

BACKGROUND: Avian pathogenic E. coli (APEC) can cause localized or systemic infections, collectively known as avian colibacillosis, resulting in huge economic losses to poultry industry globally per year. In addition, increasing evidence indicates that long non-coding RNAs (lncRNAs) play a critical role in regulating host inflammation in response to bacterial infection. However, the role of lncRNAs in the host response to APEC infection remains unclear. RESULTS: Here, we found 816 differentially expressed (DE) lncRNAs and 1,798 DE mRNAs in APEC infected chicken macrophages by RNAseq. The identified DE lncRNA-mRNAs were involved in Toll like receptor signaling pathway, VEGF signaling pathway, fatty acid metabolism, phosphatidylinositol signaling system, and other types of O-glycan biosynthesis. Furthermore, we found the novel lncRNA TCONS_00007391 as an important immune regulator in APEC infection was able to regulate the inflammatory response by directly targeting CD86. CONCLUSION: These findings provided a better understanding of host response to APEC infection and also offered the potential drug targets for therapy development against APEC infection.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , RNA Longo não Codificante , Animais , Escherichia coli/genética , Galinhas/genética , Galinhas/microbiologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Macrófagos , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/microbiologia
9.
Avian Pathol ; 53(4): 229-241, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38323582

RESUMO

Marek's disease (MD) is a neoplastic disease that significantly affects the poultry industry. Long non-coding RNAs (lncRNAs) are crucial regulatory factors in various biological processes, including tumourigenesis. However, the involvement of novel lncRNAs in the course of MD virus (MDV) infection is still underexplored. Here, we present the first comprehensive characterization of differentially expressed lncRNAs in chicken spleen at different stages of MDV infection. A series of differentially expressed lncRNAs was identified at each stage of MDV infection through screening. Notably, our investigation revealed a novel lncRNA, lncRNA 803, which exhibited significant differential expression at different stages of MDV infection and was likely to be associated with the p53 pathway. Further analyses demonstrated that the overexpression of lncRNA 803 positively regulated the expression of p53 and TP53BP1 in DF-1 cells, leading to the inhibition of apoptosis. This is the first study to focus on the lncRNA expression profiles in chicken spleens during MDV pathogenesis. Our findings highlight the potential role of the p53-related novel lncRNA 803 in MD pathogenesis and provide valuable insights for decoding the molecular mechanism of MD pathogenesis involving non-coding RNA.RESEARCH HIGHLIGHTS Differentially expressed lncRNAs in spleens of chickens infected with Marek's disease virus at different stages were identified for the first time.The effects of novel lncRNA 803 on p53 pathway and apoptosis of DF-1 cells were reported for the first time.


Assuntos
Apoptose , Galinhas , Doença de Marek , Doenças das Aves Domésticas , RNA Longo não Codificante , Baço , Proteína Supressora de Tumor p53 , Animais , RNA Longo não Codificante/genética , Doença de Marek/virologia , Doença de Marek/genética , Galinhas/virologia , Baço/virologia , Baço/patologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/fisiologia
10.
J Virol ; 97(10): e0071623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737586

RESUMO

IMPORTANCE: Marek's disease virus (MDV) is a ubiquitous chicken pathogen that inflicts a large economic burden on the poultry industry, despite worldwide vaccination programs. MDV is only partially controlled by available vaccines, and the virus retains the ability to replicate and spread between vaccinated birds. Following an initial infection, MDV enters a latent state and integrates into host telomeres and this may be a prerequisite for malignant transformation, which is usually fatal. To understand the mechanism that underlies the dynamic relationship between integrated-latent and reactivated MDV, we have characterized integrated MDV (iMDV) genomes and their associated telomeres. This revealed a single orientation among iMDV genomes and the loss of some terminal sequences that is consistent with integration by homology-directed recombination and excision via a telomere-loop-mediated process.


Assuntos
Galinhas , Genoma Viral , Herpesvirus Galináceo 2 , Recombinação Homóloga , Doença de Marek , Telômero , Integração Viral , Animais , Galinhas/virologia , Genoma Viral/genética , Herpesvirus Galináceo 2/genética , Doença de Marek/genética , Doença de Marek/virologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Telômero/genética , Vacinas Virais/imunologia , Ativação Viral , Latência Viral , Integração Viral/genética
11.
Anim Biotechnol ; 34(8): 3681-3692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37083115

RESUMO

Colibacillosis is a complex disease that caused by avian pathogenic Escherichia coli (APEC), resulting in huge economic loss to the global poultry industry and threatening to human health. Alternative splicing (AS) is a universal post-transcriptional regulatory mechanism, which can simultaneously produce many proteins from a single gene to involve in various diseases and individual development. Herein, we characterized genome-wide AS events in wild type macrophages (WT) and APEC infected macrophages (APEC) by high-throughput RNA sequencing technology. A total of 751 differentially expressed (DE) AS genes were identified in the comparison of APEC vs. WT, including 587 of SE, 114 of MXE, 25 of RI, 17 of A3 and 8 of A5 event. Functional analysis showed that these identified DE AS genes were involved in 'Endocytosis', 'p53 signaling pathway', 'MAPK signaling pathway', 'NOD-like receptor signaling pathway', 'Ubiquitin mediated proteolysis' and 'Focal adhesion' immune related pathways. In summary, we comprehensively investigate AS events during APEC infection. This study has expanded our understanding of the process of APEC infection and provided new insights for further treatment options for APEC infection.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Humanos , Escherichia coli/genética , Galinhas/genética , Processamento Alternativo/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia
12.
Dev Comp Immunol ; 142: 104650, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36736641

RESUMO

Avian pathogenic E. coli (APEC) has been detected to cause many acute and chronic diseases, resulting in huge economic losses to the poultry industry. Previous experiments have identified the effect of receptor interacting serine/threonine kinase 2 (RIP2) gene in APEC infection. Moreover, increasing evidence indicates that long noncoding RNAs (lncRNAs) play important roles in the anti-bacteria responses. However, little is known about the functions of lncRNAs, especially related to RIP2, in response to APEC. Therefore, we tried to reveal lncRNAs potentially involved in the immune and inflammatory response against APEC infection, with a particular focus on those possibly correlated with RIP2. A total of 1856 and 1373 differentially expressed (DE) lncRNAs were identified in knockdown of RIP2 cells following APEC infection (shRIP2+APEC) vs. APEC and shRIP2 vs. wild type cells (WT), respectively, which were mainly enriched in lysosome, phagosome, NOD-like receptor signaling pathway, TGF-beta signaling pathway. Significantly, TCONS_00009695 regulated by RIP2 could directly alter the expression of target BIRC3 to modulate cytokines and to participate in immune and inflammatory response against APEC infection. Our findings aid to a better understanding of host responses to APEC infection and provide new directions for understanding the potential association between lncRNAs and APEC pathogenesis.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , RNA Longo não Codificante , Animais , Escherichia coli/fisiologia , Galinhas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Macrófagos/metabolismo , Doenças das Aves Domésticas/genética
13.
FASEB J ; 37(1): e22700, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515677

RESUMO

Chicken amyloid arthropathy is a debilitating disease with a major impact on animal welfare. Since the disease is triggered by bacterial infection, preventative treatment also contributes to the widespread overuse of antibiotics. Bacterial infection initiates an acute phase response including increased serum amyloid A (SAA) production by the liver. SAA accumulates at sites of infection and in particular in large joints of affected birds. Interestingly, white egg-laying chickens (WL) are resistant to the disease whilst brown egg-laying chickens (BL) are most affected. Disease susceptibility has an immunological basis but the possible contribution of underlying genetic risk factors is not understood. Using a whole genome sequencing approach, we discovered a novel variant in the SAA gene in WL, which is predicted to result in an arginine to serine substitution at position 90 (SAA.R90S). Surprisingly, when overexpressed in chicken hepatocellular carcinoma cells, SAA.R90S was expressed at a higher rate and secreted to a greater degree than the wild-type SAA protein. Moreover, RNASeq analysis showed that the R90S mutant exerted a differential effect on the expression of core transcription factors linked to cell fate determination and cell differentiation. Comparative analysis of gene expression in murine CD4 T-cells stimulated with IL-6/SAA, suggests that SAA.R90S might block an induced cell fate change toward pro-inflammatory T helper 17 cells, which are required for immunological protection against pathogenic bacteria during an acute phase response. Our results provide first mechanistic insights into the genetic resistance of WL to amyloid arthropathy and could be applied to commercial layer breeding programs to improve animal welfare and reduce the negative effects of the overuse of antibiotics.


Assuntos
Amiloidose , Osteoartrite , Doenças das Aves Domésticas , Animais , Camundongos , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Galinhas/metabolismo , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Reação de Fase Aguda/complicações , Amiloidose/genética , Mutação , Antibacterianos/farmacologia
14.
Cells ; 11(20)2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36291177

RESUMO

Synergism between avian leukosis virus subgroup J (ALV-J) and reticuloendotheliosis virus (REV) has been reported frequently in co-infected chicken flocks. Although significant progress has been made in understanding the tumorigenesis mechanisms of ALV and REV, how these two simple oncogenic retroviruses induce synergistic oncogenicity remains unclear. In this study, we found that ALV-J and REV synergistically promoted mutual replication, suppressed cellular senescence, and activated epithelial-mesenchymal transition (EMT) in vitro. Mechanistically, structural proteins from ALV-J and REV synergistically activated the expression of Musashi-1(MSI1), which directly targeted pri-miR-147 through its RNA binding site. This inhibited the maturation of miR-147, which relieved the inhibition of NF-κB/KIAA1199/EGFR signaling, thereby suppressing cellular senescence and activating EMT. We revealed a synergistic oncogenicity mechanism induced by ALV-J and REV in vitro. The elucidation of the synergistic oncogenicity of these two simple retroviruses could help in understanding the mechanism of tumorigenesis in ALV-J and REV co-infection and help identify promising molecular targets and key obstacles for the joint control of ALV-J and REV and the development of clinical technologies.


Assuntos
Vírus da Leucose Aviária , Coinfecção , MicroRNAs , Doenças das Aves Domésticas , Animais , Doenças das Aves Domésticas/genética , NF-kappa B , Vírus da Leucose Aviária/genética , Galinhas/genética , MicroRNAs/genética , Carcinogênese/genética , Receptores ErbB
15.
Biomed Res Int ; 2022: 6209047, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872845

RESUMO

Materials and Methods: Three hundred sixty (n = 360) broiler chickens were equally divided into control (C) and thiram (T) groups. Furthermore, the C and T groups were dividedinto 8-, 9-, 11-, and 13-day-old chickens. Results: Clinically, it was observed that broiler chickens of group T had abnormal posture, gait, and lameness, and histopathological results revealed dead and abnormal chondrocytes of T group on day 6. Real-time qPCR results showed that HDAC1, MTA1, H4, and PCNA genes were significantly expressed (P < 0.05). HDAC1 was upregulated on days 1, 2, 4, and 6 (P < 0.01); MTA1 was upregulated on days 1 and 2 (P < 0.01); H4 was upregulated on days 2 and 4 (P < 0.01), and PCNA was downregulated on days 1, 2, and 4 (P < 0.01). Furthermore, IHC results of HDAC1 protein were significantly (P < 0.01) expressed in proliferative zone of day 1 and hypertrophic zone of day 6. MTA1 protein was significantly (P < 0.01) expressed on days 1, 2, and 6 in all zones, except prehypertrophic zone of day 2. Conclusion: In conclusion, the mRNA expressions of HDAC1, MTA1, H4, and PCNA were differentially expressed in the chondrocytes of thiram-induced TD chickens. HDAC1 and MTA1 protein expression found involved and responsible in the abnormal chondrocytes' proliferation of broiler chicken.


Assuntos
Osteocondrodisplasias , Doenças das Aves Domésticas , Animais , Proliferação de Células/genética , Galinhas/genética , Lâmina de Crescimento/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Tiram/toxicidade , Tíbia/patologia
16.
Vet Res ; 53(1): 49, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739589

RESUMO

Avian leukosis virus subgroup J (ALV-J) can cause neoplastic diseases in poultry and is still widely prevalent in China. Chicken telomerase reverse transcriptase (chTERT) is the core component of telomerase, which is closely related to the occurrence and development of tumors. Our previous studies showed that chTERT is overexpressed in ALV-J tumors, but the mechanism is still not completely clear. Therefore, this study aims to analyze the possible molecular mechanism of chTERT overexpression in ALV-J tumors from the perspective of DNA methylation and promoter mutation. Methylation sequencing of the chTERT amplicon showed that ALV-J replication promoted the methylation level of the chTERT promoter. And the methylation level of the chTERT promoter in ALV-J tumors was significantly higher than that in tumor-adjacent and normal tissues. Compared with the tumor-adjacent and normal tissues, the chTERT promoter in each ALV-J tumors tested had a mutation of -183 bp C > T, and 36.0% (9/25) of the tumors also had mutations of -184 bp T > C, -73 bp::GGCCC and -56 bp A > T in the chTERT promoter, which formed the binding sites for the transcription factors NFAT5, TFAP2A and ZEB1, respectively. The results of RT-qPCR and Western blotting showed that the occurrence of these mutations significantly increased the expression level of chTERT. In conclusion, this study demonstrated that the high expression of chTERT in ALV-J tumors is positively correlated with the level of hypermethylation and mutation in its promoter, which provides a new perspective for further research on the molecular mechanism of chTERT in ALV-J tumorigenesis.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Doenças das Aves Domésticas , Telomerase , Animais , Leucose Aviária/genética , Vírus da Leucose Aviária/genética , Galinhas/genética , Metilação , Mutação , Doenças das Aves Domésticas/genética , Regiões Promotoras Genéticas , Telomerase/genética
17.
Int J Biol Macromol ; 207: 905-916, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35364192

RESUMO

Tumor necrosis factor-α-induced protein eight like 1 (TIPE1) plays important role in autophagy, immunity, and lipid metabolism. The potential role of TIPE1 in fatty liver hemorrhage syndrome (FLHS) is elusory. In the present study, the full-length coding sequence of TIPE1 was cloned, and the polyclonal antibody of TIPE1 was produced by the recombinant TIPE1 protein. The bioinformatic analysis showed that the chicken TIPE1 protein, which was predicted to be a hydrophobic and non-transmembrane protein without signal peptide was highly different from that of mammals. Furthermore, proceeded by using TIPE1 polyclonal antibody, the tissue distribution analysis showed that TIPE1 protein is ubiquitously expressed in various tissues in adult hens and chicks, with its level being higher in the liver and, spleen, moderate in intestinal, brain, and heart. Besides, immunohistochemistry and immunofluorescence observation demonstrated that TIPE1 mainly existed in the cytoplasm in liver, duodenum, and cecum cell. Notably, the TIPE1 expressions were significantly decreased in laying hens suffering from FLHS. Collectively, these results showed that the chicken TIPE1 polyclonal antibody was successfully prepared and further used to analyze the expression profiles of chicken. And the expression of TIPE1 was reduced in FLHS which provided the foundation for further investigation in FLHS.


Assuntos
Fígado Gorduroso , Doenças das Aves Domésticas , Anormalidades Múltiplas , Animais , Anticorpos/metabolismo , Galinhas/genética , Clonagem Molecular , Anormalidades Craniofaciais , Fígado Gorduroso/metabolismo , Feminino , Transtornos do Crescimento , Comunicação Interventricular , Hemorragia/metabolismo , Fígado/metabolismo , Mamíferos , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Síndrome
18.
BMC Genomics ; 23(1): 323, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459093

RESUMO

BACKGROUND: Tibial dyschondroplasia (TD) is a bone disorder in which dead chondrocytes accumulate as a result of apoptosis and non-vascularization in the tibial bone of broiler chickens. The pathogenicity of TD is under extensive research but is yet not fully understood. Several studies have linked it to apoptosis and non-vascularization in the tibial growth plate (GP). We conceived the idea to find the differentially expressed genes (DEGs) in chicken erythrocytes which vary in expression over time using a likelihood-ratio test (LRT). Thiram was used to induce TD in chickens, and then injected Ex-FABP protein at 0, 20, and 50 µg.kg-1 to evaluate its therapeutic effect on 30 screened immunity and angiogenesis-related genes using quantitative PCR (qPCR). The histopathology was also performed in TD chickens to explore the shape, circularity, arrangements of chondrocytes and blood vessels. RESULTS: Clinical lameness was observed in TD chickens, which decreased with the injection of Ex-FABP. Histopathological findings support Ex-FABP as a therapeutic agent for the morphology and vascularization of affected chondrocytes in TD chickens. qPCR results of 10 immunity (TLR2, TLR3, TLR4, TLR5, TLR7, TLR15, IL-7, MyD88, MHCII, and TRAF6) and 20 angiogenesis-related genes (ITGAV, ITGA2, ITGB2, ITGB3, ITGA5, IL1R1, TBXA2R, RPL17, F13A1, CLU, RAC2, RAP1B, GIT1, FYN, IQGAP2, PTCH1, NCOR2, VAV-like, PTPN11, MAML3) regulated when Ex-FABP is injected to TD chickens. CONCLUSION: Immunity and angiogenesis-related genes can be responsible for apoptosis of chondrocytes and vascularization in tibial GP. Injection of Ex-FABP protein to thiram induced TD chickens decrease the chondrocytes damage and improves vascularization.


Assuntos
Osteocondrodisplasias , Doenças das Aves Domésticas , Animais , Biomarcadores , Galinhas/genética , Galinhas/metabolismo , Eritrócitos/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/farmacologia , Lâmina de Crescimento/metabolismo , Neovascularização Patológica/patologia , Osteocondrodisplasias/patologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/patologia , Tiram , Tíbia , Transcriptoma
19.
Genomics ; 114(3): 110371, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35462029

RESUMO

The impact of Endogenous retroviruses (ERVs) on chicken disease is not well understood. Here, we systematically identified 436 relatively complete ChERVs from the chicken genome. Subsequently, ChERV transcriptomes were analyzed in chicken after subgroup J avian leukosis virus (ALV-J), avian influenza virus (AIV), Marek's disease virus (MDV) and avian pathogenic Escherichia coli (APEC) infection. We found that about 50%-68% of ChERVs were transcriptionally active in infected and uninfected-samples, although the abundance of most ChERVs is relatively low. Moreover, compared to uninfected-samples, 49, 18, 66 and 17 ChERVs were significantly differentially expressed in ALV-J, AIV, MDV and APEC infected-samples, respectively. These findings may be of significance for understanding the role and function of ChERVs to response the pathogenic microorganism infection.


Assuntos
Vírus da Leucose Aviária , Leucose Aviária , Retrovirus Endógenos , Doenças das Aves Domésticas , Animais , Galinhas/genética , Leucose Aviária/genética , Transcriptoma , Doenças das Aves Domésticas/genética , Vírus da Leucose Aviária/genética
20.
Genes (Basel) ; 12(10)2021 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-34681024

RESUMO

The avian α-herpesvirus known as Marek's disease virus (MDV) linearly integrates its genomic DNA into host telomeres during infection. The resulting disease, Marek's disease (MD), is characterized by virally-induced lymphomas with high mortality. The temporal dynamics of MDV-positive (MDV+) transformed cells and expansion of MD lymphomas remain targets for further understanding. It also remains to be determined whether specific host chromosomal sites of MDV telomere integration confer an advantage to MDV-transformed cells during tumorigenesis. We applied MDV-specific fluorescence in situ hybridization (MDV FISH) to investigate virus-host cytogenomic interactions within and among a total of 37 gonad lymphomas and neoplastic splenic samples in birds infected with virulent MDV. We also determined single-cell, chromosome-specific MDV integration profiles within and among transformed tissue samples, including multiple samples from the same bird. Most mitotically-dividing cells within neoplastic samples had the cytogenomic phenotype of 'MDV telomere-integrated only', and tissue-specific, temporal changes in phenotype frequencies were detected. Transformed cell populations composing gonad lymphomas exhibited significantly lower diversity, in terms of heterogeneity of MDV integration profiles, at the latest stages of tumorigenesis (>50 days post-infection (dpi)). We further report high interindividual and lower intraindividual variation in MDV integration profiles of lymphoma cells. There was no evidence of integration hotspots into a specific host chromosome(s). Collectively, our data suggests that very few transformed MDV+ T cell populations present earlier in MDV-induced lymphomas (32-50 dpi), survive, and expand to become the dominant clonal population in more advanced MD lymphomas (51-62 dpi) and establish metastatic lymphomas.


Assuntos
Herpesvirus Galináceo 2/genética , Linfoma/genética , Doença de Marek/genética , Doenças das Aves Domésticas/genética , Animais , Carcinogênese/genética , Galinhas/genética , Galinhas/virologia , Herpesvirus Galináceo 2/patogenicidade , Interações Hospedeiro-Patógeno/genética , Hibridização in Situ Fluorescente , Linfoma/etiologia , Linfoma/patologia , Linfoma/virologia , Doença de Marek/complicações , Doença de Marek/patologia , Doença de Marek/virologia , Doenças das Aves Domésticas/virologia , Neoplasias Esplênicas/etiologia , Neoplasias Esplênicas/genética , Neoplasias Esplênicas/patologia , Linfócitos T/virologia , Telômero/genética , Telômero/virologia , Integração Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA