Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Asian Pac J Cancer Prev ; 22(12): 4031-4035, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34967585

RESUMO

BACKGROUND: Measurement of Collimator helmet factors (CHF) is an important quality assurance procedure to be performed on Leksell Gamma Knife unit at regular interval to make sure that the interchangeable collimator helmet fit into the source channels without any positional inaccuracy which leads to major treatment error. The primary aim of this study is to measure the CHFs for Elekta Leksell Gamma knife 4C helmets using GafChromic EBT3 film and Image J software. METHODS: GafChromic EBT3 film, EPSON expression 10000 XL scanner and Image J analysis software was used for this study. The calibration curve of GafChromic EBT3 film was generated with known dose values for 14 mm collimator helmet using ImageJ software. The collimator helmet factor (CHF) for 4mm, 8mm and 14 mm collimator helmets were measured by normalizing dose rates of 4mm, 8mm and 14 mm to the dose rate of 18 mm collimator helmet using the previously generated calibration curve. The measured CHF was compared to Elekta reference value and previously published mean values. RESULTS: The measured CHFs were 0.896, 0.958, and 0.986 for 4mm, 8mm and 14mm collimators respectively. The percentage difference obtained was 1.7 %, 0.21 %, 0.1 % between measured values and reference values. CONCLUSION: The measurement of CHFs in LGK 4C unit using GafChromic EBT3 film and ImageJ software is a reliable method to verify the manufacturer quoted CHFs in routine quality assurance procedures.


Assuntos
Dosimetria Fotográfica/normas , Dispositivos de Proteção da Cabeça/normas , Radiocirurgia/instrumentação , Calibragem , Humanos , Radiocirurgia/normas , Software
2.
Phys Med Biol ; 63(5): 055017, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29424364

RESUMO

In high-dose-rate (HDR) brachytherapy, a direct-conversion flat-panel detector (d-FPD) clearly depicts a 192Ir source without image halation, even under the emission of high-energy gamma rays. However, it was unknown why iridium is visible when using a d-FPD. The purpose of this study was to clarify the reasons for visibility of the source core based on physical imaging characteristics, including the modulation transfer functions (MTF), noise power spectral (NPS), contrast transfer functions, and linearity of d-FPD to high-energy gamma rays. The acquired data included: x-rays, [X]; gamma rays, [γ]; dual rays (X + γ), [D], and subtracted data for depicting the source ([D] - [γ]). In the quality assurance (QA) test for the positional accuracy of a source core, the coordinates of each dwelling point were compared between the planned and actual source core positions using a CT/MR-compatible ovoid applicator and a Fletcher-Williamson applicator. The profile curves of [X] and ([D] - [γ]) matched well on MTF and NPS. The contrast resolutions of [D] and [X] were equivalent. A strongly positive linear correlation was found between the output data of [γ] and source strength (r 2 > 0.99). With regard to the accuracy of the source core position, the largest coordinate difference (3D distance) was noted at the maximum curvature of the CT/MR-compatible ovoid and Fletcher-Williamson applicators, showing 1.74 ± 0.02 mm and 1.01 ± 0.01 mm, respectively. A d-FPD system provides high-quality images of a source, even when high-energy gamma rays are emitted to the detector, and positional accuracy tests with clinical applicators are useful in identifying source positions (source movements) within the applicator for QA.


Assuntos
Braquiterapia/normas , Dosimetria Fotográfica/normas , Radioisótopos de Irídio/análise , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/métodos , Braquiterapia/instrumentação , Dosimetria Fotográfica/instrumentação , Humanos , Radioisótopos de Irídio/uso terapêutico , Dosagem Radioterapêutica , Raios X
3.
J Appl Clin Med Phys ; 17(4): 254-267, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27455492

RESUMO

Version 6.3 of the RITG148+ software package offers eight automated analysis routines for quality assurance of the TomoTherapy platform. A performance evaluation of each routine was performed in order to compare RITG148+ results with traditionally accepted analysis techniques and verify that simulated changes in machine parameters are correctly identified by the software. Reference films were exposed according to AAPM TG-148 methodology for each routine and the RITG148+ results were compared with either alternative software analysis techniques or manual analysis techniques in order to assess baseline agreement. Changes in machine performance were simulated through translational and rotational adjustments to subsequently irradiated films, and these films were analyzed to verify that the applied changes were accurately detected by each of the RITG148+ routines. For the Hounsfield unit routine, an assessment of the "Frame Averaging" functionality and the effects of phantom roll on the routine results are presented. All RITG148+ routines reported acceptable baseline results consistent with alternative analysis techniques, with 9 of the 11 baseline test results showing agreement of 0.1mm/0.1° or better. Simulated changes were correctly identified by the RITG148+ routines within approximately 0.2 mm/0.2° with the exception of the Field Centervs. Jaw Setting routine, which was found to have limited accuracy in cases where field centers were not aligned for all jaw settings due to inaccurate autorotation of the film during analysis. The performance of the RITG148+ software package was found to be acceptable for introduction into our clinical environment as an automated alternative to traditional analysis techniques for routine TomoTherapy quality assurance testing.


Assuntos
Dosimetria Fotográfica/normas , Posicionamento do Paciente , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia de Intensidade Modulada/normas , Software , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
4.
Phys Med ; 32(4): 541-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27020097

RESUMO

For decades, film was used as a powerful two-dimensional (2D) dosimetry tool for radiotherapy treatment verification and quality assurance. Unlike the old silver-halide based radiographic films, radiochromic films change its color upon irradiation without the need for chemical development. Radiation dose deposited within a sensitive layer of the radiochromic film initiates polymerization of the active component, the degree of which depends on the amount of energy deposited. Response of the film to radiation is commonly expressed in terms of optical density change, which can be easily measured by any photometric device. However, a number of factors may have an impact on the signal detected by the measuring device. This review summarizes technical aspects associated with the establishment of reference radiochromic film dosimetry and its subsequent use for either clinical or research applications.


Assuntos
Dosimetria Fotográfica/normas , Dosimetria Fotográfica/métodos , Humanos , Doses de Radiação , Valores de Referência
5.
Phys Med Biol ; 60(19): 7533-42, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26371696

RESUMO

GafChromic RTQA2 film is a type of radiochromic film designed for light field and radiation field alignment. The aim of this study is to extend the application of RTQA2 film to the measurement of patient specific quality assurance (QA) fields as a 2D relative dosimeter.Pre-irradiated and post-irradiated RTQA2 films were scanned in reflection mode using a flatbed scanner. A plan-based calibration (PBC) method utilized the mapping information of the calculated dose image and film grayscale image to create a dose versus pixel value calibration model. This model was used to calibrate the film grayscale image to the film relative dose image. The dose agreement between calculated and film dose images were analyzed by gamma analysis. To evaluate the feasibility of this method, eight clinically approved RapidArc cases (one abdomen cancer and seven head-and-neck cancer patients) were tested using this method. Moreover, three MLC gap errors and two MLC transmission errors were introduced to eight Rapidarc cases respectively to test the robustness of this method.The PBC method could overcome the film lot and post-exposure time variations of RTQA2 film to get a good 2D relative dose calibration result. The mean gamma passing rate of eight patients was 97.90% ± 1.7%, which showed good dose consistency between calculated and film dose images. In the error test, the PBC method could over-calibrate the film, which means some dose error in the film would be falsely corrected to keep the dose in film consistent with the dose in the calculated dose image. This would then lead to a false negative result in the gamma analysis. In these cases, the derivative curve of the dose calibration curve would be non-monotonic which would expose the dose abnormality.By using the PBC method, we extended the application of more economical RTQA2 film to patient specific QA. The robustness of the PBC method has been improved by analyzing the monotonicity of the derivative of the calibration curve.


Assuntos
Neoplasias Abdominais/radioterapia , Calibragem , Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/normas , Neoplasias de Cabeça e Pescoço/radioterapia , Garantia da Qualidade dos Cuidados de Saúde , Humanos , Modelos Teóricos , Dosagem Radioterapêutica , Radioterapia Conformacional
6.
J Appl Clin Med Phys ; 16(2): 5141, 2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26103181

RESUMO

This work considers a previously overlooked uncertainty present in film dosimetry which results from moderate curvature of films during the scanning process. Small film samples are particularly susceptible to film curling which may be undetected or deemed insignificant. In this study, we consider test cases with controlled induced curvature of film and with film raised horizontally above the scanner plate. We also evaluate the difference in scans of a film irradiated with a typical brachytherapy dose distribution with the film naturally curved and with the film held flat on the scanner. Typical naturally occurring curvature of film at scanning, giving rise to a maximum height 1 to 2 mm above the scan plane, may introduce dose errors of 1% to 4%, and considerably reduce gamma evaluation passing rates when comparing film-measured doses with treatment planning system-calculated dose distributions, a common application of film dosimetry in radiotherapy. The use of a triple-channel dosimetry algorithm appeared to mitigate the error due to film curvature compared to conventional single-channel film dosimetry. The change in pixel value and calibrated reported dose with film curling or height above the scanner plate may be due to variations in illumination characteristics, optical disturbances, or a Callier-type effect. There is a clear requirement for physically flat films at scanning to avoid the introduction of a substantial error source in film dosimetry. Particularly for small film samples, a compression glass plate above the film is recommended to ensure flat-film scanning. This effect has been overlooked to date in the literature.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Imagens de Fantasmas , Controle de Qualidade , Intensificação de Imagem Radiográfica/instrumentação , Braquiterapia/normas , Calibragem , Dosimetria Fotográfica/normas , Humanos , Dosagem Radioterapêutica
7.
Phys Med Biol ; 60(10): 4089-104, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25928128

RESUMO

The purpose of this study was to find the most accurate model for radiochromic film dosimetry by comparing different channel independent perturbation models. A model selection approach based on (algorithmic) information theory was followed, and the results were validated using gamma-index analysis on a set of benchmark test cases. Several questions were addressed: (a) whether incorporating the information of the non-irradiated film, by scanning prior to irradiation, improves the results; (b) whether lateral corrections are necessary when using multichannel models; (c) whether multichannel dosimetry produces better results than single-channel dosimetry; (d) which multichannel perturbation model provides more accurate film doses. It was found that scanning prior to irradiation and applying lateral corrections improved the accuracy of the results. For some perturbation models, increasing the number of color channels did not result in more accurate film doses. Employing Truncated Normal perturbations was found to provide better results than using Micke-Mayer perturbation models. Among the models being compared, the triple-channel model with Truncated Normal perturbations, net optical density as the response and subject to the application of lateral corrections was found to be the most accurate model. The scope of this study was circumscribed by the limits under which the models were tested. In this study, the films were irradiated with megavoltage radiotherapy beams, with doses from about 20-600 cGy, entire (8 inch × 10 inch) films were scanned, the functional form of the sensitometric curves was a polynomial and the different lots were calibrated using the plane-based method.


Assuntos
Dosimetria Fotográfica/métodos , Modelos Teóricos , Algoritmos , Calibragem , Cor/normas , Dosimetria Fotográfica/normas
8.
Phys Med ; 31(4): 414-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25724351

RESUMO

PURPOSE: Photographic film is widely used for the dose distribution verification of intensity-modulated radiation therapy (IMRT). However, analysis for verification of the results is subjective. We present a novel method for marking the isocenter using irradiation from a megavoltage (MV) beam transmitted through slits in a multi-leaf collimator (MLC). METHODS: We evaluated the effect of the marking irradiation at 500 monitor units (MU) on the total transmission through the MLC using an ionization chamber and Radiochromic Film. Film dosimetry was performed for quality assurance (QA) of IMRT plans. Three methods of registration were used for each film: marking by irradiating with an MV beam through slits in the MLC (MLC-IC); marking with a fabricated phantom (Phantom-IC); and a subjective method based on isodose lines (Manual). Each method was subjected to local γ-analysis. RESULTS: The effect of the marking irradiation on the total transmission was 0.16%, as measured by a ionization chamber at a 10-cm depth in a solid phantom, while the inter-leaf transmission was 0.3%, determined from the film. The mean pass rates for each registration method agreed within ± 1% when the criteria used were a distance-to-agreement (DTA) of 3 mm and a dose difference (DD) of 3%. For DTA/DD criteria of 2mm/3%, the pass rates in the sagittal plane were 96.09 ± 0.631% (MLC-IC), 96.27 ± 0.399% (Phantom-IC), and 95.62 ± 0.988% (Manual). CONCLUSION: The present method is a versatile and useful method of improving the objectivity of film dosimetry for IMRT QA.


Assuntos
Marcadores Fiduciais , Dosimetria Fotográfica/normas , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica
9.
J Appl Clin Med Phys ; 16(1): 4980, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25679156

RESUMO

Beam scanning data collected on the tomotherapy linear accelerator using the TomoScanner water scanning system is primarily used to verify the golden beam profiles included in all Helical TomoTherapy treatment planning systems (TOMO TPSs). The user is not allowed to modify the beam profiles/parameters for beam modeling within the TOMO TPSs. The authors report the first feasibility study using the Blue Phantom Helix (BPH) as an alternative to the TomoScanner (TS) system. This work establishes a benchmark dataset using BPH for target commissioning and quality assurance (QA), and quantifies systematic uncertainties between TS and BPH. Reproducibility of scanning with BPH was tested by three experienced physicists taking five sets of measurements over a six-month period. BPH provides several enhancements over TS, including a 3D scanning arm, which is able to acquire necessary beam-data with one tank setup, a universal chamber mount, and the OmniPro software, which allows online data collection and analysis. Discrepancies between BPH and TS were estimated by acquiring datasets with each tank. In addition, data measured with BPH and TS was compared to the golden TOMO TPS beam data. The total systematic uncertainty, defined as the combination of scanning system and beam modeling uncertainties, was determined through numerical analysis and tabulated. OmniPro was used for all analysis to eliminate uncertainty due to different data processing algorithms. The setup reproducibility of BPH remained within 0.5 mm/0.5%. Comparing BPH, TS, and Golden TPS for PDDs beyond maximum depth, the total systematic uncertainties were within 1.4mm/2.1%. Between BPH and TPS golden data, maximum differences in the field width and penumbra of in-plane profiles were within 0.8 and 1.1 mm, respectively. Furthermore, in cross-plane profiles, the field width differences increased at depth greater than 10 cm up to 2.5 mm, and maximum penumbra uncertainties were 5.6mm and 4.6 mm from TS scanning system and TPS modeling, respectively. Use of BPH reduced measurement time by 1-2 hrs per session. The BPH has been assessed as an efficient, reproducible, and accurate scanning system capable of providing a reliable benchmark beam data. With this data, a physicist can utilize the BPH in a clinical setting with an understanding of the scan discrepancy that may be encountered while validating the TPS or during routine machine QA. Without the flexibility of modifying the TPS and without a golden beam dataset from the vendor or a TPS model generated from data collected with the BPH, this represents the best solution for current clinical use of the BPH.


Assuntos
Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/normas , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/métodos , Água/química , Simulação por Computador , Estudos de Viabilidade , Humanos , Modelos Estatísticos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
10.
J Appl Clin Med Phys ; 16(1): 5068, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25679163

RESUMO

The routine quality assurance (QA) procedure for a high-dose-rate (HDR) 192Ir radioactive source is an important task to provide appropriate brachytherapy. Traditionally, it has been difficult to obtain good quality images using the 192Ir source due to irradiation from the high-energy gamma rays. However, a direct-conversion flat-panel detector (d-FPD) has made it possible to confirm the localization and configuration of the 192Ir source. The purpose of the present study was to evaluate positional and temporal accuracy of the 192Ir source using a d-FPD system, and the usefulness of d-FPD as a QA tool. As a weekly verification of source positional accuracy test, we obtained 192Ir core imaging by single-shot radiography for three different positions (1300/1400/1500 mm) of a check ruler. To acquire images for measurement of the 192Ir source movement distance with varying interval steps (2.5/5.0/10.0 mm) and temporal accuracy, we used the high-speed image acquisition technique and digital subtraction. For accuracy of the 192Ir source dwell time, sequential images were obtained using various dwell times ranging from 0.5 to 30.0 sec, and the acquired number of image frames was assessed. Analysis of the data was performed using the measurement analysis function of the d-FPD system. Although there were slight weekly variations in source positional accuracy, the measured positional errors were less than 1.0 mm. For source temporal accuracy, the temporal errors were less than 1.0%, and the correlation between acquired frames and programmed time showed excellent linearity (R2 = 1). All 192Ir core images were acquired clearly without image halation, and the data were obtained quantitatively. All data were successfully stored in the picture archiving and communication system (PACS) for time-series analysis. The d-FPD is considered useful as the QA tool for the 192Ir source.


Assuntos
Braquiterapia/normas , Dosimetria Fotográfica/normas , Radioisótopos de Irídio/análise , Garantia da Qualidade dos Cuidados de Saúde/métodos , Intensificação de Imagem Radiográfica/normas , Algoritmos , Braquiterapia/instrumentação , Desenho de Equipamento , Dosimetria Fotográfica/instrumentação , Humanos , Radioisótopos de Irídio/uso terapêutico , Intensificação de Imagem Radiográfica/instrumentação , Dosagem Radioterapêutica
11.
Radiother Oncol ; 114(2): 264-71, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25583568

RESUMO

PURPOSE: To undertake the first multicentre fully 'end to end' dosimetry audit for HDR cervix brachytherapy, comparing planned and delivered dose distributions around clinical treatment applicators, with review of local procedures. MATERIALS AND METHODS: A film-dosimetry audit was performed at 46 centres, including imaging, applicator reconstruction, treatment planning and delivery. Film dose maps were calculated using triple-channel dosimetry and compared to RTDose data from treatment planning systems. Deviations between plan and measurement were quantified at prescription Point A and using gamma analysis. Local procedures were also discussed. RESULTS: The mean difference between planned and measured dose at Point A was -0.6% for plastic applicators and -3.0% for metal applicators, at standard uncertainty 3.0% (k=1). Isodose distributions agreed within 1mm over a dose range 2-16Gy. Mean gamma passing rates exceeded 97% for plastic and metal applicators at 3% (local) 2mm criteria. Two errors were found: one dose normalisation error and one applicator library misaligned with the imaged applicator. Suggestions for quality improvement were also made. CONCLUSIONS: The concept of 'end to end' dosimetry audit for HDR brachytherapy has been successfully implemented in a multicentre environment, providing evidence that a high level of accuracy in brachytherapy dosimetry can be achieved.


Assuntos
Braquiterapia/métodos , Dosimetria Fotográfica/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias do Colo do Útero/radioterapia , Braquiterapia/normas , Relação Dose-Resposta à Radiação , Feminino , Dosimetria Fotográfica/normas , Humanos , Dosagem Radioterapêutica , Incerteza
12.
J Appl Clin Med Phys ; 15(4): 4854, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-25207417

RESUMO

The measurement of dose distributions in clinical brachytherapy, for the purpose of quality control, commissioning or dosimetric audit, is challenging and requires development. Radiochromic film dosimetry with a commercial flatbed scanner may be suitable, but careful methodologies are required to control various sources of uncertainty. Triple-channel dosimetry has recently been utilized in external beam radiotherapy to improve the accuracy of film dosimetry, but its use in brachytherapy, with characteristic high maximum doses, steep dose gradients, and small scales, has been less well researched. We investigate the use of advanced film dosimetry techniques for brachytherapy dosimetry, evaluating uncertainties and assessing the mitigation afforded by triple-channel dosimetry. We present results on postirradiation film darkening, lateral scanner effect, film surface perturbation,film active layer thickness, film curling, and examples of the measurement of clinical brachytherapy dose distributions. The lateral scanner effect in brachytherapy film dosimetry can be very significant, up to 23% dose increase at 14 Gy, at ± 9 cm lateral from the scanner axis for simple single-channel dosimetry. Triple-channel dosimetry mitigates the effect, but still limits the useable width of a typical scanner to less than 8 cm at high dose levels to give dose uncertainty to within 1%. Triple-channel dosimetry separates dose and dose-independent signal components, and effectively removes disturbances caused by film thickness variation and surface perturbations in the examples considered in this work. The use of reference dose films scanned simultaneously with brachytherapy test films is recommended to account for scanner variations from calibration conditions. Postirradiation darkening, which is a continual logarithmic function with time, must be taken into account between the reference and test films. Finally, films must be flat when scanned to avoid the Callier-like effects and to provide reliable dosimetric results. We have demonstrated that radiochromic film dosimetry with GAFCHROMIC EBT3 film and a commercial flatbed scanner is a viable method for brachytherapy dose distribution measurement, and uncertainties may be reduced with triple-channel dosimetry and specific film scan and evaluation methodologies.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Imagens de Fantasmas , Braquiterapia/normas , Calibragem , Dosimetria Fotográfica/normas , Humanos , Controle de Qualidade , Dosagem Radioterapêutica , Água
13.
Med Phys ; 41(2): 022101, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24506633

RESUMO

PURPOSE: Purpose of this work is to investigate the effects of varying the active layer composition of external beam therapy (EBT) GafChromic(TM) films on the energy dependence of the film, as well as try to develop a new prototype with more uniform energy response at low photon energies (⩽ 100 keV). METHODS: First, the overall energy response (S(AD, W)(Q)) of different commercial EBT type film models that represent the three different generations produced to date, i.e., EBT, EBT2, and EBT3, was investigated. Pieces of each film model were irradiated to a fixed dose of 2 Gy to water for a wide range of beam qualities and the corresponding S(AD, W)(Q) was measured using a flatbed document scanner. Furthermore, the DOSRZnrc Monte Carlo code was used to determine the absorbed dose to water energy dependence of the film, f(Q). Moreover, the intrinsic energy dependence, kbq(Q), for each film model was evaluated using the corresponding S(AD, W)(Q) and f(Q). In the second part of this study, the authors investigated the effects of changing the chemical composition of the active layer on SAD, W(Q). Finally, based on these results, the film manufacturer fabricated several film prototypes and the authors evaluated their S(AD, W)(Q). RESULTS: The commercial EBT film model shows an under response at all energies below 100 keV reaching 39% ± 4% at about 20 keV. The commercial EBT2 and EBT3 film models show an under response of about 27% ± 4% at 20 keV and an over response of about 16% ± 4% at 40 keV.S(AD, W)(Q) of the three commercial film models at low energies show strong correlation with the corresponding f(-) (1)(Q) curves. The commercial EBT3 model with 4% Cl in the active layer shows under response of 22% ± 4% at 20 keV and 6% ± 4% at about 40 keV. However, increasing the mass percent of chlorine makes the film more hygroscopic which may affect the stability of the film's readout. The EBT3 film prototype with 7.5% Si shows a significant improvement in the energy response at very low energies compared to the commercial EBT3 films with 4% Cl. It shows under response of 15% ± 5% at about 20 keV to 2% ± 5% at about 40 keV. However, according to the manufacturer, the addition of 7.5% Si as SiO2 adversely affected the viscosity of the active fluid and therefore affected the potential use in commercial machine coating. The latest commercial EBT3 film model with 7% Al as Al2O3 shows an overall improvement in SAD, W(Q) compared to previous commercial EBT3 films. It shows under response at all energies <100 keV, varying from 20% ± 4% at 20 keV to 6% ± 4% at 40 keV. CONCLUSIONS: The energy response of films in the energy range <100 keV can be improved by adjusting the active layer chemical composition. Removing bromine eliminated the over response at about 40 keV. The under response at energies ≤ 30 keV is improved by adding 7% Al to the active layer in the latest commercial EBT3 film models.


Assuntos
Dosimetria Fotográfica/métodos , Radioterapia Assistida por Computador/métodos , Alumínio/química , Cloro/química , Dosimetria Fotográfica/normas , Método de Monte Carlo , Potássio/química , Padrões de Referência , Silício/química , Água
14.
Phys Med Biol ; 58(19): 6623-40, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24018542

RESUMO

A novel phantom is presented for 'full system' dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.


Assuntos
Braquiterapia/normas , Auditoria Clínica/métodos , Dosimetria Fotográfica/normas , Doses de Radiação , Planejamento da Radioterapia Assistida por Computador , Dosimetria Fotográfica/instrumentação , Humanos , Imagens de Fantasmas , Projetos Piloto , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Incerteza
15.
PLoS One ; 8(5): e63418, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671677

RESUMO

This work investigated the suitability of passive dosimeters for reference dosimetry in small fields with acceptable accuracy. Absorbed dose to water rate was determined in nine small radiation fields with diameters between 4 and 35 mm in a Leksell Gamma Knife (LGK) and a modified linear accelerator (linac) for stereotactic radiosurgery treatments. Measurements were made using Gafchromic film (MD-V2-55), alanine and thermoluminescent (TLD-100) dosimeters and compared with conventional dosimetry systems. Detectors were calibrated in terms of absorbed dose to water in (60)Co gamma-ray and 6 MV x-ray reference (10×10 cm(2)) fields using an ionization chamber calibrated at a standards laboratory. Absorbed dose to water rate computed with MD-V2-55 was higher than that obtained with the others dosimeters, possibly due to a smaller volume averaging effect. Ratio between the dose-rates determined with each dosimeter and those obtained with the film was evaluated for both treatment modalities. For the LGK, the ratio decreased as the dosimeter size increased and remained constant for collimator diameters larger than 8 mm. The same behaviour was observed for the linac and the ratio increased with field size, independent of the dosimeter used. These behaviours could be explained as an averaging volume effect due to dose gradient and lack of electronic equilibrium. Evaluation of the output factors for the LGK collimators indicated that, even when agreement was observed between Monte Carlo simulation and measurements with different dosimeters, this does not warrant that the absorbed dose to water rate in the field was properly known and thus, investigation of the reference dosimetry should be an important issue. These results indicated that alanine dosimeter provides a high degree of accuracy but cannot be used in fields smaller than 20 mm diameter. Gafchromic film can be considered as a suitable methodology for reference dosimetry. TLD dosimeters are not appropriate in fields smaller than 10 mm diameters.


Assuntos
Dosimetria Fotográfica/métodos , Radiometria/métodos , Radiocirurgia/métodos , Alanina , Calibragem , Radioisótopos de Cobalto , Dosimetria Fotográfica/normas , Humanos , Doses de Radiação , Radiometria/normas , Radiocirurgia/instrumentação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Água , Raios X
16.
J Appl Clin Med Phys ; 13(6): 3994, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23149793

RESUMO

The objectives of this study are to identify and quantify factors that influence radiochromic film dose response and to determine whether such films are suitable for reference dosimetry. The influence of several parameters that may introduce systematic dose errors when performing reference dose measurements were investigated. The effect of the film storage temperature was determined by comparing the performance of three lots of GAFCHROMIC EBT2 films stored at either 4ºC or room temperature. The effect of high (> 80%) or low (< 20%) relative humidity was also determined. Doses measured in optimal conditions with EBT and EBT2 films were then compared with an A12 ionization chamber measurement. Intensity-modulated radiation therapy quality controls using EBT2 films were also performed in reference dose. The results obtained using reference dose measurements were compared with those obtained using relative dose measurements. Storing the film at 4ºC improves the stability of the film over time, but does not eliminate the noncatalytic film development, seen as a rise in optical density over time in the absence of radiation. Relative humidity variations ranging from 80% to 20% have a strong impact on the optical density and could introduce dose errors of up to 15% if the humidity were not controlled during the film storage period. During the scanning procedure, the film temperature influences the optical density that is measured. When controlling for these three parameters, the dose differences between EBT or EBT2 and the A12 chamber are found to be within ± 4% (2σ level) over a dose range of 20-350 cGy. Our results also demonstrate the limitation of the Anisotropic Analytical Algorithm for dose calculation of highly modulated treatment plans.


Assuntos
Dosimetria Fotográfica/normas , Garantia da Qualidade dos Cuidados de Saúde/métodos , Radioterapia de Intensidade Modulada , Neoplasias Abdominais/radioterapia , Algoritmos , Relação Dose-Resposta à Radiação , Desenho de Equipamento , Dosimetria Fotográfica/instrumentação , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Masculino , Neoplasias Pélvicas/radioterapia , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Padrões de Referência
17.
Med Phys ; 39(8): 4850-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22894411

RESUMO

PURPOSE: Despite numerous advantages of radiochromic film dosimeter (high spatial resolution, near tissue equivalence, low energy dependence) to measure a relative dose distribution with film, one needs to first measure an absolute dose (following previously established reference dosimetry protocol) and then convert measured absolute dose values into relative doses. In this work, we present result of our efforts to obtain a functional form that would linearize the inherently nonlinear dose-response curve of the radiochromic film dosimetry system. METHODS: Functional form [ζ = (-1)[middle dot]netOD((2∕3))∕ln(netOD)] was derived from calibration curves of various previously established radiochromic film dosimetry systems. In order to test the invariance of the proposed functional form with respect to the film model used we tested it with three different GAFCHROMIC™ film models (EBT, EBT2, and EBT3) irradiated to various doses and scanned on a same scanner. For one of the film models (EBT2), we tested the invariance of the functional form to the scanner model used by scanning irradiated film pieces with three different flatbed scanner models (Epson V700, 1680, and 10000XL). To test our hypothesis that the proposed functional argument linearizes the response of the radiochromic film dosimetry system, verification tests have been performed in clinical applications: percent depth dose measurements, IMRT quality assurance (QA), and brachytherapy QA. RESULTS: Obtained R(2) values indicate that the choice of the functional form of the new argument appropriately linearizes the dose response of the radiochromic film dosimetry system we used. The linear behavior was insensitive to both film model and flatbed scanner model used. Measured PDD values using the green channel response of the GAFCHROMIC™ EBT3 film model are well within ±2% window of the local relative dose value when compared to the tabulated Cobalt-60 data. It was also found that criteria of 3%∕3 mm for an IMRT QA plan and 3%∕2 mm for a brachytherapy QA plan are passing 95% gamma function points. CONCLUSIONS: In this paper, we demonstrate the use of functional argument to linearize the inherently nonlinear response of a radiochromic film based reference dosimetry system. In this way, relative dosimetry can be conveniently performed using radiochromic film dosimetry system without the need of establishing calibration curve.


Assuntos
Dosimetria Fotográfica/métodos , Dosimetria Fotográfica/normas , Algoritmos , Braquiterapia/métodos , Calibragem , Relação Dose-Resposta à Radiação , Humanos , Modelos Lineares , Imagens de Fantasmas , Doses de Radiação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Reprodutibilidade dos Testes , Software , Interface Usuário-Computador , Água/química
18.
Med Phys ; 39(7): 4378-85, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22830770

RESUMO

PURPOSE: To perform a comprehensive and systematic comparison of fixed-beam IMRT and volumetric modulated arc therapy (VMAT) patient-specific QA measurements for a common set of geometries using typical measurement methods. METHODS: Fixed-beam IMRT and VMAT plans were constructed for structure set geometries provided by AAPM Task Group 119. The plans were repeatedly delivered across multiple measurement sessions, and the resulting dose distributions were measured with (1) radiochromic film and ionization chamber and (2) a commercial two-dimensional diode array. The resulting QA measurements from each delivery technique were then analyzed, compared, and tested for statistically significant differences. RESULTS: Although differences were noted between QA results for some plans, neither modality showed consistently better agreement of measured and planned doses: of the 22 comparisons, IMRT showed better QA results in 11 cases, and VMAT showed better QA results in 11 cases. No statistically significant differences (p < 0.05) between IMRT and VMAT QA results were found for point doses measured with an ionization chamber, planar doses measured with radiochromic film, or planar doses measured with a two-dimensional diode array. CONCLUSIONS: These results suggest that it is appropriate to apply patient-specific QA action levels derived from fixed-beam IMRT to VMAT.


Assuntos
Dosimetria Fotográfica/normas , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Conformacional/métodos , Humanos , Garantia da Qualidade dos Cuidados de Saúde , Radiografia , Dosagem Radioterapêutica , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Med Dosim ; 37(2): 138-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21925862

RESUMO

Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d(max.), 10 × 10 cm(2), 100 cm) to a given dose. An automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6°C (85-105°F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.


Assuntos
Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/normas , Temperatura
20.
Int J Radiat Oncol Biol Phys ; 82(5): 1567-74, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21470797

RESUMO

PURPOSE: To explore an effective and efficient end-to-end patient-specific quality-assurance (QA) protocol for volumetric modulated arc radiotherapy (VMAT) and to evaluate the suitability of a stationary radiotherapy QA device (two-dimensional [2D] ion chamber array) for VMAT QA. METHODS AND MATERIALS: Three methods were used to analyze 39 VMAT treatment plans for brain, spine, and prostate: ion chamber (one-dimensional absolute, n = 39), film (2D relative, coronal/sagittal, n = 8), and 2D ion chamber array (ICA, 2D absolute, coronal/sagittal, n = 39) measurements. All measurements were compared with the treatment planning system dose calculation either via gamma analysis (3%, 3- to 4-mm distance-to-agreement criteria) or absolute point dose comparison. The film and ion chamber results were similarly compared with the ICA measurements. RESULTS: Absolute point dose measurements agreed well with treatment planning system computed doses (ion chamber: median deviation, 1.2%, range, -0.6% to 3.3%; ICA: median deviation, 0.6%, range, -1.8% to 2.9%). The relative 2D dose measurements also showed good agreement with computed doses (>93% of pixels in all films passing gamma, >90% of pixels in all ICA measurements passing gamma). The ICA relative dose results were highly similar to those of film (>90% of pixels passing gamma). The coronal and sagittal ICA measurements were statistically indistinguishable by the paired t test with a hypothesized mean difference of 0.1%. The ion chamber and ICA absolute dose measurements showed a similar trend but had disparities of 2-3% in 18% of plans. CONCLUSIONS: After validating the new VMAT implementation with ion chamber, film, and ICA, we were able to maintain an effective yet efficient patient-specific VMAT QA protocol by reducing from five (ion chamber, film, and ICA) to two measurements (ion chamber and single ICA) per plan. The ICA (Matrixx®, IBA Dosimetry) was validated for VMAT QA, but ion chamber measurements are recommended for absolute dose comparison until future developments correct the ICA angular dependence.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias da Próstata/radioterapia , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiometria/normas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia de Intensidade Modulada/normas , Neoplasias da Coluna Vertebral/radioterapia , Algoritmos , Dosimetria Fotográfica/normas , Humanos , Masculino , Controle de Qualidade , Radiometria/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Radioterapia de Intensidade Modulada/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA