Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.063
Filtrar
1.
J Biol Chem ; 300(3): 105696, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301888

RESUMO

Interferon-gamma-inducible large GTPases, hGBPs, possess antipathogenic and antitumor activities in human cells. Like hGBP1, its closest homolog, hGBP3 has two domains; an N-terminal catalytic domain and a C-terminal helical domain, connected by an intermediate region. The biochemical function of this protein and the role of its domains in substrate hydrolysis have not yet been investigated. Here, we report that while hGBP3 can produce both GDP and GMP, GMP is the minor product, 30% (unlike 85% in hGBP1), indicating that hGBP3 is unable to produce enhanced GMP. To understand which domain(s) are responsible for this deficiency, we created hGBP3 truncated variants. Surprisingly, GMP production was similar upon deletion of the helical domain, suggesting that in contrast to hGBP1, the helical domain of hGBP3 cannot stimulate the second phosphate cleavage of GTP. We conducted computational and solution studies to understand the underlying basis. We found that the regulatory residue W79, present in the catalytic domain, forms an H-bond with the backbone carbonyl of K76 (located in the catalytic loop) of the substrate-bound hGBP3. However, after gamma-phosphate cleavage of GTP, the W79-containing region does not undergo a conformational change, failing to redirect the catalytic loop toward the beta-phosphate. This is necessary for efficient GMP formation because hGBP homologs utilize the same catalytic residue for both phosphate cleavages. We suggest that the lack of specific interdomain contacts mediated by the helical domain prevents the catalytic loop movement, resulting in reduced GMP formation. These findings may provide insight into how hGBP3 contributes to immunity.


Assuntos
Domínio Catalítico , Proteínas de Ligação ao GTP , Guanosina Trifosfato , Fosfatos , Humanos , Domínio Catalítico/genética , GTP Fosfo-Hidrolases/metabolismo , Guanosina Trifosfato/metabolismo , Fosfatos/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo
2.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188947, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37394020

RESUMO

Recent cryo-electron microscopic (cryo-EM) investigations have succeeded in the analysis of various structural conformations and functional states of PI3Kα, a dimer consisting of the catalytic subunit p110α and the regulatory subunit p85α of class IA of phosphoinositide 3-kinase. High resolution structures have been obtained of the unliganded and of BYL-719-bound PI3Kα. The latter provides information on excessively flexible domains of p85α that are then further analyzed with nanobodies and CXMS (chemical cross-linking, digestion and mass spectrometry). Analysis of p110α helical and kinase domain mutations reveals mutant-specific features that can be linked to the gain of function in enzymatic and signaling activities.


Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Microscopia Crioeletrônica , Mutação , Domínio Catalítico/genética
3.
Nat Commun ; 14(1): 181, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635288

RESUMO

PIK3CA encoding the phosphoinositide 3-kinase (PI3K) p110α catalytic subunit is frequently mutated in cancer, with mutations occurring widely throughout the primary sequence. The full set of mechanisms underlying how PI3Ks are activated by all oncogenic mutations on membranes are unclear. Using a synergy of biochemical assays and hydrogen deuterium exchange mass spectrometry (HDX-MS), we reveal unique regulatory mechanisms underlying PI3K activation. Engagement of p110α on membranes leads to disengagement of the ABD of p110α from the catalytic core, and the C2 domain from the iSH2 domain of the p85 regulatory subunit. PI3K activation also requires reorientation of the p110α C-terminus, with mutations that alter the inhibited conformation of the C-terminus increasing membrane binding. Mutations at the C-terminus (M1043I/L, H1047R, G1049R, and N1068KLKR) activate p110α through distinct mechanisms, with this having important implications for mutant selective inhibitor development. This work reveals unique mechanisms underlying how PI3K is activated by oncogenic mutations, and explains how double mutants can synergistically increase PI3K activity.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases , Neoplasias , Humanos , Domínio Catalítico/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação , Neoplasias/genética
4.
FEBS J ; 290(7): 1855-1873, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36378023

RESUMO

Our knowledge on the genetic diversity of the human genome is exponentially growing. However, our capacity to establish genotype-phenotype correlations on a large scale requires a combination of detailed experimental and computational work. This is a remarkable task in human proteins which are typically multifunctional and structurally complex. In addition, mutations often prevent the determination of mutant high-resolution structures by X-ray crystallography. We have characterized here the effects of five mutations in the active site of the disease-associated NQO1 protein, which are found either in cancer cell lines or in massive exome sequencing analysis in human population. Using a combination of H/D exchange, rapid-flow enzyme kinetics, binding energetics and conformational stability, we show that mutations in both sets may cause counterintuitive functional effects that are explained well by their effects on local stability regarding different functional features. Importantly, mutations predicted to be highly deleterious (even those affecting the same protein residue) may cause mild to catastrophic effects on protein function. These functional effects are not well explained by current predictive bioinformatic tools and evolutionary models that account for site conservation and physicochemical changes upon mutation. Our study also reinforces the notion that naturally occurring mutations not identified as disease-associated can be highly deleterious. Our approach, combining protein biophysics and structural biology tools, is readily accessible to broadly increase our understanding of genotype-phenotype correlations and to improve predictive computational tools aimed at distinguishing disease-prone against neutral missense variants in the human genome.


Assuntos
Mutação de Sentido Incorreto , Proteínas , Humanos , Domínio Catalítico/genética , Mutação , Proteínas/química , Biologia Molecular , Biologia Computacional , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(46): e2215621119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343266

RESUMO

Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that perform multiple and important cellular functions. The protein investigated here belongs to class IA of the PI3Ks; it is a dimer consisting of a catalytic subunit, p110α, and a regulatory subunit, p85α, and is referred to as PI3Kα. The catalytic subunit p110α is frequently mutated in cancer. The mutations induce a gain of function and constitute a driving force in cancer development. About 80% of these mutations lead to single-amino-acid substitutions in one of three sites of p110α: two in the helical domain of the protein (E542K and E545K) and one at the C-terminus of the kinase domain (H1047R). Here, we report the cryo-electron microscopy structures of these mutants in complex with the p110α-specific inhibitor BYL-719. The H1047R mutant rotates its sidechain to a new position and weakens the kα11 activation loop interaction, thereby reducing the inhibitory effect of p85α on p110α. E542K and E545K completely abolish the tight interaction between the helical domain of p110α and the N-terminal SH2 domain of p85α and lead to the disruption of all p85α binding and a dramatic increase in flexibility of the adaptor-binding domain (ABD) in p110α. Yet, the dimerization of PI3Kα is preserved through the ABD-p85α interaction. The local and global structural features induced by these mutations provide molecular insights into the activation of PI3Kα, deepen our understanding of the oncogenic mechanism of this important signaling molecule, and may facilitate the development of mutant-specific inhibitors.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Humanos , Microscopia Crioeletrônica , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Domínio Catalítico/genética , Neoplasias/genética
6.
Genes (Basel) ; 13(9)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36140745

RESUMO

DNA polymerase ζ (pol ζ) plays a central role in replicating damaged genomic DNA. When DNA synthesis stalls at a lesion, it participates in translesion DNA synthesis (TLS), which helps replication proceed. TLS prevents cell death at the expense of new mutations. The current model indicates that pol ζ-dependent TLS events are mediated by Pol31/Pol32 pol ζ subunits, which are shared with replicative polymerase pol δ. Surprisingly, we found that the mutant rev3-ΔC in yeast, which lacks the C-terminal domain (CTD) of the catalytic subunit of pol ζ and, thus, the platform for interaction with Pol31/Pol32, retains most pol ζ functions. To understand the underlying mechanisms, we studied TLS in normal templates or templates with abasic sites in vitro in primer extension reactions with purified four-subunit pol ζ versus pol ζ with Rev3-ΔC. We also examined the specificity of ultraviolet radiation (UVR)-induced mutagenesis in the rev3-ΔC strains. We found that the absence of Rev3 CTD reduces activity levels, but does not alter the basic biochemical properties of pol ζ, and alters the mutation spectrum only at high doses of UVR, alluding to the existence of mechanisms of recruitment of pol ζ to UVR-damaged sites independent of the interaction of Pol31/Pol32 with the CTD of Rev3.


Assuntos
Saccharomyces cerevisiae , Raios Ultravioleta , Domínio Catalítico/genética , DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Raios Ultravioleta/efeitos adversos
7.
Cell Rep ; 40(2): 111073, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35830806

RESUMO

Mutations in the catalytic subunit of protein kinase A (PKAc) drive the stress hormone disorder adrenal Cushing's syndrome. We define mechanisms of action for the PKAc-L205R and W196R variants. Proximity proteomic techniques demonstrate that both Cushing's mutants are excluded from A kinase-anchoring protein (AKAP)-signaling islands, whereas live-cell photoactivation microscopy reveals that these kinase mutants indiscriminately diffuse throughout the cell. Only cAMP analog drugs that displace native PKAc from AKAPs enhance cortisol release. Rescue experiments that incorporate PKAc mutants into AKAP complexes abolish cortisol overproduction, indicating that kinase anchoring restores normal endocrine function. Analyses of adrenal-specific PKAc-W196R knockin mice and Cushing's syndrome patient tissue reveal defective signaling mechanisms of the disease. Surprisingly each Cushing's mutant engages a different mitogenic-signaling pathway, with upregulation of YAP/TAZ by PKAc-L205R and ERK kinase activation by PKAc-W196R. Thus, aberrant spatiotemporal regulation of each Cushing's variant promotes the transmission of distinct downstream pathogenic signals.


Assuntos
Síndrome de Cushing , Animais , Domínio Catalítico/genética , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hidrocortisona/metabolismo , Camundongos , Proteômica
8.
Cell Mol Life Sci ; 79(3): 185, 2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35279766

RESUMO

Golgi membrane proteins such as glycosyltransferases and other glycan-modifying enzymes are key to glycosylation of proteins and lipids. Secretion of soluble Golgi enzymes that are released from their membrane anchor by endoprotease activity is a wide-spread yet largely unexplored phenomenon. The intramembrane protease SPPL3 can specifically cleave select Golgi enzymes, enabling their secretion and concomitantly altering global cellular glycosylation, yet the entire range of Golgi enzymes cleaved by SPPL3 under physiological conditions remains to be defined. Here, we established isogenic SPPL3-deficient HEK293 and HeLa cell lines and applied N-terminomics to identify substrates cleaved by SPPL3 and released into cell culture supernatants. With high confidence, our study identifies more than 20 substrates of SPPL3, including entirely novel substrates. Notably, our N-terminome analyses provide a comprehensive list of SPPL3 cleavage sites demonstrating that SPPL3-mediated shedding of Golgi enzymes occurs through intramembrane proteolysis. Through the use of chimeric glycosyltransferase constructs we show that transmembrane domains can determine cleavage by SPPL3. Using our cleavage site data, we surveyed public proteome data and found that SPPL3 cleavage products are present in human blood. We also generated HEK293 knock-in cells expressing the active site mutant D271A from the endogenous SPPL3 locus. Immunoblot analyses revealed that secretion of select novel substrates such as the key mucin-type O-glycosylation enzyme GALNT2 is dependent on endogenous SPPL3 protease activity. In sum, our study expands the spectrum of known physiological substrates of SPPL3 corroborating its significant role in Golgi enzyme turnover and secretion as well as in the regulation of global glycosylation pathways.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Complexo de Golgi/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Proteólise , Proteoma/análise , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/genética , Domínio Catalítico/genética , Edição de Genes , Células HEK293 , Células HeLa , Humanos , Mutagênese Sítio-Dirigida , N-Acetilgalactosaminiltransferases/genética , Proteômica/métodos , RNA Guia de Cinetoplastídeos/metabolismo , Especificidade por Substrato , Polipeptídeo N-Acetilgalactosaminiltransferase
9.
Carbohydr Polym ; 282: 119125, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123762

RESUMO

In this study, we applied a luciferase-fragment complementation assay for chitin detection. When luciferase-fragment fused chitin-binding proteins were mixed with chitin, the reconstituted luciferase became active. The recombinant chitin-binding domain (CBD) and a functionally modified catalytic domain (CatD) of human chitotriosidase were employed for this method. We designed the CatD mutant as a chitin-binding protein with diminished chitinolytic activity. The non-wash assay using the CatD mutant had higher sensitivity than CBD for chitin detection and proved to be a structure-specific biosensor for chitin, including crude biomolecules (from fungi, mites, and cockroaches). The CatD mutant recognized a chitin-tetramer as the minimal binding unit and bound chitin at KD 99 nM. Furthermore, a sandwich ELISA using modified CatD showed a low limit of quantification for soluble chitin (13.6 pg/mL). Altogether, our work shows a reliable method for chitin detection using the potential capabilities of CatD.


Assuntos
Quitina/análise , Hexosaminidases/química , Animais , Técnicas Biossensoriais , Candida albicans/química , Carboidratos/química , Domínio Catalítico/genética , Quitina/química , Baratas/química , Dermatophagoides farinae/química , Dermatophagoides pteronyssinus/química , Ensaio de Imunoadsorção Enzimática , Hexosaminidases/genética , Luciferases/química , Mutação
10.
Biochem J ; 479(1): 39-55, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-34870314

RESUMO

Activation-induced cytidine deaminase (AID) is a member of the apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like (APOBEC) family of cytidine deaminases. AID mutates immunoglobulin loci to initiate secondary antibody diversification. The APOBEC3 (A3) sub-branch mutates viral pathogens in the cytosol and acidic endosomal compartments. Accordingly, AID functions optimally near-neutral pH, while most A3s are acid-adapted (optimal pH 5.5-6.5). To gain a structural understanding for this pH disparity, we constructed high-resolution maps of AID catalytic activity vs pH. We found AID's optimal pH was 7.3 but it retained most (>70%) of the activity at pH 8. Probing of ssDNA-binding residues near the catalytic pocket, key for bending ssDNA into the pocket (e.g. R25) yielded mutants with altered pH preference, corroborating previous findings that the equivalent residue in APOBEC3G (H216) underlies its acidic pH preference. AID from bony fish exhibited more basic optimal pH (pH 7.5-8.1) and several R25-equivalent mutants altered pH preference. Comparison of pH optima across the AID/APOBEC3 family revealed an inverse correlation between positive surface charge and overall catalysis. The paralogue with the most robust catalytic activity (APOBEC3A) has the lowest surface charge and most acidic pH preference, while the paralogue with the most lethargic catalytic rate (AID) has the most positive surface charge and highest optimal pH. We suggest one possible mechanism is through surface charge dictating an overall optimal pH that is different from the optimal pH of the catalytic pocket microenvironment. These findings illuminate an additional structural mechanism that regulates AID/APOBEC3 mutagenesis.


Assuntos
Domínio Catalítico/genética , Citidina Desaminase/química , Citidina Desaminase/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas/química , Proteínas/metabolismo , Transdução de Sinais/genética , Biocatálise , Citidina Desaminase/genética , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Mutagênese , Mutação Puntual , Ligação Proteica , Proteínas/genética , Propriedades de Superfície , Transfecção
11.
Nat Commun ; 12(1): 6932, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836944

RESUMO

Unsaturated fatty acids (UFAs) are essential for functional membrane phospholipids in most bacteria. The bifunctional dehydrogenase/isomerase FabX is an essential UFA biosynthesis enzyme in the widespread human pathogen Helicobacter pylori, a bacterium etiologically related to 95% of gastric cancers. Here, we present the crystal structures of FabX alone and in complexes with an octanoyl-acyl carrier protein (ACP) substrate or with holo-ACP. FabX belongs to the nitronate monooxygenase (NMO) flavoprotein family but contains an atypical [4Fe-4S] cluster absent in all other family members characterized to date. FabX binds ACP via its positively charged α7 helix that interacts with the negatively charged α2 and α3 helices of ACP. We demonstrate that the [4Fe-4S] cluster potentiates FMN oxidation during dehydrogenase catalysis, generating superoxide from an oxygen molecule that is locked in an oxyanion hole between the FMN and the active site residue His182. Both the [4Fe-4S] and FMN cofactors are essential for UFA synthesis, and the superoxide is subsequently excreted by H. pylori as a major resource of peroxide which may contribute to its pathogenic function in the corrosion of gastric mucosa.


Assuntos
Proteínas de Bactérias/ultraestrutura , Ácidos Graxos Insaturados/biossíntese , Helicobacter pylori/enzimologia , Proteínas Ferro-Enxofre/ultraestrutura , Oxigenases de Função Mista/ultraestrutura , Proteína de Transporte de Acila/metabolismo , Proteína de Transporte de Acila/ultraestrutura , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico/genética , Cristalografia por Raios X , Helicobacter pylori/genética , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxirredução
12.
Biochemistry ; 60(48): 3728-3737, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34762398

RESUMO

We report the crystal structure of the mammalian non-heme iron enzyme cysteamine dioxygenase (ADO) at 1.9 Šresolution, which shows an Fe and three-histidine (3-His) active site situated at the end of a wide substrate access channel. The open approach to the active site is consistent with the recent discovery that ADO catalyzes not only the conversion of cysteamine to hypotaurine but also the oxidation of N-terminal cysteine (Nt-Cys) peptides to their corresponding sulfinic acids as part of the eukaryotic N-degron pathway. Whole-protein models of ADO in complex with either cysteamine or an Nt-Cys peptide, generated using molecular dynamics and quantum mechanics/molecular mechanics calculations, suggest occlusion of access to the active site by peptide substrate binding. This finding highlights the importance of a small tunnel that leads from the opposite face of the enzyme into the active site, providing a path through which co-substrate O2 could access the Fe center. Intriguingly, the entrance to this tunnel is guarded by two Cys residues that may form a disulfide bond to regulate O2 delivery in response to changes in the intracellular redox potential. Notably, the Cys and tyrosine residues shown to be capable of forming a cross-link in human ADO reside ∼7 Šfrom the iron center. As such, cross-link formation may not be structurally or functionally significant in ADO.


Assuntos
Domínio Catalítico/genética , Dioxigenases/ultraestrutura , Peptídeos/química , Conformação Proteica , Animais , Catálise , Cristalografia por Raios X , Cisteína/química , Dioxigenases/química , Dioxigenases/genética , Humanos , Ferro/química , Camundongos , Simulação de Dinâmica Molecular , Peptídeos/genética , Teoria Quântica , Especificidade por Substrato/genética , Tirosina/química
13.
PLoS One ; 16(11): e0260054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793541

RESUMO

PLCG1 gene is responsible for many T-cell lymphoma subtypes, including peripheral T-cell lymphoma (PTCL), angioimmunoblastic T-cell lymphoma (AITL), cutaneous T-cell lymphoma (CTCL), adult T-cell leukemia/lymphoma along with other diseases. Missense mutations of this gene have already been found in patients of CTCL and AITL. The non-synonymous single nucleotide polymorphisms (nsSNPs) can alter the protein structure as well as its functions. In this study, probable deleterious and disease-related nsSNPs in PLCG1 were identified using SIFT, PROVEAN, PolyPhen-2, PhD-SNP, Pmut, and SNPS&GO tools. Further, their effect on protein stability was checked along with conservation and solvent accessibility analysis by I-mutant 2.0, MUpro, Consurf, and Netsurf 2.0 server. Some SNPs were finalized for structural analysis with PyMol and BIOVIA discovery studio visualizer. Out of the 16 nsSNPs which were found to be deleterious, ten nsSNPs had an effect on protein stability, and six mutations (L411P, R355C, G493D, R1158H, A401V and L455F) were predicted to be highly conserved. Among the six highly conserved mutations, four nsSNPs (R355C, A401V, L411P and L455F) were part of the catalytic domain. L411P, L455F and G493D made significant structural change in the protein structure. Two mutations-Y210C and R1158H had post-translational modification. In the 5' and 3' untranslated region, three SNPs, rs139043247, rs543804707, and rs62621919 showed possible miRNA target sites and DNA binding sites. This in silico analysis has provided a structured dataset of PLCG1 gene for further in vivo researches. With the limitation of computational study, it can still prove to be an asset for the identification and treatment of multiple diseases associated with the target gene.


Assuntos
Biologia Computacional/métodos , Fosfolipase C gama/genética , Sítios de Ligação/genética , Domínio Catalítico/genética , Simulação por Computador , Predisposição Genética para Doença/genética , Humanos , Mutação/genética , Mutação de Sentido Incorreto/genética , Fosfolipase C gama/metabolismo , Fosfolipase C gama/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
14.
Biochemistry ; 60(42): 3162-3172, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34609847

RESUMO

Copalyl diphosphate (CPP) synthase from Penicillium verruculosum (PvCPS) is a bifunctional diterpene synthase with both prenyltransferase and class II cyclase activities. The prenyltransferase α domain catalyzes the condensation of C5 dimethylallyl diphosphate with three successively added C5 isopentenyl diphosphates (IPPs) to form C20 geranylgeranyl diphosphate (GGPP), which then undergoes a class II cyclization reaction at the ßγ domain interface to generate CPP. The prenyltransferase α domain mediates oligomerization to form a 648-kD (αßγ)6 hexamer. In the current study, we explore prenyltransferase structure-function relationships in this oligomeric assembly-line platform with the goal of generating alternative linear isoprenoid products. Specifically, we report steady-state enzyme kinetics, product analysis, and crystal structures of various site-specific variants of the prenyltransferase α domain. Crystal structures of the H786A, F760A, S723Y, S723F, and S723T variants have been determined at resolutions of 2.80, 3.10, 3.15, 2.65, and 2.00 Å, respectively. The substitution of S723 with bulky aromatic amino acids in the S723Y and S723F variants constricts the active site, thereby directing the formation of the shorter C15 isoprenoid, farnesyl diphosphate. While the S723T substitution only subtly alters enzyme kinetics and does not compromise GGPP biosynthesis, the crystal structure of this variant reveals a nonproductive binding mode for IPP that likely accounts for substrate inhibition at high concentrations. Finally, mutagenesis of the catalytic general acid in the class II cyclase domain, D313A, significantly compromises prenyltransferase activity. This result suggests molecular communication between the prenyltransferase and cyclase domains despite their distant connection by a flexible polypeptide linker.


Assuntos
Alquil e Aril Transferases/química , Enzimas Multifuncionais/química , Proteínas de Plantas/química , Alquil e Aril Transferases/genética , Domínio Catalítico/genética , Cinética , Enzimas Multifuncionais/genética , Proteínas de Plantas/genética , Domínios Proteicos/genética , Engenharia de Proteínas , Talaromyces/enzimologia
15.
J Struct Biol ; 213(4): 107794, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506908

RESUMO

The S-adenosyl-L-methionine-dependent methyltransferase Rv0560c of Mycobacterium tuberculosis belongs to an orthologous group of heterocyclic toxin methyltransferases (Htm) which likely contribute to resistance of mycobacteria towards antimicrobial natural compounds as well as drugs. HtmM.t. catalyzes the methylation of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4(1H)-one (also known as 2-heptyl-4-hydroxyquinoline N-oxide), a potent inhibitor of respiratory electron transfer, its 1-hydroxyquinolin-4(1H)-one core (QNO), structurally related (iso)quinolones, and some mycobactericidal compounds. In this study, crystal structures of HtmM.t. in complex with S-adenosyl-L-homocysteine (SAH) and the methyl-accepting substrates QNO or 4-hydroxyisoquinoline-1(2H)-one, or the methylated product 1-methoxyquinolin-4(1H)-one, were determined at < 1.9 Å resolution. The monomeric protein exhibits the typical Rossmann fold topology and conserved residues of class I methyltransferases. Its SAH binding pocket is connected via a short tunnel to a large solvent-accessible cavity, which accommodates the methyl-accepting substrate. Residues W44, F168, and F208 in connection with F212 form a hydrophobic clamp around the heteroaromatic ring of the methyl-accepting substrate and likely play a major role in substrate positioning. Structural and biochemical data suggest that H139 and T136 are key active site residues, with H139 acting as general base that activates the methyl-accepting hydroxy group. Our structural data may contribute to the design of Htm inhibitors or of antimycobacterial drugs unamenable for methylation.


Assuntos
Proteínas de Bactérias/metabolismo , Hidroxiquinolinas/metabolismo , Metiltransferases/metabolismo , Mycobacterium tuberculosis/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Biocatálise , Domínio Catalítico/genética , Cristalografia por Raios X , Hidroxiquinolinas/química , Metilação , Metiltransferases/química , Metiltransferases/genética , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Mutagênese Sítio-Dirigida , Mycobacterium tuberculosis/genética , Conformação Proteica , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
16.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34507989

RESUMO

The phosphoinositide 3-kinase regulatory subunit p85α is a key regulator of kinase signaling and is frequently mutated in cancers. In the present study, we showed that in addition to weakening the inhibitory interaction between p85α and p110α, a group of driver mutations in the p85α N-terminal SH2 domain activated EGFR, HER2, HER3, c-Met, and IGF-1R in a p110α-independent manner. Cancer cells expressing these mutations exhibited the activation of p110α and the AKT pathway. Interestingly, the activation of EGFR, HER2, and c-Met was attributed to the ability of driver mutations to inhibit HER3 ubiquitination and degradation. The resulting increase in HER3 protein levels promoted its heterodimerization with EGFR, HER2, and c-Met, as well as the allosteric activation of these dimerized partners; however, HER3 silencing abolished this transactivation. Accordingly, inhibitors of either AKT or the HER family reduced the oncogenicity of driver mutations. The combination of these inhibitors resulted in marked synergy. Taken together, our findings provide mechanistic insights and suggest therapeutic strategies targeting a class of recurrent p85α mutations.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Domínio Catalítico/genética , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/fisiologia , Células HCT116 , Humanos , Mutação , Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo , Domínios Proteicos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptor ErbB-3/metabolismo , Transdução de Sinais , Domínios de Homologia de src
17.
Nucleic Acids Res ; 49(17): 10106-10119, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34390350

RESUMO

AaRSs (aminoacyl-tRNA synthetases) group into two ten-member classes throughout evolution, with unique active site architectures defining each class. Most are monomers or homodimers but, for no apparent reason, many bacterial GlyRSs are heterotetramers consisting of two catalytic α-subunits and two tRNA-binding ß-subunits. The heterotetrameric GlyRS from Escherichia coli (EcGlyRS) was historically tested whether its α- and ß-polypeptides, which are encoded by a single mRNA with a gap of three in-frame codons, are replaceable by a single chain. Here, an unprecedented X-shaped structure of EcGlyRS shows wide separation of the abutting chain termini seen in the coding sequences, suggesting strong pressure to avoid a single polypeptide format. The structure of the five-domain ß-subunit is unique across all aaRSs in current databases, and structural analyses suggest these domains play different functions on α-subunit binding, ATP coordination and tRNA recognition. Moreover, the X-shaped architecture of EcGlyRS largely fits with a model for how two classes of tRNA synthetases arose, according to whether enzymes from opposite classes can simultaneously co-dock onto separate faces of the same tRNA acceptor stem. While heterotetrameric GlyRS remains the last structurally uncharacterized member of aaRSs, our study contributes to a better understanding of this ancient and essential enzyme family.


Assuntos
Domínio Catalítico/genética , Escherichia coli/genética , Glicina-tRNA Ligase/genética , RNA de Transferência de Glicina/química , Trifosfato de Adenosina/metabolismo , Cristalografia por Raios X , Glicina/química , Modelos Moleculares , RNA de Transferência de Glicina/genética
18.
Nucleic Acids Res ; 49(16): 9342-9352, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34403458

RESUMO

Polypyrimidine tract-binding protein (PTB) is an RNA binding protein existing both as dimer and monomer and shuttling between nucleus and cytoplasm. However, the regulation of PTB dimerization and the relationship between their functions and subcellular localization are unknown. Here we find that PTB presents as dimer and monomer in nucleus and cytoplasm respectively, and a disulfide bond involving Cysteine 23 is critical for the dimerization of PTB. Additionally, protein disulfide isomerase (PDI) is identified to be the enzyme that catalyzes the de-dimerization of PTB, which is dependent on the CGHC active site of the a' domain of PDI. Furthermore, upon DNA damage induced by topoisomerase inhibitors, PTB is demonstrated to be de-dimerized with cytoplasmic accumulation. Finally, cytoplasmic PTB is found to associate with the ribosome and enhances the translation of p53. Collectively, these findings uncover a previously unrecognized mechanism of PTB dimerization, and shed light on the de-dimerization of PTB functionally linking to cytoplasmic localization and translational regulation.


Assuntos
Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Isomerases de Dissulfetos de Proteínas/genética , Multimerização Proteica/genética , Proteína Supressora de Tumor p53/genética , Células A549 , Catálise , Domínio Catalítico/genética , Núcleo Celular/genética , Citoplasma/genética , Células HEK293 , Humanos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/ultraestrutura , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/ultraestrutura
19.
ACS Chem Biol ; 16(8): 1435-1444, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34314149

RESUMO

Histone deacetylase 6 (HDAC6) is upregulated in a variety of tumor cell lines and has been linked to many cellular processes, such as cell signaling, protein degradation, cell survival, and cell motility. HDAC6 is an enzyme that deacetylates the acetyllysine residues of protein substrates, and the discovery of HDAC6 substrates, including tubulin, has revealed many roles of HDAC6 in cell biology. Unfortunately, among the wide variety of acetylated proteins in the cell, only a few are verified as HDAC6 substrates, which limits the full characterization of HDAC6 cellular functions. Substrate trapping mutants were recently established as a tool to discover unanticipated substrates of histone deacetylase 1 (HDAC1). In this study, we applied the trapping approach to identify potential HDAC6 substrates. Among the high confidence protein hits after trapping, protein arginine methyl transferase 5 (PRMT5) was successfully validated as a novel HDAC6 substrate. PRMT5 acetylation enhanced its methyltransferase activity and symmetrical dimethylation of downstream substrates, revealing possible crosstalk between acetylation and methylation. Substrate trapping represents a powerful, systematic, and unbiased approach to discover substrates of HDAC6.


Assuntos
Desacetilase 6 de Histona/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Acetilação , Domínio Catalítico/genética , DNA Helicases/metabolismo , Células HEK293 , Desacetilase 6 de Histona/química , Desacetilase 6 de Histona/genética , Humanos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteína-Arginina N-Metiltransferases/química , Proteômica/métodos , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo
20.
Adv Sci (Weinh) ; 8(11): e2003902, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34105279

RESUMO

Deficiency of the N6 -methyladenosine (m6 A) methyltransferase complex results in global reduction of m6 A abundance and defective cell development in embryonic stem cells (ESCs). However, it's unclear whether regional m6 A methylation affects cell fate decisions due to the inability to modulate individual m6 A modification in ESCs with precise temporal control. Here, a targeted RNA m6 A erasure (TRME) system is developed to achieve site-specific demethylation of RNAs in human ESCs (hESCs). TRME, in which a stably transfected, doxycycline-inducible dCas13a is fused to the catalytic domain of ALKBH5, can precisely and reversibly demethylate the targeted m6 A site of mRNA and increase mRNA stability with limited off-target effects. It is further demonstrated that temporal m6 A erasure on a single site of SOX2 is sufficient to control the differentiation of hESCs. This study provides a versatile toolbox to reveal the function of individual m6 A modification in hESCs, enabling cell fate control studies at the epitranscriptional level.


Assuntos
Adenosina/análogos & derivados , Homólogo AlkB 5 da RNA Desmetilase/genética , Diferenciação Celular/genética , Fatores de Transcrição SOXB1/genética , Adenosina/genética , Caspases/genética , Domínio Catalítico/genética , Linhagem da Célula/genética , Proliferação de Células/genética , Desmetilação , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Humanos , Metilação , Metiltransferases/genética , Células-Tronco Pluripotentes/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA