Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Sci Rep ; 14(1): 11053, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744900

RESUMO

This study investigated the influence of polyunsaturated fatty acid composition and vitamin E supplementation on oxidative status and immune responses in weanling piglets pre- and post-E. coli challenge. Suckling piglets (n = 24) were randomly selected from two litters for an oral supplementation (1 mL/day) with fish oil or hemp oil and vitamin E supplementation (60 mg natural vitamin E/mL oil) from day 10 to 28 of age. At day 29 and 30 of age, each piglet was orally inoculated with 6.7 × 108 and 3.96 × 108 CFU of F4 and F18 E. coli, respectively. Blood was sampled from all piglets on day 28 before E. coli challenge and on day 35 of age to investigate immunological and oxidative stress markers in plasma. One week after weaning and exposure to E. coli, a general reduction in the α-tocopherol concentration and activity of GPX1 was obtained. Vitamin E supplementation lowered the extent of lipid peroxidation and improved the antioxidative status and immune responses after E. coli challenge. Hemp oil had the greatest effect on antioxidant enzyme activity. Provision of hemp oil and vitamin E to suckling piglets may reduce the incidence of post-weaning diarrhea.


Assuntos
Cannabis , Suplementos Nutricionais , Infecções por Escherichia coli , Escherichia coli , Óleos de Peixe , Oxirredução , Vitamina E , Animais , Vitamina E/farmacologia , Suínos , Óleos de Peixe/farmacologia , Óleos de Peixe/administração & dosagem , Cannabis/química , Oxirredução/efeitos dos fármacos , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Desmame , Peroxidação de Lipídeos/efeitos dos fármacos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/tratamento farmacológico
2.
BMC Vet Res ; 20(1): 126, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561770

RESUMO

BACKGROUND: Ethno-veterinary practices could be used as a sustainable developmental tool by integrating traditional phytotherapy and husbandry. Phytotherapeutics are available and used worldwide. However, evidence of their antiparasitic efficacy is currently very limited. Parasitic diseases have a considerable effect on pig production, causing economic losses due to high morbidity and mortality. In this respect, especially smallholders and organic producers face severe challenges. Parasites, as disease causing agents, often outcompete other pathogens in such extensive production systems. A total of 720 faecal samples were collected in two farms from three age categories, i.e. weaners, fatteners, and sows. Flotation (Willis and McMaster method), modified Ziehl-Neelsen stained faecal smear, centrifugal sedimentation, modified Blagg technique, and faecal cultures were used to identify parasites and quantify the parasitic load. RESULTS: The examination confirmed the presence of infections with Eimeria spp., Cryptosporidium spp., Balantioides coli (syn. Balantidium coli), Ascaris suum, Oesophagostomum spp., Strongyloides ransomi, and Trichuris suis, distributed based on age category. A dose of 180 mg/kg bw/day of Allium sativum L. and 90 mg/kg bw/day of Artemisia absinthium L. powders, administered for 10 consecutive days, revealed a strong, taxonomy-based antiprotozoal and anthelmintic activity. CONCLUSIONS: The results highlighted the therapeutic potential of both A. sativum and A. absinthium against gastrointestinal parasites in pigs. Their therapeutic effectiveness may be attributed to the content in polyphenols, tocopherols, flavonoids, sterols, sesquiterpene lactones, and sulfoxide. Further research is required to establish the minimal effective dose of both plants against digestive parasites in pigs.


Assuntos
Anti-Infecciosos , Artemisia absinthium , Criptosporidiose , Cryptosporidium , Alho , Enteropatias Parasitárias , Parasitos , Doenças dos Suínos , Animais , Suínos , Feminino , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Fazendas , Enteropatias Parasitárias/tratamento farmacológico , Enteropatias Parasitárias/veterinária , Enteropatias Parasitárias/parasitologia , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/parasitologia , Fezes/parasitologia , Prevalência
3.
Vet Parasitol ; 328: 110179, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579607

RESUMO

In this study the efficacy of an intramuscular formulation of toltrazuril combined with gleptoferron for the control of porcine cystoisosporosis caused by Cystoisospora suis was investigated. The study was carried out on three Belgian farms with a confirmed history of C. suis infections. As none of the farms implemented a standardized toltrazuril treatment regimen for their piglets, the presence of resistant C. suis strains seems improbable. In total 90 litters, representing 1249 piglets, were included in the study and randomly allocated to either the treatment or control group. Piglets in the treatment group received a single intramuscular injection, containing 45 mg toltrazuril and 200 mg gleptoferron, between 1 and 3 days of age. Piglets in the control group received a single injection with only 200 mg gleptoferron. The effect of treatment on oocyst excretion, expressed in oocysts per gram of feces (OPG), average daily weight gain (ADG) and mortality was determined both pre- and post-weaning. A significant decrease in OPG as well as a decrease in the number of litters (pre-weaning) and pens (post-weaning) that tested positive for cystoisosporosis, was observed in the treated animals compared to the controls. Furthermore, treatment resulted in an increased ADG during the period from day 1 to day 21 (p-value: 0.03881). There was no significant difference in mortality observed between the treatment group to the control group (p-value: 0.2167). To our knowledge, this is the first report on the effect of toltrazuril on oocyst excretion after weaning. This finding highlights the potential long-term benefits of the treatment beyond the initial administration.


Assuntos
Coccidiose , Coccidiostáticos , Oocistos , Doenças dos Suínos , Triazinas , Desmame , Animais , Triazinas/administração & dosagem , Triazinas/farmacologia , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/parasitologia , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Coccidiose/parasitologia , Oocistos/efeitos dos fármacos , Coccidiostáticos/administração & dosagem , Coccidiostáticos/farmacologia , Coccidiostáticos/uso terapêutico , Sarcocystidae/efeitos dos fármacos , Animais Recém-Nascidos , Fezes/parasitologia , Injeções Intramusculares/veterinária , Aumento de Peso/efeitos dos fármacos
4.
BMC Vet Res ; 20(1): 111, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38515094

RESUMO

BACKGROUND: At present, porcine reproductive and respiratory syndrome (PRRS) caused by the PRRS virus (PRRSV) is one of the most severe epidemics impacting pig farming globally. Despite the fact that a number of studies have been conducted on potential solutions to this problem, none have proven effective. The focus of problem solving is the use of natural ingredients such as plant extracts. Popular throughout Asia, Caesalpinia sappan (CS) is a therapeutic plant that inhibits PRRSV in vitro. Therefore, this study was performed to determine the efficacy of CS extract dietary supplementation on the productive performance, antibody levels, immunological indicators, and lung pathology of PRRSV-challenged weaned pigs. A total of 32 weaned piglets (28 days old) were randomized into 4 groups and kept separately for 14 days. The treatments were organized in a 2 × 2 factorial design involving two factors: PRRSV challenge and supplementation with 1 mg/kg CS extract. The pigs in the PRRSV-challenged groups were intranasally inoculated with 2 mL of PRRSV (VR2332) containing 104 TCID50/mL, while those in the groups not challenged with PRRSV were inoculated with 2 mL of normal saline. RESULTS: In the PRRSV-challenged group (CS + PRRSV), supplementation with CS extract led to an increase in white blood cells (WBCs) on Day 7 post infection (p < 0.05) and particularly in lymphocytes on Days 7 and 14. The antibody titer was significantly greater in the CS + PRRSV group than in the PRRSV-challenged group not administered CS (PRRSV group) on Day 14 postinfection (S/P = 1.19 vs. 0.78). In addition, CS extract administration decreased the prevalence of pulmonary lesions, which were more prevalent in the PRRSV-challenged pigs that did not receive the CS extract. CONCLUSION: The findings of this study suggest that supplementation with CS extract is beneficial for increasing WBC counts, especially lymphocytes, increasing the levels of antibodies and reducing the prevalence of lung lesions in PRRSV-infected pigs.


Assuntos
Caesalpinia , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Vacinas Virais , Animais , Anticorpos Antivirais , Suplementos Nutricionais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/prevenção & controle
5.
Vet Microbiol ; 291: 110013, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38364468

RESUMO

Potassium diformate (KDF) is a kind of formate, which possesses the advantages of antimicrobial activity, growth promotion and preventing diarrhea in weaned piglets. However, the researches of KDF in animal production mostly focused on apparent indexes such as growth performance and the mechanisms of KDF on intestinal health have not been reported. Thus, porcine small intestinal epithelial cells (IPEC-J2) infected with Enterohemorrhagic Escherichia coli (EHEC) was used to investigate the role of KDF on alleviating intestinal inflammation in this study. The 0.125 mg/mL KDF treated IPEC-J2 cells for 6 h and IPEC-J2 cells challenged with 5 × 107 CFU/mL EHEC for 4 h were confirmed as the optimum concentration and time for the following experiment. The subsequent experiment was divided into four groups: control group (CON), EHEC group, KDF group, KDF+EHEC group. The results showed that KDF increased the cell viability and the gene expression levels of SGLT3 and TGF-ß, while decreased the content of IL-1ß compared with the CON group. The cell viability and the gene expressions of SGLT1, SGLT3, GLUT2, Claudin-1, Occludin and TGF-ß, and the protein expression of ZO-1 in EHEC group were lower than those in CON group, whereas the gene expressions of IL-1ß, TNF, IL-8 and TLR4, and the level of phosphorylation NF-кB protein were increased. Pretreatment with KDF reduced the content of IgM and IL-1ß, the gene expressions of IL-1ß, TNF, IL-8 and TLR4 and the level of phosphorylation NF-кB protein, and increased the gene expression of TGF-ß and the protein expression of Occludin in IPEC-J2 cells infected EHEC. In conclusion, 0.125 mg/mL KDF on IPEC-J2 cells for 6 h had the beneficial effects on ameliorating the intestinal inflammation because of reduced pro-inflammatory cytokines and enhanced anti-inflammatory cytokines through regulating NF-кB signaling pathway under the EHEC challenge.


Assuntos
Escherichia coli Êntero-Hemorrágica , Doenças dos Suínos , Animais , Suínos , Ocludina/genética , Ocludina/metabolismo , Escherichia coli Êntero-Hemorrágica/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Receptor 4 Toll-Like , Linhagem Celular , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/veterinária , Citocinas/genética , Citocinas/metabolismo , Células Epiteliais/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Mucosa Intestinal , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/metabolismo
6.
Virus Res ; 339: 199260, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37923169

RESUMO

Porcine epidemic diarrhea (PED) is a contagious intestinal disease caused by α-coronavirus porcine epidemic diarrhea virus (PEDV). At present, no effective vaccine is available to prevent the disease. Therefore, research for novel antivirals is important. This study aimed to identify the antiviral mechanism of Veratramine (VAM), which actively inhibits PEDV replication with a 50 % inhibitory concentration (IC50) of ∼5 µM. Upon VAM treatment, both PEDV-nucleocapsid (N) protein level and virus titer decreased significantly. The time-of-addition assay results showed that VAM could inhibit PEDV replication by blocking viral entry. Importantly, VAM could inhibit PEDV-induced phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) activity and further suppress micropinocytosis, which is required for PEDV entry. In addition, PI3K inhibitor LY294002 showed anti-PEDV activity by blocking viral entry as well. Taken together, VAM possessed anti-PEDV properties against the entry stage of PEDV by inhibiting the macropinocytosis pathway by suppressing the PI3K/Akt pathway. VAM could be considered as a lead compound for the development of anti-PEDV drugs and may be used during the viral entry stage of PEDV infection.


Assuntos
Infecções por Coronavirus , Fosfatidilinositol 3-Quinases , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Alcaloides de Veratrum , Internalização do Vírus , Animais , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Fosfatidilinositol 3-Quinases/metabolismo , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Suínos , Doenças dos Suínos/tratamento farmacológico , Alcaloides de Veratrum/metabolismo , Alcaloides de Veratrum/farmacologia , Células Vero , Internalização do Vírus/efeitos dos fármacos
7.
Anim Biotechnol ; 34(8): 3693-3699, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37067399

RESUMO

The experiment investigated the effect of caffeic acid on bacteria, short-chain fatty acids (SCFA), and the expression of tight junction protein and inflammation related genes in the colon of weaning piglets. Thirty-six weaning piglets were allocated to three treatment groups, which were fed with a basal diet, a basal diet supplemented with 250 mg/kg or 500 mg/kg caffeic acid for 28 days. The results showed that caffeic acid treatment increased the contents of acetate acid, propionate acid and total SCFA. Moreover, real-time quantitative PCR showed that the number of Bifidobacterium (p < 0.05) and Lactobacillus (p < 0.05) were increased and the number of Escherichia coli (p < 0.05) was decreased by caffeic acid in colonic mucosa. Real-time quantitative PCR also showed that the mRNA levels of zonula occludens-1 (p < 0.01), claudin-1 (p < 0.01), occludin (p < 0.01), mucin 1 (MUC1) (p < 0.01), MUC2 (p < 0.01), interleukin 4 (IL-4) (p < 0.01) and IL-10 (p < 0.05) were increased, while the mRNA expression levels of histone deacetylases (p < 0.01), IL-1 (p < 0.01), IL-6 (p < 0.01) and tumor necrosis factor-α (TNF-α) (p < 0.01) were decreased, by caffeic acid in colonic mucosa. These results suggested that caffeic acid could improve intestinal barrier function in weaned pigs, which might be mediated by regulating colonic bacteria and tight junction protein expression and alleviating inflammation.


Assuntos
Doenças dos Suínos , Proteínas de Junções Íntimas , Suínos , Animais , Proteínas de Junções Íntimas/genética , Proteínas de Junções Íntimas/metabolismo , Função da Barreira Intestinal , Desmame , Suplementos Nutricionais , Escherichia coli/genética , Inflamação/tratamento farmacológico , RNA Mensageiro/metabolismo , Doenças dos Suínos/tratamento farmacológico
8.
BMC Vet Res ; 19(1): 31, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36726139

RESUMO

BACKGROUND: The effect of a water-soluble formulation of tylvalosin (Aivlosin® 625 mg/g granules) on disease caused by porcine reproductive and respiratory syndrome virus (PRRSV) and Mycoplasma hyopneumoniae (Mhyop) was investigated in two animal studies. In a PRRSV challenge model in pregnant sows (n = 18), six sows received water medicated at target dose of 5 mg tylvalosin/kg body weight/day from 3 days prior to challenge until the end of gestation. Six sows were left untreated, with a third group remaining untreated and unchallenged. Sows were challenged with PRRSV-2 at approximately 85 days of gestation. Cytokines, viremia, viral shedding, sow reproductive parameters and piglet performance to weaning were evaluated. In a dual infection study (n = 16), piglets were challenged with Mhyop on days 0, 1 and 2, and with PRRSV-1 on day 14 and euthanized on day 24. From day 10 to 20, eight piglets received water medicated at target dose of 20 mg tylvalosin/kg body weight/day and eight piglets were left untreated. Cytokines, viremia, bacteriology and lung lesions were evaluated. RESULTS: In the PRRSV challenge study in pregnant sows, tylvalosin significantly reduced the levels of serum IL-8 (P < 0.001), IL-12 (P = 0.032), TNFα (P < 0.001) and GM-CSF (P = 0.001). IL-8 (P = 0.100) tended to be lower in uterus of tylvalosin sows. All piglets from tylvalosin sows surviving to weaning were PRRSV negative in faecal swabs at weaning compared to 33.3% PRRSV positive piglets from untreated sows (P = 0.08). In the dual challenge study in piglet, tylvalosin reduced serum IL1ß, IL-4, IL-6, IL-8, IL-10, IL-12, IL-1α, IL-13, IL-17A, IL-18, GM-CSF, TGFß1, TNFα, CCL3L1, MIG, PEPCAM-1 (P < 0.001) and increased serum IFNα, IL-1ra and MIP-1b (P < 0.001). In the lungs, tylvalosin reduced IL-8, IL-10 and IL-12 compared to untreated pigs (P < 0.001) and tended to reduce TNFα (P = 0.082). Lung lavage samples from all tylvalosin treated piglets were negative for Mhyop (0 cfu/mL) compared to the untreated piglets which had mean Mhyop counts of 2.68 × 104 cfu/mL (P = 0.023). CONCLUSION: Overall, tylvalosin reduced both local and systemic proinflammatory cytokines after challenge with respiratory pathogens in sows and in piglets. Tylvalosin was effective in reducing Mhyop recovery from the lungs and may reduce virus shedding in piglets following transplacental PRRSV infection in sows.


Assuntos
Mycoplasma hyopneumoniae , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Gravidez , Suínos , Animais , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Síndrome Respiratória e Reprodutiva Suína/tratamento farmacológico , Fator de Necrose Tumoral alfa , Interleucina-10 , Viremia/veterinária , Interleucina-8 , Citocinas , Interleucina-12 , Peso Corporal , Doenças dos Suínos/tratamento farmacológico
9.
Mol Nutr Food Res ; 66(24): e2200369, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36321532

RESUMO

SCOPE: This study investigates the potential effects of N-acetylcysteine (NAC) on intestinal injury in a porcine epidemic diarrhea virus (PEDV)-infected porcine model. METHODS AND RESULTS: Thirty-two piglets are randomly assigned to one of four groups: the control, PEDV, NAC, and NAC+PEDV. Piglets in the NAC+PEDV group are orally administrated with NAC (100 mg (kg·BW)-1  day-1 ) for 4 consecutive days after 2 days of PEDV infection. The results show that NAC administration decreases the diarrhea rate and improves intestinal morphology. The concentration of diamine oxidase and intestinal fatty-acid binding protein, as well as IL-1ß, IL-8, and TNF-α in the plasma, is decreased by NAC. Intriguingly, NAC administration significantly increases the viral load in the jejunum and ileum and down-regulates the expression of interferon-related genes. Microarray and proteomic analyses show that the differentially expressed genes/proteins between NAC+PEDV and PEDV groups are highly enriched in substance transport. Furthermore, aquaporin 8/10 expression is significantly increased by NAC upon PEDV infection. CONCLUSION: NAC administration alleviates PEDV-induced intestinal injury by inhibiting inflammatory responses and improving substance transport, but promotes viral replication by inhibiting interferon signaling. These results suggest NAC exhibits multifaceted effects upon PEDV infection, and thus caution is required when using NAC as a dietary supplement to prevent viral infection.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Acetilcisteína/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Interferons , Vírus da Diarreia Epidêmica Suína/genética , Proteômica , Suínos , Doenças dos Suínos/tratamento farmacológico
10.
Can J Vet Res ; 86(4): 254-260, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36211213

RESUMO

Glässer's disease in pigs is associated with infection by Glaesserella parasuis and is characterized by pneumonia-like symptoms, fibrinous polyserositis, polyarthritis, and meningitis. Macleaya cordata, a commonly used traditional Chinese medication, has been shown to have anti-inflammatory, antiviral, antioxidative, antimicrobial, insecticidal, and antitumor properties. However, the anti-inflammatory effects of M. cordata on G. parasuis stimulation are still poorly understood. This study explored the anti-inflammatory effects and mechanisms of M. cordata extract on G. parasuis-induced inflammatory responses, via the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways, in porcine alveolar macrophages (PAMs). Porcine alveolar macrophages, when stimulated with G. parasuis, initiated transcription of interleukin (IL)-1α, IL-1ß, IL-6, IL-8, and tumor necrosis factor alpha (TNF-α). Furthermore, p65, IκBα, p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) phosphorylation were upregulated via the NF-κB and MAPK signaling pathways. However, treatment with M. cordata extract inhibited transcription of IL-1α, IL-1ß, IL-6, IL-8, and TNF-α and reduced p65, IκBα, p38, ERK, and JNK phosphorylation, by inhibiting activation of the NF-κB and MAPK signaling pathways in PAMs induced by G. parasuis. These findings reveal that M. cordata extract can reverse the inflammatory effect initiated by G. parasuis in vitro and that it possesses significant immunosuppression activity; thus, it may offer a novel strategy for controlling and treating G. parasuis infection.


La maladie de Glässer chez les porcs est associée avec une infection par Glaesserella parasuis et est caractérisée par des symptômes similaires à une pneumonie, une polysérosite fibrineuse, une polyarthrite et une méningite. Macleaya cordata, un médicament utilisé couramment en médecine traditionnelle chinoise, a été montré comme ayant des propriétés anti-inflammatoire, antivirale, anti-oxydative, antimicrobienne, insecticide et anti-tumeur. Toutefois, les effets anti-inflammatoires de M. cordata sur une stimulation par G. parasuis sont toujours peu compris. La présente étude explore les effets et mécanismes anti-inflammatoires d'un extrait de M. cordata sur les réponses inflammatoires induites par G. parasuis, via le facteur nucléaire-kappa B (NF-κB) et la voie de signalisation de la protéine kinase activée par les mitogènes (MAPK), dans les macrophages alvéolaires porcins (PAMs). Les PAMs, lorsque stimulés par G. parasuis, ont initié la transcription des interleukines (IL)-1α, IL-1ß, IL-6, IL-8, et le facteur de nécrose des tumeurs alpha (TNF-α). Également, la phosphorylation de p65, IκBα, p38, de la kinase régulée par signal extracellulaire (ERK), et de la kinase c-Jun N-terminal (JNK) était régulée à la hausse via les voies de signalisation NF-κB and MAPK. Toutefois, le traitement avec l'extrait de M. cordata a inhibé la transcription d'IL-1α, IL-1ß, IL-6, IL-8, et TNF-α et a diminué la phosphorylation de p65, IκBα, p38, ERK, et JNK, en inhibant les voies de signalisation de NF-κB et MAPK dans les PAMs induits par G. parasuis. Ces trouvailles révèlent qu'un extrait de M. cordata peut renverser l'effet inflammatoire initié par G. parasuis in vitro et qu'il possède une activité immunosuppressive significative; ainsi, ceci pourrait offrir une nouvelle stratégie pour limiter et traiter l'infection par G. parasuis.(Traduit par Docteur Serge Messier).


Assuntos
Haemophilus parasuis , Doenças dos Suínos , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/metabolismo , Antivirais/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/veterinária , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/farmacologia , Lipopolissacarídeos , Macrófagos Alveolares/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Transdução de Sinais , Suínos , Doenças dos Suínos/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo
11.
J Anim Sci ; 100(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271913

RESUMO

Botanicals exhibit promising impacts on intestinal health, immune-regulation, and growth promotion in weaned pigs. However, these benefits may vary depending on major active components in the final feed additive products. Therefore, this study aimed to investigate two types of botanical blends (BB) that were comprised of 0.3% capsicum oleoresin and 12% garlic extracts from different sources on performance, diarrhea, and health of weaned piglets experimentally infected with a pathogenic Escherichia coli F18. Sixty weanling pigs (7.17 ± 0.97 kg body weight (BW)) blocked by weight and gender were assigned to one of five dietary treatments: negative control (NC), positive control (PC), or dietary supplementation with 100 mg/kg of BB1, 50 mg/kg or 100 mg/kg of BB2. This study lasted 28 d with 7 d before and 21 d after the first E. coli inoculation (day 0). All pigs, except negative control, were orally inoculated with 1010 cfu E. coli F18/3-mL dose for 3 consecutive days. Blood samples were collected periodically to analyze systemic immunity. Intestinal tissues and mucosa were collected on days 5 and 21 PI for analyzing histology and gene expression. All data, except for frequency of diarrhea, were analyzed by ANOVA using the PROC MIXED of SAS. The Chi-square test was used for analyzing frequency of diarrhea. Escherichia coli infection reduced (P < 0.05) growth rate and feed intake and increased (P < 0.05) frequency of diarrhea of weaned pigs throughout the experiment. Supplementation of 100 mg/kg BB1 or BB2 alleviated (P < 0.05) frequency of diarrhea of E. coli challenged pigs during the entire experiment. Escherichia coli infection also enhanced (P < 0.05) serum TNF-α and haptoglobin concentrations on day 4 post-inoculation (PI) but reduced (P < 0.05) duodenal villi height and area on day 5 PI, while pigs supplemented with 100 mg/kg BB1 or BB2 had lower (P < 0.05) serum TNF-α than pigs in PC on day 4 PI. Pigs fed with 100 mg/kg BB2 had higher (P < 0.05) jejunal villi height than pigs in PC on day 5 PI. Pigs fed with 100 mg/kg BB2 had reduced (P < 0.05) gene expression of IL1B, PTGS2, and TNFA in ileal mucosa than pigs in PC on day 21 PI. In conclusion, dietary supplementation of botanical blends at 100 mg/kg could enhance disease resistance of weaned pigs infected with E. coli F18 by enhancing intestinal morphology and regulating local and systemic immunity of pigs.


This experiment aimed to investigate two botanical blends consisting of 0.3% capsicum oleoresin and 12% garlic extracts on performance, diarrhea, and health of weaned piglets experimentally infected with a pathogenic Escherichia coli F18. The two botanical blends have the same formulation, except that different garlic oils were used. A total of 60 weaned pigs were randomly allotted to one of five experimental treatments: 1) a complex control diet without E. coli F18 challenge; 2) control diet with E. coli F18 challenge; 3) supplementing 100 mg/kg of botanical blend type 1 to pigs challenged with E. coli F18; 4) and 5) supplementing 50 or 100 mg/kg of botanical blend type 2 to pigs challenged with E. coli F18. The experiment lasted 28 d with 7 d adaptation and 21 d after the first F18 E. coli inoculation. Results of this experiment demonstrate that supplementation of 100 mg/kg of botanical blend enhanced disease resistance and tended to improve growth of weaned pigs, regardless of garlic oil variety. An improved intestinal morphology and reduced systemic inflammation was also observed in pigs supplemented with 100 mg/kg of botanical blends. In conclusion, supplementation of 100 mg/kg of botanical blends could reduce diarrhea of E. coli infected pigs and modify local or systemic immunity of pigs.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , Suínos , Animais , Escherichia coli Enterotoxigênica/fisiologia , Resistência à Doença , Fator de Necrose Tumoral alfa , Doenças dos Suínos/tratamento farmacológico , Desmame , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Diarreia/veterinária , Dieta/veterinária , Suplementos Nutricionais , Ração Animal/análise
12.
Res Vet Sci ; 152: 434-441, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36126510

RESUMO

Porcine epidemic diarrhea virus (PEDV) is deadly for suckling piglets and is a significant threat to most pig farms. Alpiniae oxyphyllae fructus polysaccharide 3 (AOFP3) shows antiviral activity against PEDV. However, the anti-PEDV mechanism of AOFP3 is unknown. Entering the host cell is important for viral infection, and many drugs play antiviral roles by inhibiting this process. To understand the antiviral mechanism of AOFP3 against PEDV, the effect of AOFP3 on PEDV entering IPEC-J2 cells was investigated in the present study. Real-time PCR and immunofluorescence were used to study the effect of AOFP3 on PEDV binding and penetrating IPEC-J2 cells. The effect of PEDV on AOFP3 attachment to IPEC-J2 cells was also investigated. Afterward, the effect of AOFP3 on PEDV spike (S) protein binding to porcine aminopeptidase was tested by using coimmunoprecipitation, and the effect of AOFP3 on the cholesterol level of IPEC-J2 cells was detected. The results showed that AOFP3 competitively inhibited PEDV adsorption on IPEC-J2 cells by blocking PEDV S protein binding to porcine aminopeptidase in IPEC-J2 cells. Furthermore, AOFP3 decreased PEDV penetration into host cells by decreasing the cholesterol level in IPEC-J2 cells.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Linhagem Celular , Células Epiteliais , Antivirais/farmacologia , Antivirais/uso terapêutico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Aminopeptidases/farmacologia , Aminopeptidases/uso terapêutico , Colesterol , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/veterinária , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/prevenção & controle
13.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142202

RESUMO

To explore the protective effect of dietary ß-glucan (BGL) supplementation on intestinal epithelium exposure to enterotoxigenic Escherichia coli (ETEC), thirty-two weaned pigs were assigned to four groups. Pigs were fed with a basal diet or basal diet containing 500 mg/kg BGL, and were orally infused with ETEC or culture medium. Results showed BGL supplementation had no influence on growth performance in weaned pigs. However, BGL supplementation increased the absorption of D-xylose, and significantly decreased the serum concentrations of D-lactate and diamine oxidase (DAO) in the ETEC-challenged pigs (p < 0.05). Interestingly, BGL significantly increased the abundance of the zonula occludens-1-(ZO-1) in the jejunal epithelium upon ETEC challenge (p < 0.05). BGL supplementation also increased the number of S-phase cells and the number of sIgA-positive cells, but significantly decreased the number of total apoptotic cells in the jejunal epithelium upon ETEC challenge (p < 0.05). Moreover, BGL significantly increased the duodenal catalase (CAT) activity and the ileal total superoxide dismutase (T-SOD) activity in the ETEC-challenged pigs (p < 0.05). Importantly, BGL significantly decreased the expression levels of critical inflammation related proteins such as the tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) in the jejunal and ileal mucosa upon ETEC challenge (p < 0.05). BGL also elevated the propanoic acid content and the abundance of Lactobacillus and Bacillus in the colon upon ETEC challenge (p < 0.05). These results suggested BGL could alleviate the ETEC-induced intestinal epithelium injury, which may be associated with suppressed inflammation and improved intestinal immunity and antioxidant capacity, as well as the improved intestinal macrobiotic.


Assuntos
Amina Oxidase (contendo Cobre) , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Doenças dos Suínos , beta-Glucanas , Agrobacterium/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Antioxidantes/farmacologia , Catalase/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/veterinária , Imunoglobulina A Secretora/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lactatos/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Propionatos/farmacologia , Superóxido Dismutase/metabolismo , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/prevenção & controle , Fator de Necrose Tumoral alfa/metabolismo , Xilose/metabolismo , beta-Glucanas/metabolismo
14.
J Anim Sci ; 100(5)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35439319

RESUMO

Neonates with intrauterine growth retardation (IUGR) are prone to suffer from delayed postnatal growth and development during the early stages of life. Ferulic acid (FA) is a phenolic compound that is abundantly present in fruits and vegetables and has various health benefits. Hence, we explored whether FA supplementation could favorably affect the growth performance, antioxidant capacity, and intestinal development of piglets with IUGR. In total, eight normal-birth-weight (NBW) piglets and 16 piglets with IUGR (age, 7 d) were assigned to be fed either basic formula milk (NBW and IUGR groups, respectively) or basic formula milk supplemented with 100 mg/kg FA (IUGR + FA group) for 21 d. At necropsy, the serum and intestinal tissues were collected. FA supplementation increased (P < 0.05) the feed conversion ratio and serum total superoxide dismutase and catalase activities in piglets with IUGR. Moreover, FA supplementation elevated (P < 0.05) the duodenal lactase and maltase activities, jejunal villus height and jejunal maltase activity but reduced (P < 0.05) the duodenal crypt depth and duodenal and jejunal cell apoptosis, cleaved cysteinyl aspartic acid protease-3 (caspase-3) content and cleaved caspase-9 content in piglets with IUGR. In summary, FA supplementation could elevate antioxidant capacity and facilitate intestinal development, thus resulting in increased feed efficiency in piglets with IUGR.


Intrauterine growth retardation (IUGR) impairs postnatal growth and development in neonatal piglets. Ferulic acid (FA) is a ubiquitous phenolic compound that is present in numerous fruits and vegetables and possesses various biological activities. However, little is known about whether FA supplementation has beneficial effects on the growth performance, antioxidant capacity, and intestinal development of piglets with IUGR. Our findings provide important implications for treating piglets with IUGR after birth by stimulating intestinal development with FA supplementation.


Assuntos
Retardo do Crescimento Fetal , Doenças dos Suínos , Animais , Animais Recém-Nascidos , Antioxidantes , Ácidos Cumáricos , Suplementos Nutricionais , Feminino , Retardo do Crescimento Fetal/tratamento farmacológico , Retardo do Crescimento Fetal/veterinária , Suínos , Doenças dos Suínos/tratamento farmacológico , alfa-Glucosidases
15.
Protein Pept Lett ; 29(5): 392-407, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35297340

RESUMO

AIMS: This aimed to study the causative agent, epidemiology, clinical characteristics, and treatment strategy targeting the main protease in porcine epidemic diarrhea. BACKGROUND: Porcine epidemic diarrhea (PED) is a contagious intestinal viral infection causing severe diarrhea, vomiting, and dehydration in pigs. High rates of mortalities and severe morbidities, approaching 100%, are reported in piglets infected with PEDV. In recent years, PED has been observed to influence the swine-farming nations in Europe, Asia, the USA, South Korea, and Canada. The PED virus (PEDV) transmission takes place through a faecal-oral route. OBJECTIVE: The objective is to review the characteristics of PEDV and its role in the disease. In addition, we aim to outline some possible methods to combat PED infection, including targeting the main protease of coronavirus and their future perspectives. METHODS: This study is a review of literature on the PED virus. RESULTS: Apart from symptomatic treatment and supportive care, there is no available specific treatment for PEDV. Appropriate disinfectants and cleaning are pivotal for the control of PEDV. To date, apart from anti-PEDV inhibitors, there are no specific drugs available commercially to treat the disease. Therefore, 3C-like protease (3CLpro) in PEDV that has highly conserved structure and catalytic mechanism serves as an alluring drug as it plays a vital role during viral polyprotein processing at the time of infection. CONCLUSION: A well synchronized and collective effort of scientists, swine veterinarians, pork industry experts, and associated authorities is essential for the accomplishment of proper execution of these required measures.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Diarreia/tratamento farmacológico , Diarreia/epidemiologia , Diarreia/veterinária , Endopeptidases , Peptídeo Hidrolases , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle
16.
Viruses ; 14(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215995

RESUMO

Porcine epidemic diarrhea virus (PEDV) is an alphacoronavirus that causes severe watery diarrhea in piglets with high morbidity and mortality, resulting in serious economic losses to the farming industry. Ergosterol peroxide (EP) is a sterol with diverse biological activities including antiviral activity. In this study, we explored whether EP extracted from the fruiting body of the mushroom Cryptoporus volvatus had the potential to inhibit PEDV infection in Vero cells. The results revealed that EP had a remarkable inhibitory effect on PEDV infection. It could significantly inhibit multiple stages of the PEDV life cycle, including internalization, replication and release, and could directly inactivate PDCoV infectivity. However, it did not affect PEDV attachment. Furthermore, EP alleviated PEDV-induced apoptosis and mitigated the decrease in mitochondrial membrane potential caused by PEDV infection. It suppressed ROS generation and p53 activation caused by PEDV infection. The ROS scavenger N-acetyl-l-cysteine (NAC) and the p53 specific inhibitor Pifithrin-α (PFT-α) suppressed PEDV-induced apoptosis and impeded viral replication, suggesting that ROS and p53 play an important role in PEDV-induced apoptosis and viral replication. Collectively, EP can prevent PEDV internalization, replication and release, possesses the ability to directly inactivate PEDV, and can inhibit PEDV-induced apoptosis by interfering with PEDV-induced ROS production and p53 activation. These findings highlight the therapeutic potential of EP against PEDV infection.


Assuntos
Infecções por Coronavirus/veterinária , Ergosterol/análogos & derivados , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Doenças dos Suínos/virologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Ergosterol/farmacologia , Polyporaceae/química , Suínos , Doenças dos Suínos/tratamento farmacológico , Células Vero , Replicação Viral/efeitos dos fármacos
17.
Microbiol Spectr ; 9(3): e0065421, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908474

RESUMO

The present study aimed to explore the protective effects of exogenous catalase (CAT) from microorganisms against lipopolysaccharide (LPS)-induced intestinal injury and its molecular mechanism in weaned pigs. Fifty-four weaned pigs (21 days of age) were randomly allocated to CON, LPS, and LPS+CAT groups. The pigs in CON and LPS groups were fed a basal diet, whereas the pigs in LPS+CAT group fed the basal diet with 2,000 mg/kg CAT supplementation for 35 days. On day 36, six pigs were selected from each group, and LPS and LPS+CAT groups were administered with LPS (50 µg/kg body weight). Meanwhile, CON group was injected with an equivalent amount of sterile saline. Results showed that LPS administration damaged intestinal mucosa morphology and barrier. However, CAT supplementation alleviated the deleterious effects caused by LPS challenge through enhancing intestinal antioxidant capacity which was benefited to decrease proinflammatory cytokines concentrations and suppress enterocyte apoptosis. Besides, LPS-induced gut microbiota dysbiosis was significantly shifted by CAT through decreasing mainly Streptococcus and Escherichia-Shigella. Our study suggested that dietary supplemented with 2,000 mg/kg catalase was conducive to improve intestinal development and protect against LPS-induced intestinal mucosa injury via enhancing intestinal antioxidant capacity and altering microbiota composition in weaned pigs. IMPORTANCE Exogenous CAT derived from microorganisms has been widely used in food, medicine, and other industries. Recent study also found that exogenous CAT supplementation could improve growth performance and antioxidant capacity of weaned pigs. However, it is still unknown that whether dietary exogenous CAT supplementation can provide a defense against the oxidative stress-induced intestinal damage in weaned pigs. Our current study suggested that dietary supplemented with 2,000 mg/kg CAT was conducive to improve intestinal development and protect against LPS-induced intestinal mucosa injury via enhancing intestinal antioxidant capacity and altering microbiota composition in weaned pigs. Moreover, this study will also assist in developing of CAT produced by microorganisms to attenuate various oxidative stress-induced injury or diseases.


Assuntos
Antioxidantes/metabolismo , Catalase/administração & dosagem , Proteínas Fúngicas/administração & dosagem , Enteropatias/veterinária , Intestinos/metabolismo , Penicillium chrysogenum/enzimologia , Doenças dos Suínos/tratamento farmacológico , Animais , Suplementos Nutricionais/análise , Terapia Enzimática , Microbioma Gastrointestinal/efeitos dos fármacos , Enteropatias/tratamento farmacológico , Enteropatias/metabolismo , Enteropatias/microbiologia , Intestinos/efeitos dos fármacos , Intestinos/lesões , Intestinos/microbiologia , Lipopolissacarídeos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Penicillium chrysogenum/química , Suínos , Doenças dos Suínos/etiologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia
18.
Viruses ; 13(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960791

RESUMO

Pseudorabies virus (PRV) infection of swine can produce Aujeszky's disease, which causes neurological, respiratory, and reproductive symptoms, leading to significant economic losses in the swine industry. Although humans are not the natural hosts of PRV, cases of human encephalitis and endophthalmitis caused by PRV infection have been reported between animals and workers. Currently, a lack of specific treatments and the emergence of new PRV strains against which existing vaccines do not protect makes the search for effective antiviral drugs essential. As an alternative to traditional nucleoside analogues such as acyclovir (ACV), we studied the antiviral effect of valpromide (VPD), a compound derived from valproic acid, against PRV infection in the PK15 swine cell line and the neuroblastoma cell line Neuro-2a. First, the cytotoxicity of ACV and VPD in cells was compared, demonstrating that neither compound was cytotoxic at a specific concentration range after 24 h exposure. Furthermore, the lack of direct virucidal effect of VPD outside of an infected cell environment was demonstrated. Finally, VPD was shown to have an antiviral effect on the viral production of two strains of pseudorabies virus (wild type NIA-3 and recombinant PRV-XGF) at the concentrations ranging from 0.5 to 1.5 mM, suggesting that VPD could be a suitable alternative to nucleoside analogues as an antiherpetic drug against Aujeszky's disease.


Assuntos
Antivirais/farmacologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Pseudorraiva/tratamento farmacológico , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Neuroblastoma , Pseudorraiva/virologia , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/virologia
19.
Rev Peru Med Exp Salud Publica ; 38(2): 296-301, 2021.
Artigo em Espanhol, Inglês | MEDLINE | ID: mdl-34468579

RESUMO

The efficacy of two locally produced oxfendazole (OFZ) formulations against cysticercosis at 22,5% and 10%, versus a commercial formulation (Synanthic 9,06%) was evaluated in twenty-two naturally infected pigs that received a single oral dose of 30 mg/kg. Pigs were sacrificed at eight weeks post-treatment to evaluate the cysts found in their carcasses, and to determine the cysticidal efficacy, which was defined as the proportion of degenerated cysts over total cysts. Only degenerated cysts were found in muscle, heart, and tongue of pigs treated with OFZ in all groups, which shows an efficacy of 100%. Viable and degenerated cysts were found in brains, being the efficacy lower in all groups (65% [commercial OFZ], 47% [local OFZ 22.5%] and 31% [local OFZ 10%], p = 0.355). Locally produced OFZ formulations were similarly effective to the commercial formulation and may provide a practical alternative for the treatment of porcine cysticercosis.


Se evaluó la eficacia de dos formulaciones de oxfendazol (OFZ) contra cisticercosis producidas localmente, al 22,5% y 10% en comparación con una formulación comercial (Synanthic 9,06%) en 22 cerdos naturalmente infectados, que recibieron una dosis oral de 30 mg/kg. Los cerdos fueron sacrificados a las ocho semanas postratamiento para evaluar quistes en en sus carcasas, y se determinó la eficacia cisticida a través de la proporción de quistes degenerados sobre el total. Solo se encontraron quistes degenerados en la musculatura, corazón y lengua de los cerdos tratados con OFZ en todos los grupos, lo cual muestra una eficacia del 100%. En los cerebros se encontraron quistes viables y degenerados, con una eficacia menor en todos los grupos (65% [OFZ comercial], 47% [OFZ local 22,5%] y 31% [OFZ local 10%], p = 0,355. Las formulaciones de OFZ producidas localmente fueron igual de efectivas que la formulación comercial y pueden proporcionar una alternativa para el tratamiento de la cisticercosis porcina.


Assuntos
Anti-Helmínticos , Cisticercose , Doenças dos Suínos , Taenia solium , Animais , Anti-Helmínticos/uso terapêutico , Benzimidazóis/uso terapêutico , Cisticercose/tratamento farmacológico , Cisticercose/veterinária , Suínos , Doenças dos Suínos/tratamento farmacológico
20.
J Virol ; 95(16): e0018721, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037422

RESUMO

Subversion of the host cell cycle to facilitate viral replication is a common feature of coronavirus infections. Coronavirus nucleocapsid (N) protein can modulate the host cell cycle, but the mechanistic details remain largely unknown. Here, we investigated the effects of manipulation of porcine epidemic diarrhea virus (PEDV) N protein on the cell cycle and the influence on viral replication. Results indicated that PEDV N induced Vero E6 cell cycle arrest at S-phase, which promoted viral replication (P < 0.05). S-phase arrest was dependent on the N protein nuclear localization signal S71NWHFYYLGTGPHADLRYRT90 and the interaction between N protein and p53. In the nucleus, the binding of N protein to p53 maintained consistently high-level expression of p53, which activated the p53-DREAM pathway. The key domain of the N protein interacting with p53 was revealed to be S171RGNSQNRGNNQGRGASQNRGGNN194 (NS171-N194), in which G183RG185 are core residues. NS171-N194 and G183RG185 were essential for N-induced S-phase arrest. Moreover, small molecular drugs targeting the NS171-N194 domain of the PEDV N protein were screened through molecular docking. Hyperoside could antagonize N protein-induced S-phase arrest by interfering with interaction between N protein and p53 and inhibit viral replication (P < 0.05). The above-described experiments were also validated in porcine intestinal cells, and data were in line with results in Vero E6 cells. Therefore, these results reveal the PEDV N protein interacts with p53 to activate the p53-DREAM pathway, and subsequently induces S-phase arrest to create a favorable environment for virus replication. These findings provide new insight into the PEDV-host interaction and the design of novel antiviral strategies against PEDV. IMPORTANCE Many viruses subvert the host cell cycle to create a cellular environment that promotes viral growth. PEDV, an emerging and reemerging coronavirus, has led to substantial economic loss in the global swine industry. Our study is the first to demonstrate that PEDV N-induced cell cycle arrest during the S-phase promotes viral replication. We identified a novel mechanism of PEDV N-induced S-phase arrest, where the binding of PEDV N protein to p53 maintains consistently high levels of p53 expression in the nucleus to mediate S-phase arrest by activating the p53-DREAM pathway. Furthermore, a small molecular compound, hyperoside, targeted the PEDV N protein, interfering with the interaction between the N protein and p53 and, importantly, inhibited PEDV replication by antagonizing cell cycle arrest. This study reveals a new mechanism of PEDV-host interaction and also provides a novel antiviral strategy for PEDV. These data provide a foundation for further research into coronavirus-host interactions.


Assuntos
Antivirais/farmacologia , Proteínas do Nucleocapsídeo de Coronavírus/química , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Vírus da Diarreia Epidêmica Suína/efeitos dos fármacos , Quercetina/análogos & derivados , Proteína Supressora de Tumor p53/química , Sequência de Aminoácidos , Animais , Antivirais/química , Sítios de Ligação , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Proteínas do Nucleocapsídeo de Coronavírus/antagonistas & inibidores , Proteínas do Nucleocapsídeo de Coronavírus/genética , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Regulação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Interações Hospedeiro-Patógeno/genética , Simulação de Acoplamento Molecular , Sinais de Localização Nuclear , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Quercetina/química , Quercetina/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase S do Ciclo Celular/genética , Transdução de Sinais , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/genética , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA