Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
J Virol ; 98(5): e0018124, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639485

RESUMO

Infectious bursal disease (IBD) is an acute and fatal immunosuppressive disease caused by infectious bursal disease virus (IBDV). As an obligate intracellular parasite, IBDV infection is strictly regulated by host factors. Knowledge on the antiviral activity and possible mechanism of host factors might provide the theoretical basis for the prevention and control of IBD. In this study, RNA-sequencing results indicated that many host factors were induced by IBDV infection, among which the expression levels of OASL (2´,5´-oligadenylate synthetase-like protein) was significantly upregulated. OASL overexpression significantly inhibited IBDV replication, whereas OASL knockdown promoted IBDV replication. Interestingly, the antiviral ability of OASL was independent of its canonical enzymatic activity, i.e., OASL targeted viral protein VP2 for degradation, depending on the autophagy receptor p62/SQSTM1 in the autophagy pathway. Additionally, the 316 lysine (K) of VP2 was the key site for autophagy degradation, and its replacement with arginine disrupted VP2 degradation induced by OASL and enhanced IBDV replication. Importantly, our results for the first time indicate a unique and potent defense mechanism of OASL against double-stranded RNA virus by interaction with viral proteins, which leads to their degradation. IMPORTANCE: OASL (2´,5´-oligadenylate synthetase-like protein) exhibits broad-spectrum antiviral effects against single-stranded RNA viruses in mammals, potentially serving as a promising target for novel antiviral strategies. However, its role in inhibiting the replication of double-stranded RNA viruses (dsRNA viruses), such as infectious bursal disease virus (IBDV), in avian species remains unclear. Our findings indicated a unique and potent defense mechanism of OASL against dsRNA viruses. It has been previously shown in mammals that OASL inhibits virus replication through increasing interferon production. The groundbreaking aspect of our study is the finding that OASL has the ability to interact with IBDV viral protein VP2 and target it for degradation and thus exerts its antiviral effect. Our results reveal the interaction between avian natural antiviral immune response and IBDV infection. Our study not only enhances our understanding of bird defenses against viral infections but can also inform strategies for poultry disease management.


Assuntos
2',5'-Oligoadenilato Sintetase , Autofagia , Infecções por Birnaviridae , Galinhas , Vírus da Doença Infecciosa da Bursa , Proteínas Estruturais Virais , Replicação Viral , Vírus da Doença Infecciosa da Bursa/fisiologia , Animais , Infecções por Birnaviridae/virologia , Infecções por Birnaviridae/metabolismo , Proteínas Estruturais Virais/metabolismo , Proteínas Estruturais Virais/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , 2',5'-Oligoadenilato Sintetase/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/metabolismo , Interações Hospedeiro-Patógeno , Células HEK293 , Humanos , Linhagem Celular
2.
Poult Sci ; 103(5): 103622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513550

RESUMO

Ammonia (NH3) is a toxic gas that in intensive poultry houses, damages the poultry health and induces various diseases. This study investigated the effects of NH3 exposure (0, 15, 30, and 45 ppm) on growth performance, serum biochemical indexes, antioxidative indicators, tracheal and lung impairments in Pekin ducks. A total of 288 one-day-old Pekin male ducks were randomly allocated to 4 groups with 6 replicates and slaughtered after the 21-d test period. Our results showed that 45 ppm NH3 significantly reduced the average daily feed intake (ADFI) of Pekin ducks. Ammonia exposure significantly reduced liver, lung, kidney, and heart indexes, and lowered the relative weight of the ileum. With the increasing of in-house NH3, serum NH3 and uric acid (UA) concentrations of ducks were significantly increased, as well as liver malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPX-Px) contents. High NH3 also induced trachea and lung injury, thereby increasing levels of tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) in the lung, and decreasing the mRNA expressions of zonula occludens 1 (ZO-1) and claudin 3 (CLDN3) in the lung. In conclusion, in-house NH3 decrease the growth performance in ducks, induce trachea and lung injuries and meanwhile increase the compensatory antioxidant activity for host protection.


Assuntos
Amônia , Patos , Estresse Oxidativo , Doenças das Aves Domésticas , Animais , Patos/fisiologia , Patos/crescimento & desenvolvimento , Amônia/toxicidade , Amônia/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/metabolismo , Distribuição Aleatória , Abrigo para Animais , Relação Dose-Resposta a Droga
3.
Parasit Vectors ; 17(1): 25, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243250

RESUMO

BACKGROUND: The gastrointestinal epithelium plays an important role in directing recognition by the immune system, and epithelial cells provide the host's front line of defense against microorganisms. However, it is difficult to cultivate avian intestinal epithelial cells in vitro for lengthy periods, and the lack of available cell lines limits the research on avian intestinal diseases and nutritional regulation. Chicken coccidiosis is a serious intestinal disease that causes significant economic losses in the poultry industry. In vitro, some cell line models are beneficial for the development of Eimeria species; however, only partial reproduction can be achieved. Therefore, we sought to develop a new model with both the natural host and epithelial cell phenotypes. METHODS: In this study, we use the SV40 large T antigen (SV40T) gene to generate an immortalized cell line. Single-cell screening technology was used to sort positive cell clusters with epithelial characteristics for passage. Polymerase chain reaction (PCR) identification, immunofluorescence detection, and bulk RNA sequencing analysis and validation were used to check the expression of epithelial cell markers and characterize the avian intestinal epithelial cell line (AIEC). AIECs were infected with sporozoites, and their ability to support the in vitro endogenous development of Eimeria tenella was assessed. RESULTS: This novel AIEC consistently expressed intestinal epithelial markers. Transcriptome assays revealed the upregulation of genes associated with proliferation and downregulation of genes associated with apoptosis. We sought to compare E. tenella infection between an existing fibroblast cell line (DF-1) and several passages of AIEC and found that the invasion efficiency was significantly increased relative to that of chicken fibroblast cell lines. CONCLUSIONS: An AIEC will serve as a better in vitro research model, especially in the study of Eimeria species development and the mechanisms of parasite-host interactions. Using AIEC helps us understand the involvement of intestinal epithelial cells in the digestive tract and the immune defense of the chickens, which will contribute to the epithelial innate defense against microbial infection in the gastrointestinal tract.


Assuntos
Coccidiose , Eimeria tenella , Eimeria , Doenças das Aves Domésticas , Animais , Galinhas , Intestinos , Linhagem Celular , Células Epiteliais/metabolismo , Doenças das Aves Domésticas/metabolismo
4.
Anim Biotechnol ; 34(8): 3681-3692, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37083115

RESUMO

Colibacillosis is a complex disease that caused by avian pathogenic Escherichia coli (APEC), resulting in huge economic loss to the global poultry industry and threatening to human health. Alternative splicing (AS) is a universal post-transcriptional regulatory mechanism, which can simultaneously produce many proteins from a single gene to involve in various diseases and individual development. Herein, we characterized genome-wide AS events in wild type macrophages (WT) and APEC infected macrophages (APEC) by high-throughput RNA sequencing technology. A total of 751 differentially expressed (DE) AS genes were identified in the comparison of APEC vs. WT, including 587 of SE, 114 of MXE, 25 of RI, 17 of A3 and 8 of A5 event. Functional analysis showed that these identified DE AS genes were involved in 'Endocytosis', 'p53 signaling pathway', 'MAPK signaling pathway', 'NOD-like receptor signaling pathway', 'Ubiquitin mediated proteolysis' and 'Focal adhesion' immune related pathways. In summary, we comprehensively investigate AS events during APEC infection. This study has expanded our understanding of the process of APEC infection and provided new insights for further treatment options for APEC infection.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Humanos , Escherichia coli/genética , Galinhas/genética , Processamento Alternativo/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia
5.
FASEB J ; 37(1): e22700, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36515677

RESUMO

Chicken amyloid arthropathy is a debilitating disease with a major impact on animal welfare. Since the disease is triggered by bacterial infection, preventative treatment also contributes to the widespread overuse of antibiotics. Bacterial infection initiates an acute phase response including increased serum amyloid A (SAA) production by the liver. SAA accumulates at sites of infection and in particular in large joints of affected birds. Interestingly, white egg-laying chickens (WL) are resistant to the disease whilst brown egg-laying chickens (BL) are most affected. Disease susceptibility has an immunological basis but the possible contribution of underlying genetic risk factors is not understood. Using a whole genome sequencing approach, we discovered a novel variant in the SAA gene in WL, which is predicted to result in an arginine to serine substitution at position 90 (SAA.R90S). Surprisingly, when overexpressed in chicken hepatocellular carcinoma cells, SAA.R90S was expressed at a higher rate and secreted to a greater degree than the wild-type SAA protein. Moreover, RNASeq analysis showed that the R90S mutant exerted a differential effect on the expression of core transcription factors linked to cell fate determination and cell differentiation. Comparative analysis of gene expression in murine CD4 T-cells stimulated with IL-6/SAA, suggests that SAA.R90S might block an induced cell fate change toward pro-inflammatory T helper 17 cells, which are required for immunological protection against pathogenic bacteria during an acute phase response. Our results provide first mechanistic insights into the genetic resistance of WL to amyloid arthropathy and could be applied to commercial layer breeding programs to improve animal welfare and reduce the negative effects of the overuse of antibiotics.


Assuntos
Amiloidose , Osteoartrite , Doenças das Aves Domésticas , Animais , Camundongos , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Galinhas/metabolismo , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Reação de Fase Aguda/complicações , Amiloidose/genética , Mutação , Antibacterianos/farmacologia
6.
Ecotoxicol Environ Saf ; 245: 114134, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36183428

RESUMO

Thiram is a dithiocarbamate pesticide widely used in agriculture as a fungicide for storing grains to prevent fungal diseases. However, its residues have threatened the safety of human beings and the stability of the ecosystem by causing different disease conditions, e.g., tibial dyschondroplasia (TD), which results in a substantial economic loss for the poultry industry. So, the research on TD has a great concern for the industry and the overall GDP of a country. In current study, we investigated whether different concentrations (300, 500, and 700 mg/kg) of sodium butyrate alleviated TD induced under acute thiram exposure by regulating osteogenic gene expression, promoting chondrocyte differentiation, and altering the gut microbial community. According to the findings, sodium butyrate restored clinical symptoms in broilers, improved growth performance, bone density, angiogenesis, and chondrocyte morphology and arrangement. It could activate the signal transduction of the Wnt/ß-catenin pathway, regulate the expression of GSK-3ß and ß-catenin, and further promote the production of osteogenic transcription factors Runx2 and OPN for restoration of lameness. In addition, the 16S rRNA sequencing revealed a significantly different community composition among the groups. The TD group increased the abundance of the harmful bacteria Proteobacteria, Subdoligranulum, and Erysipelatoclostridium. The sodium butyrate enriched many beneficial bacteria, such as Bacteroidetes, Verrucomicrobia, Faecalibacterium, Barnesiella, Rikenella, and Butyricicoccus, etc., especially at the concentration of 500 mg/kg. The mentioned concentration significantly limited the intestinal disorders under thiram exposure, and restored bone metabolism.


Assuntos
Fungicidas Industriais , Microbioma Gastrointestinal , Osteocondrodisplasias , Praguicidas , Doenças das Aves Domésticas , Animais , Ácido Butírico/toxicidade , Galinhas/genética , Subunidade alfa 1 de Fator de Ligação ao Core , Disbiose , Ecossistema , Fungicidas Industriais/toxicidade , Glicogênio Sintase Quinase 3 beta , Humanos , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Praguicidas/toxicidade , Doenças das Aves Domésticas/induzido quimicamente , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/metabolismo , RNA Ribossômico 16S/genética , Tiram/toxicidade , beta Catenina
7.
Life Sci ; 308: 120926, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36058264

RESUMO

Fatty liver hemorrhagic syndrome (FLHS) seriously threatens the layer industry due to it can cause a sudden decline in egg production and acute death, and dietary supplement with bioactive substance is considered an effective way to prevent the FLHS occurrence. Dehydroepiandrosterone (DHEA) is a popular dietary supplement and it possesses anti-oxidative and anti-inflammatory functions; however, the effect and underlying mechanism about DHEA in protecting against the occurrence and development of FLHS remain elucidated. The current results showed that DHEA relieved HELP-induced decrease of egg productivity and liver injury in laying hens. Meanwhile, DHEA markedly enhanced the antioxidant capacity and then alleviated oxidative stress via activation of nuclear factor (erythroid-derived 2)-like 2 (NRF-2) signal in laying hens fed with HELP diets. In addition, DHEA significantly alleviated HELP-stimulated systemic inflammatory response by suppressing the overproduction of hepatic pro-inflammatory factors in laying hens, and further found this beneficial effect was achieved by blocking the activation of NF-κB pathway. Furthermore, we found that DHEA promoted the AMP-activated protein kinase α (AMPKα) activation and increased the G-protein-coupled estrogen receptor (GPER) expression level in laying hens fed with HELP diets. In summary, our data demonstrated that DHEA attenuates oxidative stress and inflammation through the activation of GPER-AMPK signal axis in laying hens fed with HELP diets. These results might facilitate an understanding of the benefits and mechanism of DHEA on the development of FLHS, and provide sufficient data to support it as a dietary supplement to control the FLHS-related metabolic diseases in chickens.


Assuntos
Fígado Gorduroso , Doenças das Aves Domésticas , Proteínas Quinases Ativadas por AMP/metabolismo , Anormalidades Múltiplas , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Galinhas/metabolismo , Anormalidades Craniofaciais , Desidroepiandrosterona/farmacologia , Dieta , Dieta com Restrição de Proteínas , Estrogênios , Fígado Gorduroso/metabolismo , Feminino , Proteínas de Ligação ao GTP/metabolismo , Transtornos do Crescimento , Comunicação Interventricular , Hemorragia/etiologia , NF-kappa B/metabolismo , Estresse Oxidativo , Doenças das Aves Domésticas/etiologia , Doenças das Aves Domésticas/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais
8.
Int J Biol Macromol ; 207: 905-916, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35364192

RESUMO

Tumor necrosis factor-α-induced protein eight like 1 (TIPE1) plays important role in autophagy, immunity, and lipid metabolism. The potential role of TIPE1 in fatty liver hemorrhage syndrome (FLHS) is elusory. In the present study, the full-length coding sequence of TIPE1 was cloned, and the polyclonal antibody of TIPE1 was produced by the recombinant TIPE1 protein. The bioinformatic analysis showed that the chicken TIPE1 protein, which was predicted to be a hydrophobic and non-transmembrane protein without signal peptide was highly different from that of mammals. Furthermore, proceeded by using TIPE1 polyclonal antibody, the tissue distribution analysis showed that TIPE1 protein is ubiquitously expressed in various tissues in adult hens and chicks, with its level being higher in the liver and, spleen, moderate in intestinal, brain, and heart. Besides, immunohistochemistry and immunofluorescence observation demonstrated that TIPE1 mainly existed in the cytoplasm in liver, duodenum, and cecum cell. Notably, the TIPE1 expressions were significantly decreased in laying hens suffering from FLHS. Collectively, these results showed that the chicken TIPE1 polyclonal antibody was successfully prepared and further used to analyze the expression profiles of chicken. And the expression of TIPE1 was reduced in FLHS which provided the foundation for further investigation in FLHS.


Assuntos
Fígado Gorduroso , Doenças das Aves Domésticas , Anormalidades Múltiplas , Animais , Anticorpos/metabolismo , Galinhas/genética , Clonagem Molecular , Anormalidades Craniofaciais , Fígado Gorduroso/metabolismo , Feminino , Transtornos do Crescimento , Comunicação Interventricular , Hemorragia/metabolismo , Fígado/metabolismo , Mamíferos , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Síndrome
9.
Chemosphere ; 295: 133928, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35149006

RESUMO

Thiram is used in large quantities in agriculture and may contaminate the environment by improper handling or storage in chemical plants and warehouses. A review of the literature has shown that thiram can affect different organs in animals and its toxic mechanisms can be elucidated in more detail at molecular level. We have summarized several impacts of thiram on animals: the effects of the perspectives of oxidative stress, mitochondrial damage, autophagy, apoptosis, and the IHH/PTHrP pathway on regulating abnormal skeletal development in particular tibial dyschondroplasia and kyphosis; angiogenesis inhibition was investigated from the perspective of angiogenesis factor inhibition, PI3K/AKT signaling pathway and CD147; the inhibition effect of thiram on fibroblasts and erythrocytes via the perspective of oxidative stress, mitochondrial damage and inhibition of growth factors in animal skin fibroblasts and erythrocytes; studied fertilized egg size, reduced fertility, neurodegeneration, and immune damage from the perspectives of CYP51 inhibition and dopamine-b-hydroxylase inhibition in the reproductive system, vitamin D deficiency in the nervous system, and inflammatory damage in the immune system; embryonic dysplasia in terms of thyroid hormone repression in animal embryonic development and repression of the SOX9a transcription factor. The elucidation of the mechanisms of toxicity of thiram on various organs of animals at molecular level will enable a more detailed understanding of the mechanisms of toxicity of thiram in animals and will facilitate the exploration of the treatment of thiram poisoning at molecular level.


Assuntos
Osteocondrodisplasias , Doenças das Aves Domésticas , Animais , Galinhas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Doenças das Aves Domésticas/metabolismo , Tiram/toxicidade
10.
mBio ; 13(1): e0328721, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35038897

RESUMO

Accumulating evidence suggests that p53 is involved in viral infection. However, it remains elusive whether avian p53 orchestrates avian leukosis virus (ALV) replication. We showed that p53 recruits the histone deacetylase 1 and 2 (HDAC1/2) complex to the ALV promoter to shut off ALV's promoter activity and viral replication. HDAC1/2 binding to the ALV promoter was abolished in the absence of p53. Moreover, we collected samples in ALV-infected chickens and found that the acetylation status of ALV-bound H3 and H4 histones correlated with ALV viremia. HDAC inhibitors (HDACi) potently increase ALV replication, but HDACi-promoted viral replication is dramatically reduced in cells with p53 depletion. These data demonstrate that p53 is critical for inhibition ALV replication and suggest that future studies of ALV replication need to account for the potential effects of p53 activity. IMPORTANCE Rous sarcoma virus (RSV)/ALV was the first retrovirus to be discovered, which was really the first hint that cancer, or a tumor, could be transmitted by a virus. The specific mechanisms that regulate ALV replication during infection remain poorly understood. Here, we show that avian p53 and HDAC complex inhibit ALV promoter activity and replication, and p53 inhibits ALV replication through binding to the ALV promoter. We demonstrated that the acetylation status of ALV-bound H3 and H4 histones correlates with ALV viremia level using clinical samples collected from commercial poultry. These findings identify both p53-mediated inhibition on ALV replication and a potential role for virus-induced tumorigenesis.


Assuntos
Vírus da Leucose Aviária , Neoplasias , Doenças das Aves Domésticas , Animais , Galinhas , Vírus da Leucose Aviária/fisiologia , Proteína Supressora de Tumor p53 , Antivirais , Viremia , Histonas , Carcinogênese , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia
11.
Biol Trace Elem Res ; 200(7): 3326-3335, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34546491

RESUMO

Manganese (Mn) is a crucial trace element for poultry nutrition, and its deficiency compromises tibial cartilage development, leading to perosis and a higher incidence of slipped tendon. Tibial dyschondroplasia (TD) is a metabolic cartilage disease characterized by disruption of endochondral bone formation, which is closely related to extracellular matrix (ECM) degradation, in which Mn deficiency plays an important role. Previous studies have confirmed the role of matrix metalloproteinases (MMPs) in the pathogenesis of TD, but whether dysregulated ECM degradation and MMP expression profiles in growth plate are involved in Mn deficiency-induced avian TD has not been fully elucidated yet. Thus, this study was conducted to clarify these issues. Firstly, we successfully established TD model induced by Mn deficiency in broiler chicks. Mn deficiency decreased the number of chondrocytes, contents of proteoglycan, and type II collagen in tibial growth plate, demonstrating the tibial growth plate damage with enhanced ECM degradation. Also, Mn deficiency inhibited the Nrf2 signaling pathway and enhanced the protein levels of NLRP3, active caspase-1, and active IL-1ß in tibial growth plate, indicating the oxidative stress and inflammatory response in Mn deficiency-induced TD. Additionally, upregulated expression levels of MMPs (MMP1, 9, and 13) were observed in tibial growth plate of Mn deficiency group. In summary, these findings suggest that Mn deficiency-enhanced ECM degradation is involved in avian TD, which may be correlated with oxidative stress, inflammatory response, and upregulation of MMPs.


Assuntos
Osteocondrodisplasias , Doenças das Aves Domésticas , Animais , Galinhas , Matriz Extracelular/metabolismo , Lâmina de Crescimento/metabolismo , Manganês/metabolismo , Metaloproteinases da Matriz/metabolismo , Osteocondrodisplasias/induzido quimicamente , Osteocondrodisplasias/metabolismo , Osteocondrodisplasias/patologia , Doenças das Aves Domésticas/metabolismo , Tíbia/metabolismo
12.
J Virol ; 96(1): e0136621, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34613804

RESUMO

Highly pathogenic avian influenza viruses (HPAIV) emerge from low-pathogenic avian influenza viruses (LPAIV) through the introduction of basic amino acids at the hemagglutinin (HA) cleavage site. Following viral evolution, the newly formed HPAIV likely represents a minority variant within the index host, predominantly infected with the LPAIV precursor. Using reverse genetics-engineered H5N8 viruses differing solely at the HA cleavage, we tested the hypothesis that the interaction between the minority HPAIV and the majority LPAIV could modulate the risk of HPAIV emergence and that the nature of the interaction could depend on the host species. In chickens, we observed that the H5N8LP increased H5N8HP replication and pathogenesis. In contrast, the H5N8LP antagonized H5N8HP replication and pathogenesis in ducks. Ducks mounted a more potent antiviral innate immune response than chickens against the H5N8LP, which correlated with H5N8HP inhibition. These data provide experimental evidence that HPAIV may be more likely to emerge in chickens than in ducks and underscore the importance of within-host viral variant interactions in viral evolution. IMPORTANCE Highly pathogenic avian influenza viruses represent a threat to poultry production systems and to human health because of their impact on food security and because of their zoonotic potential. It is therefore crucial to better understand how these viruses emerge. Using a within-host competition model between high- and low-pathogenic avian influenza viruses, we provide evidence that highly pathogenic avian influenza viruses could be more likely to emerge in chickens than in ducks. These results have important implications for highly pathogenic avian influenza virus emergence prevention, and they underscore the importance of within-host viral variant interactions in virus evolution.


Assuntos
Galinhas , Suscetibilidade a Doenças , Patos , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H5N8/fisiologia , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Animais , Biomarcadores , Biópsia , Células Cultivadas , Coinfecção , Genótipo , Imuno-Histoquímica , Influenza Aviária/metabolismo , Influenza Aviária/patologia , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia , RNA Viral , Especificidade da Espécie , Carga Viral , Virulência , Replicação Viral
13.
J Anim Physiol Anim Nutr (Berl) ; 106(2): 395-402, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34958492

RESUMO

The effect of in ovo threonine (Thr) supplementation on the ileal expression of glucose, peptide and amino acid transporters was assessed in Salmonella Enteritidis-challenged broiler chicks. At 17.5 days of incubation, fertile eggs were supplemented in the amniotic fluid with sterile saline or 3.5% threonine. Hatchlings were individually weighed, and Salmonella Enteritidis negative status was confirmed. At 2 days of age, half of the birds of each group were inoculated with sterile nutrient broth or Salmonella Enteritidis inoculum. Relative expression of sodium-dependent glucose transporter 1 (SGLT1), glucose transporter 2 (GLUT2), di- and tri-peptide transporter 1 (PepT1) and alanine, serine, cysteine, threonine transporter (ASCT1) was assessed at hatch, 2 and 9 days of age, i.e., before inoculation and 7 days post-inoculation (dpi). At 9 days of age (7dpi), threonine increased SGLT1 and GLUT2 expression, whereas GLUT2 expression decreased in Salmonella-challenged birds. There was a significant interaction between threonine and Salmonella for PepT1 and ASCT1. Threonine increased PepT1 expression only in non-challenged birds. In addition, in ovo supplementation increased expression of ASCT1 regardless of post-hatch inoculation; Salmonella inoculation resulted in decreased expression of ASCT1 only in supplemented birds. The results suggest that while intra-amniotic threonine administration in broiler embryos increases the expression of genes related to the absorption of monosaccharides and amino acids, Salmonella challenge may negatively affect the expression of protein related transporters in the ileum of broilers.


Assuntos
Doenças das Aves Domésticas , Salmonella enteritidis , Animais , Galinhas/metabolismo , Suplementos Nutricionais , Expressão Gênica , Íleo/metabolismo , Nutrientes , Óvulo , Doenças das Aves Domésticas/metabolismo , Treonina/farmacologia
14.
Anim Sci J ; 92(1): e13619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409681

RESUMO

Heat stress in poultry is deleterious to productive performance. Chlorogenic acid (CGA) exerts antibacterial, anti-inflammatory, and antioxidant properties. This study was conducted to evaluate the effects of dietary supplemental CGA on the intestinal health and cecal microbiota composition of young hens challenged with acute heat stress. 100-day-old Hy-line brown pullets were randomly divided into four groups. The control group (C) and heat stress group (HS) received a basal diet. HS + CGA300 group and HS + CGA600 group received a basal diet supplemented with 300- and 600-mg/kg CGA, respectively, for 2 weeks before heat stress exposure. Pullets of HS, HS + CGA300 , and HS + CGA600 group were exposed to 38°C for 4 h while the control group was maintained at 25°C. In this study, dietary CGA supplementation had effect on mitigate the decreased T-AOC and T-SOD activities and the increasing of IL-1ß and TNFα induced by acute heat stress. Dietary supplementation with 600 mg/kg CGA had better effect on increasing the relative abundance of beneficial bacterial genera, such as Rikenellaceae RC9_gut_group, Ruminococcaceae UCG-005, and Christensenellaceae R-7_group, and deceasing bacteria genera involved in inflammation, such as Sutterella species. Therefore, CGA can ameliorate acute heat stress damage through suppressing inflammation and improved antioxidant capacity and cecal microbiota composition.


Assuntos
Antioxidantes/metabolismo , Ácido Clorogênico/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais , Microbioma Gastrointestinal , Transtornos de Estresse por Calor/dietoterapia , Transtornos de Estresse por Calor/veterinária , Enteropatias/dietoterapia , Enteropatias/veterinária , Microbiota , Doenças das Aves Domésticas/dietoterapia , Doenças das Aves Domésticas/microbiologia , Doença Aguda , Animais , Galinhas , Feminino , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/microbiologia , Inflamação , Enteropatias/metabolismo , Enteropatias/microbiologia , Doenças das Aves Domésticas/metabolismo
15.
Viruses ; 13(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207913

RESUMO

The emergence of a novel goose nephritic astrovirus (GNAstV) has caused economic losses to the Chinese goose industry. High viral load is found in the spleen of goslings infected with GNAstV, but pathological injuries to the spleen due to GNAstV are largely unknown. In this study, 50 two-day-old goslings were infected orally with GNAstV, and 50 goslings were treated with PBS as control. Spleens were collected at different times following infection to assess damage. GNAstV infection caused visceral gout and urate deposition in joints, and resulted in 16% mortality. GNAstV was found in the lymphocytes and macrophages within the spleen. Lymphocyte loss, especially around the white pulp, and destruction and decline in the number of reticular fibers was observed in GNAstV-infected goslings. Moreover, in GNAstV-infected goslings, ultrahistopathological examination found that splenic lymphocytes exhibited condensed chromatin and apoptotic bodies, and reticular cells displayed damage to plasma membrane integrity and swollen mitochondria. Furthermore, TUNEL staining confirmed apoptosis of lymphocytes, and the mRNA levels of Fas and FasL were significantly increased in the GNAstV-infected goslings. In addition, GNAstV infection reduced the number and protein expression of CD8. In conclusion, GNAstV infection causes lymphocyte depletion, reticular cell necrosis, reticular fiber destruction, lymphocyte apoptosis, and reduction in CD8 levels, which contribute to spleen injury.


Assuntos
Apoptose , Avastrovirus/fisiologia , Gansos/virologia , Linfócitos/metabolismo , Doenças das Aves Domésticas/etiologia , Doenças das Aves Domésticas/metabolismo , Animais , Avastrovirus/classificação , Avastrovirus/genética , Biópsia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos , Imuno-Histoquímica , Contagem de Linfócitos , Linfócitos/imunologia , Linfócitos/patologia , Doenças das Aves Domésticas/diagnóstico , Baço/imunologia , Baço/metabolismo , Baço/patologia , Baço/virologia , Carga Viral
16.
Viruses ; 13(6)2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207926

RESUMO

Gallid alpha-herpesvirus 1, also known as avian infectious laryngotracheitis virus (ILTV), continues to cause huge economic losses to the poultry industry worldwide. Similar to that of other herpesvirus-encoded proteins, the expression of viral genes encoded by ILTV is regulated by a cascade, and the underlying regulatory mechanism remains largely unclear. The viral immediate-early (IE) gene ICP4 plays a prominent role in the initiation of the transcription of early and late genes during ILTV replication. In this study, we identified AP-1 as the key regulator of the transcription of ILTV genes by bioinformatics analysis of genome-wide transcriptome data. Subsequent functional studies of the key members of the AP-1 family revealed that Fos, but not Jun, regulates ILTV infection through AP-1 since knockdown of Fos, but not Jun, by gene silencing significantly reduced ICP4 transcription and subsequent viral genome replication and virion production. Using several approaches, we identified ICP4 as a bona fide target gene of Fos that regulated Fos and has Fos response elements within its promoter. Neither the physical binding of Jun to the promoter of ICP4 nor the transcriptional activity of Jun was observed. In addition, knockdown of Fos reduced the transcription of MDH1 and ATP5A1, genes encoding two host rate-limiting enzymes essential for the production of the TCA intermediates OAA and ATP. The biological significance of the transcriptional regulation of MDH1 and ATP5A1 by Fos in ILTV infection was supported by the fact that anaplerosis of OAA and ATP rescued both ICP4 transcription and virion production in infected cells under when Fos was silenced. Our study identified the transcription factor Fos as a key regulator of ILTV infection through its transcription factor function on both the virus and host sides, improving the current understanding of both avian herpesvirus-host interactions and the roles of AP-1 in viral infection.


Assuntos
Regulação da Expressão Gênica , Infecções por Herpesviridae/veterinária , Herpesvirus Galináceo 1/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Linhagem Celular , Galinhas , Biologia Computacional , Metabolismo Energético , Perfilação da Expressão Gênica , Genes Precoces , Interações Hospedeiro-Patógeno/genética , Modelos Biológicos , Doenças das Aves Domésticas/diagnóstico , Doenças das Aves Domésticas/metabolismo , Replicação Viral
17.
J Therm Biol ; 98: 102927, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34016350

RESUMO

The purpose of this study was to discuss the effects of N-acetyl-l-cysteine (NAC) on heat stress-induced oxidative stress and inflammation in the hypothalamus of hens in different periods. A total of 120 Hy-Line variety brown laying hens (12 weeks old) were randomly assigned to 4 groups with 6 replicates. The control group (C group) (22 ± 1 °C) received a basal diet, the NAC-treated group (N group) (22 ± 1 °C) received a basal diet with 1000 mg/kg NAC, and 2 heat-stressed groups (36 ± 1 °C for 10 h per day and 22 ± 1 °C for the remaining time) were fed a basal diet (HS group) or a basal diet with 1000 mg/kg NAC (HS + N group) for 21 consecutive days. The influence of NAC on histologic changes, oxidative stress and proinflammatory cytokine production was measured and analysed in hens with heat stress-induced hypothalamic changes. NAC effectively alleviated the hypothalamic morphological changes induced by heat stress. In addition, NAC attenuated the activity of the Nf-κB pathway activated by heat stress and decreased the expression of the proinflammatory cytokines IL-6, IL-18, TNF-α, IKK, and IFN-γ. In addition, NAC treatment regulated the expression of HO-1, GSH, SOD2 and PRDX3 by regulating the activity of Nrf2 at different time points to resist oxidative stress caused by heat exposure. In summary, dietary NAC may be an effective candidate for the treatment and prevention of heat stress-induced hypothalamus injury by preventing Nf-κB activation and controlling the Nrf2 pathway.


Assuntos
Acetilcisteína/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Transtornos de Estresse por Calor/tratamento farmacológico , Hipotálamo/efeitos dos fármacos , Doenças das Aves Domésticas/tratamento farmacológico , Acetilcisteína/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas , Citocinas/genética , Citocinas/metabolismo , Suplementos Nutricionais , Feminino , Transtornos de Estresse por Calor/genética , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/veterinária , Resposta ao Choque Térmico/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/patologia , Quinase I-kappa B/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/genética , Oxirredutases/metabolismo , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia
18.
PLoS One ; 16(4): e0250296, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33909627

RESUMO

Salmonella Enteritidis is an intracellular foodborne pathogen that has developed multiple mechanisms to alter poultry intestinal physiology and infect the gut. Short chain fatty acid butyrate is derived from microbiota metabolic activities, and it maintains gut homeostasis. There is limited understanding on the interaction between S. Enteritidis infection, butyrate, and host intestinal response. To fill this knowledge gap, chicken macrophages (also known as HTC cells) were infected with S. Enteritidis, treated with sodium butyrate, and proteomic analysis was performed. A growth curve assay was conducted to determine sub-inhibitory concentration (SIC, concentration that do not affect bacterial growth compared to control) of sodium butyrate against S. Enteritidis. HTC cells were infected with S. Enteritidis in the presence and absence of SIC of sodium butyrate. The proteins were extracted and analyzed by tandem mass spectrometry. Our results showed that the SIC was 45 mM. Notably, S. Enteritidis-infected HTC cells upregulated macrophage proteins involved in ATP synthesis through oxidative phosphorylation such as ATP synthase subunit alpha (ATP5A1), ATP synthase subunit d, mitochondrial (ATP5PD) and cellular apoptosis such as Cytochrome-c (CYC). Furthermore, sodium butyrate influenced S. Enteritidis-infected HTC cells by reducing the expression of macrophage proteins mediating actin cytoskeletal rearrangements such as WD repeat-containing protein-1 (WDR1), Alpha actinin-1 (ACTN1), Vinculin (VCL) and Protein disulfide isomerase (P4HB) and intracellular S. Enteritidis growth and replication such as V-type proton ATPase catalytic subunit A (ATPV1A). Interestingly, sodium butyrate increased the expression of infected HTC cell protein involving in bacterial killing such as Vimentin (VIM). In conclusion, sodium butyrate modulates the expression of HTC cell proteins essential for S. Enteritidis invasion.


Assuntos
Proteínas Aviárias/genética , Ácido Butírico/farmacologia , Interações Hospedeiro-Patógeno/genética , Macrófagos/efeitos dos fármacos , Doenças das Aves Domésticas/genética , Salmonelose Animal/genética , Actinina/genética , Actinina/metabolismo , Animais , Proteínas Aviárias/metabolismo , Galinhas , Citocromos c/genética , Citocromos c/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Anotação de Sequência Molecular , Fosforilação Oxidativa/efeitos dos fármacos , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/microbiologia , Cultura Primária de Células , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Salmonelose Animal/metabolismo , Salmonelose Animal/microbiologia , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella enteritidis/patogenicidade , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vimentina/genética , Vimentina/metabolismo , Vinculina/genética , Vinculina/metabolismo
19.
Sci Rep ; 11(1): 637, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33437016

RESUMO

Marek's disease virus (MDV) encodes a basic-leucine zipper (BZIP) protein, Meq, which is considered the major MDV oncoprotein. It has been reported that the oncogenicity of Meq is associated with its interaction with C-terminal binding protein 1 (CtBP), which is also an interaction partner of Epstein-Barr virus encoded EBNA3A and EBNA3C oncoproteins. Since both EBNA3C and CtBP interact with histone deacetylase 1 (HDAC1) and HDAC2, we examined whether Meq shares this interaction with chicken HDAC1 (chHDAC1) and chHDAC2. Using confocal microscopy analysis, we show that Meq co-localizes with chHDAC1 and chHDAC2 in the nuclei of MDV lymphoblastoid tumor cells. In addition, immunoprecipitation assays demonstrate that Meq interacts with chHDAC1 and chHDAC2 in transfected cells and MDV lymphoblastoid tumor cells. Using deletion mutants, interaction domains were mapped to the N-terminal dimerization domain of chHDAC1 and chHDAC2, and the BZIP domain of Meq. Our results further demonstrate that this interaction mediates the degradation of chHDAC1 and chHDAC2 via the proteasome dependent pathway. In addition, our results show that Meq also induces the reduction of global ubiquitinated proteins through a proteasome dependent pathway. In conclusion, our results provide evidence that Meq interacts with chHDAC1 and chHDAC2, and induces their proteasome dependent degradation.


Assuntos
Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Linfoma/patologia , Proteínas Oncogênicas Virais/metabolismo , Doenças das Aves Domésticas/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Galinhas , Herpesvirus Galináceo 2/isolamento & purificação , Histona Desacetilase 1/genética , Histona Desacetilase 2/genética , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/virologia , Linfoma/metabolismo , Linfoma/virologia , Doença de Marek/complicações , Doença de Marek/metabolismo , Doença de Marek/patologia , Doença de Marek/virologia , Proteínas Oncogênicas Virais/genética , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/virologia , Proteólise
20.
Res Vet Sci ; 135: 134-142, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33485054

RESUMO

Marek's disease virus (MDV), the causative agent of Marek's disease (MD), results in highly infectious phymatosis, lymphatic tissue hyperplasia, and neoplasia. MD is associated with high morbidity and mortality rate. Non-coding RNAs (ncRNAs) entails long non-coding RNA (lncRNA) and microRNA (miRNA). Numerous studies have reported that specific miRNAs and lncRNAs participate in multiple cellular processes, such as proliferation, migration, and tumor cell invasion. Specialized miRNAs and lncRNAs militate a similar role in MD tumor oncogenesis. Despite its growing popularity, only a few reviews are available on ncRNA in MDV tumor oncogenes. Herein, we summarized the role of the miRNAs and lncRNAs in MD tumorigenesis. Altogether, we brought forth the research issues, such as MD prevention, screening, regulatory network formation, novel miRNAs, and lncRNAs analysis in MD that needs to be explored further. This review provides a theoretical platform for the further analysis of miRNAs and lncRNAs functions and the prevention and control of MD and malignancies in domestic animals.


Assuntos
Carcinogênese/genética , Galinhas , Herpesvirus Galináceo 2/fisiologia , Doença de Marek/genética , Doenças das Aves Domésticas/genética , Animais , Carcinogênese/patologia , Doença de Marek/metabolismo , Doença de Marek/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Doenças das Aves Domésticas/metabolismo , Doenças das Aves Domésticas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA