Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Radiography (Lond) ; 30(5): 1405-1410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955646

RESUMO

INTRODUCTION: Radiotherapy is the standard treatment for breast cancer patients after surgery. However, radiotherapy can cause side effects such as dry and moist desquamation of the patient's skin. The dose calculation from a treatment planning system (TPS) might also be inaccurate. The purpose of this study is to measure the surface dose on the CIRS thorax phantom by an optically stimulated luminescent dosimeter (OSLD). METHODS: The characteristics of OSLD were studied in terms of dose linearity, reproducibility, and angulation dependence on the solid water phantom. To determine the surface dose, OSLD (Landauer lnc., USA) was placed on 5 positions at the CIRS phantom (Tissue Simulation and Phantom Technology, USA). The five positions were at the tip, medial, lateral, tip-medial, and tip-lateral. Then, the doses from OSLD and TPS were compared. RESULTS: The dosimeter's characteristic test was good. The maximum dose at a depth of 15 mm was 514.46 cGy, which was at 100%. The minimum dose at the surface was 174.91 cGy, which was at 34%. The results revealed that the surface dose from TPS was less than the measurement. The percent dose difference was -2.17 ± 6.34, -12.08 ± 3.85, and -48.71 ± 1.29 at the tip, medial, and lateral positions, respectively. The surface dose from TPS at tip-medial and tip-lateral was higher than the measurement, which was 12.56 ± 5.55 and 10.45 ± 1.76 percent dose different, respectively. CONCLUSION: The percent dose difference is within the acceptable limit, except for the lateral position because of the body curvature. However, OSLD is convenient to assess the radiation dose, and further study is to measure in vivo. IMPLICATION FOR PRACTICE: The OSL NanoDot dosimeter can be used for dose validation with a constant setup location. The measurement dose is higher than the dose from TPS, except for some tilt angles.


Assuntos
Dosimetria por Luminescência Estimulada Opticamente , Imagens de Fantasmas , Humanos , Dosimetria por Luminescência Estimulada Opticamente/instrumentação , Dosimetria por Luminescência Estimulada Opticamente/métodos , Reprodutibilidade dos Testes , Dosagem Radioterapêutica , Dosímetros de Radiação
2.
Biomed Phys Eng Express ; 10(4)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38714180

RESUMO

Radiotherapy (RT) is one of the major treatment modalities among surgery and chemotherapy for carcinoma breast. The surface dose study of modified reconstructive constructive Mastectomy (MRM) breast is important due to the heterogeneity in the body contour and the conventional treatment angle to save the lungs and heart from the radiation. These angular entries of radiation beam cause an unpredictable dose deposition on the body surface, which has to be monitored. Thermoluminescent dosimeter (TLD) or optically stimulated luminescent dosimeter (nano OSLD) are commonly preferable dosimeters for this purpose. The surface dose response of TLD and nano OSLD during MRM irradiation has been compared with the predicted dose from the treatment planning system (TPS). The study monitored 100 MRM patients by employing a total 500 dosimeters consisting of TLD (n = 250) and nano OSLD (n = 250), during irradiation from an Elekta Versa HD 6 MV Linear accelerator. The study observed a variance of 3.9% in the dose measurements for TLD and 3.2% for nano OSLD from the planned surface dose, with a median percentage dose of 44.02 for nano OSLD and 40.30 for TLD (p value 0.01). There was no discernible evidence of variation in dose measurements attributable to differences in field size or from patient to patient. Additionally, no variation was observed in dose measurements when comparing the placement of the dosimeter from central to off-centre positions. In comparison, a minor difference in dose measurements were noted between TLD and nano OSLD, The study's outcomes support the applicability of both TLD and nano OSLD as effective dosimeters during MRM breast irradiation for surface dose evaluation.


Assuntos
Neoplasias da Mama , Mastectomia , Dosagem Radioterapêutica , Dosimetria Termoluminescente , Humanos , Feminino , Dosimetria Termoluminescente/métodos , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Planejamento da Radioterapia Assistida por Computador/métodos , Dosimetria por Luminescência Estimulada Opticamente/métodos , Pessoa de Meia-Idade , Doses de Radiação , Adulto , Mama/efeitos da radiação , Mama/cirurgia
3.
Phys Med Biol ; 69(11)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38663410

RESUMO

Objective. This study characterized optically-stimulated luminescent dosimeter (OSLD) nanoDots for use in a therapeutic carbon beam using the Imaging and Radiation Oncology Core (IROC) framework for remote output verification.Approach. The absorbed dose correction factors for OSLD (fading, linearity, beam quality, angularity, and depletion), as defined by AAPM TG 191, were characterized for carbon beams. For the various correction factors, the effect of linear energy transfer (LET) was examined by characterizing in both a low and high LET setting.Main results. Fading was not statistically different between reference photons and carbon, nor between low and high LET beams; thus, the standard IROC-defined exponential function could be used to characterize fading. Dose linearity was characterized with a linear fit; while low and high LET carbon linearity was different, these differences were small and could be rolled into the uncertainty budget if using a single linearity correction. A linear fit between beam quality and dose-averaged LET was determined. The OSLD response at various angles of incidence was not statistically different, thus a correction factor need not be applied. There was a difference in depletion between low and high LET irradiations in a primary carbon beam, but this difference was small over the standard five readings. The largest uncertainty associated with the use of OSLDs in carbon was because of thekQcorrection factor, with an uncertainty of 6.0%. The overall uncertainty budget was 6.3% for standard irradiation conditions.Significance. OSLD nanoDot response was characterized in a therapeutic carbon beam. The uncertainty was larger than for traditional photon applications. These findings enable the use of OSLDs for carbon absorbed dose measurements, but with less accuracy than conventional OSLD audit programs.


Assuntos
Carbono , Carbono/química , Carbono/uso terapêutico , Radiometria/métodos , Transferência Linear de Energia , Incerteza , Dosimetria por Luminescência Estimulada Opticamente/métodos , Dosagem Radioterapêutica , Humanos
4.
Appl Radiat Isot ; 198: 110854, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37209491

RESUMO

To analyse the fetal dose in all three trimesters in patients treated for brain tumors during pregnancy, a modified rando phantom representing three different trimesters was used with provisions for insertion of ion-chamber and Optically Simulated Luminescence Dosimeter (OSLD). The measurement regions were chosen at the level of fundus, umbilicus and pubis. Seven different treatment plans with 6FF and 6FFF beam energies were generated. Treating pregnant patients with brain tumors is safe irrespective of planning modalities except 3DCRT plan where the dose is 10.24 cGy.


Assuntos
Dosimetria por Luminescência Estimulada Opticamente , Radioterapia Conformacional , Humanos , Luminescência , Dosímetros de Radiação , Radioterapia Conformacional/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas , Dosimetria por Luminescência Estimulada Opticamente/métodos
5.
Med Phys ; 50(2): 1185-1193, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36353946

RESUMO

BACKGROUND: Optically stimulated luminescence (OSL) dosimeters produce a signal linear to the dose, which fades with time due to the spontaneous recombination of energetically unstable electron/hole traps. When used for radiotherapy (RT) applications, fading affects the signal-to-dose conversion and causes an error in the final dose measurement. Moreover, the signal fading depends to some extent on treatment-specific irradiation conditions such as irradiation times. PURPOSE: In this work, a dose calibration function for a novel OSL film dosimeter was derived accounting for signal fading. The proposed calibration allows to perform dosimetry evaluation for different RT treatment regimes. METHODS: A novel BaFBr:Eu2+ -based OSL film (Zeff , 6 MV  = 4.7) was irradiated on a TrueBeam STx using a 6 MV beam with setup: 0° gantry angle, 90 cm SSD, 10 cm depth, 10 × 10 cm2 field. A total of 86 measurements were acquired for dose-rates ( D ̇ $\dot{D}$ ) of 600, 300, and 200 MU/min for irradiation times (tir ) of 0.2, 1, 2, 4.5, 12, and 23 min and various readout times (tscan ) between 4 and 1440 min from the start of the exposure (beam-on time). The OSL signal, S ( D ̇ , t i r , t s c a n ) $S(\dot{D},{t}_{ir},{t}_{scan})$ , was modeled via robust nonlinear regression, and two different power-law fading models were tested, respectively, independent (linear model) and dependent on the specific t i r ${t}_{ir}$ (delivery-dependent model). RESULTS: After 1 day from the exposure, the error on the dose measurement can be as high as 48% if a fading correction is not considered. The fading contribution was characterized by two accurate models with adjusted-R2 of 0.99. The difference between the two models is <4.75% for all t i r ${t}_{ir}$ and t s c a n ${t}_{scan}$ . For different beam-on times, 3, 10.5, and 20 min, the optimum t s c a n ${t}_{scan}$ was calculated in order to achieve a signal-to-dose conversion with a model-related error <1%. In the case of a 3 min irradiation, this condition is already met when the OSL-film is scanned immediately after the end of the irradiation. For an irradiation of 10.5 and 20 min, the minimum scanning time to achieve this model-related error increases, respectively, to 30 and 90 min. Under these conditions, the linear model can be used for the signal-to-dose conversion as an approximation of the delivery-dependent model. The signal-to-dose function, D(Mi , j , t s c a n $\ {t}_{scan}$ ), has a residual mean error of 0.016, which gives a residual dose uncertainty of 0.5 mGy in the region of steep signal fading (i.e., t s c a n ${t}_{scan}\ $ = 4 min). The function of two variables is representable as a dose surface depending on the signal (Mi , j ) measured for each i,j-pixel and the time of scan ( t s c a n ${t}_{scan}$ ). CONCLUSIONS: The calibration of a novel OSL-film usable for dosimetry in different RT treatments was corrected for its signal fading with two different models. A linear calibration model independent from the treatment-specific irradiation condition results in a model-related error <1% if a proper scanning time is used for each irradiation length. This model is more practical than the delivery-dependent model because it does not need a pixel-to-pixel fading correction for different t i r ${t}_{ir}$ .


Assuntos
Dosimetria por Luminescência Estimulada Opticamente , Dosímetros de Radiação , Calibragem , Dosimetria por Luminescência Estimulada Opticamente/métodos , Radiometria , Modelos Lineares , Luminescência
6.
Nano Lett ; 22(4): 1566-1572, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35130696

RESUMO

Radiotherapy is a well-established and important treatment for cancer tumors, and advanced technologies can deliver doses in complex three-dimensional geometries tailored to each patient's specific anatomy. A 3D dosimeter, based on optically stimulated luminescence (OSL), could provide a high accuracy and reusable tool for verifying such dose delivery. Nanoparticles of an OSL material embedded in a transparent matrix have previously been proposed as an inexpensive dosimeter, which can be read out using laser-based methods. Here, we show that Cu-doped LiF nanocubes (nano-LiF:Cu) are excellent candidates for 3D OSL dosimetry owing to their high sensitivity, dose linearity, and stability at ambient conditions. We demonstrate a scalable synthesis technique producing a material with the attractive properties of a single dosimetric trap and a single near-ultraviolet emission line well separated from visible-light stimulation sources. The observed transparency and light yield of silicone sheets with embedded nanocubes hold promise for future 3D OSL-based dosimetry.


Assuntos
Nanocompostos , Dosimetria por Luminescência Estimulada Opticamente , Humanos , Luminescência , Dosimetria por Luminescência Estimulada Opticamente/métodos
7.
Appl Radiat Isot ; 179: 110021, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34775272

RESUMO

In this investigation, the Continuous-Wave Optically Stimulated Luminescence (CW-OSL) properties of polyminerals extracted from Mexican and Peruvian Guajillo chilli were studied using a source of cesium-137 (Cs-137) gamma radiation. The Guajillo chilli polyminerals were stimulated with blue light for 120 s, and their luminescence was detected in the UV region. The General Order Kinetics (GOK) deconvolution analysis of the CW-OSL curves was carried out using three individual components. The CW-OSL dose response from 10 to 5000 Gy was analysed in Guajillo chilli polyminerals. After different storage periods, the polyminerals show an increase in the CW-OSL intensity. A strong and moderate effect of the sunlight (60 min) and artificial (6 h) light is observed on the CW-OSL response. Therefore, the CW-OSL properties of polyminerals could be used in the identification of Mexican and Peruvian Guajillo chilli exposed to Cs-137 gamma radiation.


Assuntos
Raios gama , Iluminação , Minerais/química , Dosimetria por Luminescência Estimulada Opticamente/métodos , Radioisótopos de Césio/química , Luz Solar
8.
Acta Med Okayama ; 74(5): 415-422, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33106697

RESUMO

During radiation therapy, incident radiation oblique to the skin surface is high and may cause severe skin damage. Understanding the dose of radiation absorbed by the skin is important for predicting skin damage due to radiation. In this study, we used a high-energy (4 MV) X-ray system and an optically stimulated luminescence dosimeter (OSLD) that was developed for personal exposure dosimetry. We determined the dose variation and angular dependence, which are the characteristics of a small OSLD required to derive the calculation formula for the oblique surface dose. The dose variation was determined using the coefficient of variation. The maximum coefficient of variation for 66 small-field OSLDs was 1.71%. The angular dependence, obtained from the dose ratio of the dosimeter in the vertical direction, had a maximum value of 1.37. We derived a new equation in which the oblique surface dose can be calculated within the error range of -7.7-5.1%.


Assuntos
Dosimetria por Luminescência Estimulada Opticamente/métodos , Radioterapia/métodos , Relação Dose-Resposta à Radiação , Humanos , Lesões por Radiação/prevenção & controle , Radioterapia/efeitos adversos , Pele/lesões
9.
Phys Med ; 70: 153-160, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32028172

RESUMO

PURPOSE: We investigated the impact of transverse magnetic fields on the dose response of a nanoDot optically stimulated luminescence dosimetry (OSLD) in megavoltage photon beams. METHODS: The nanoDot OSLD response was calculated via Monte Carlo (MC) simulations. The responses RQ and RQ,B without and with the transverse magnetic fields of 0.35-3 T were analyzed as a function of depth at a 10 cm × 10 cm field for 4-18 MV photons in a solid water phantom. All responses were determined based on comparisons with the response under the reference conditions (depth of 10 cm and a 10 cm × 10 cm field) for 6 MV without the magnetic field. In addition, the influence of air-gaps on the nanoDot response in the magnetic field was estimated according to Burlin's general cavity theory. RESULTS: The RQ as a function of depth for 4-18 MV ranged from 1.013 to 0.993, excepting the buildup region. The RQ,B increased from 2.8% to 1.5% at 1.5 T and decreased from 3.0% to 1.1% at 3 T in comparison with RQ as the photon energy increased. The depth dependence of RQ,B was less than 1%, excepting the buildup region. The top air-gap and the bottom air- gap were responsible for the response reduction and the response increase, respectively. CONCLUSIONS: The response RQ,B varied depending on the magnetic field intensity, and the variation of RQ,B reduced as the photon beam energy increased. The air-gaps affected the dose deposition in the magnetic fields.


Assuntos
Campos Magnéticos , Dosimetria por Luminescência Estimulada Opticamente/métodos , Dosagem Radioterapêutica , Radioterapia/métodos , Simulação por Computador , Humanos , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Água
10.
Radiat Prot Dosimetry ; 186(4): 469-478, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31329992

RESUMO

The objective of this study was to characterise thermoluminescent (TLDs) and optically stimulated luminescent dosimeters (OSLDs) at low X-ray energies and estimate the eye lens (DL), thyroid (DT) and mean glandular (DG) doses received during Full-Field Digital Mammography (FFDM) and Digital Breast Tomosynthesis (DBT). The dosimeters were characterised in mammography energies. DL, DT and DG were estimated in FFDM and DBT mode taping dosimeters on the skin of the thyroid gland and on the left eye lens of an Alderson phantom. Dosimeters were also placed on the top of a NORMI PAS phantom simulating a compressed breast. The accuracy, precision and lower limit of detection (LLD) for TLDs and OSLDs were 5 and 8%, 6 and 3%, and 38 and 11 µSv, respectively. The linearity of the kerma response had an R2 > 0.99 and energy dependence was lower than 40%. DT ranged from 0.40 to 2.87 µGy for FFDM and 1.27 to 5.99 µGy for DBT. DG was between 0.50 and 1.27 mGy for FFDM and 1.07 and 1.60 mGy for DBT. DL was below the LLD. Dosimeters showed good performance. DG values were lower than those found in the literature, whereas DT value agreed with references. Differences between DG and DT determined with OSLDs and TLDs were lower than 10% and 200%.


Assuntos
Mama/diagnóstico por imagem , Cristalino/diagnóstico por imagem , Mamografia/métodos , Dosimetria por Luminescência Estimulada Opticamente/métodos , Imagens de Fantasmas , Intensificação de Imagem Radiográfica/métodos , Glândula Tireoide/diagnóstico por imagem , Simulação por Computador , Feminino , Humanos , Método de Monte Carlo , Doses de Radiação , Exposição à Radiação/análise
11.
Phys Med Biol ; 64(12): 125025, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31035267

RESUMO

Surface dosimetry is required for ensuring effective administration of total skin electron therapy (TSET); however, its use is often reduced due to the time consuming and complex nature of acquisition. A new surface dose imaging technique was characterized in this study and found to provide accurate, rapid and remote measurement of surface doses without the need for post-exposure processing. Disc-shaped plastic scintillators (1 mm thick × 15 mm [Formula: see text]) were chosen as optimal-sized samples and designed to attach to a flat-faced phantom for irradiation using electron beams. Scintillator dosimeter response to radiation damage, dose rate, and temperature were studied. The effect of varying scintillator diameter and thickness on light output was evaluated. Furthermore, the scintillator emission spectra and impact of dosimeter thickness on surface dose were also quantified. Since the scintillators were custom-machined, dosimeter-to-dosimeter variation was tested. Scintillator surface dose measurements were compared to those obtained by optically stimulated luminescence dosimeters (OSLD). Light output from scintillator dosimeters evaluated in this study was insensitive to radiation damage, temperature, and dose rate. Maximum wavelength of emission was found to be 422 nm. Dose reported by scintillators was linearly related to that from OSLDs. Build-up from placement of scintillators and OSLDs had a similar effect on surface dose (4.9% increase). Variation among scintillator dosimeters was found to be 0.3 ± 0.2%. Scintillator light output increased linearly with dosimeter thickness (~1.9 × /mm). All dosimeter diameters tested were able to accurately measure surface dose. Scintillator dosimeters can potentially improve surface dosimetry-associated workflow for TSET in the radiation oncology clinic. Since scintillator data output can be automatically recorded to a patient medical record, the chances of human error in reading out and recording surface dose are minimized.


Assuntos
Elétrons/uso terapêutico , Dosimetria por Luminescência Estimulada Opticamente/instrumentação , Dosimetria por Luminescência Estimulada Opticamente/métodos , Imagens de Fantasmas , Contagem de Cintilação/instrumentação , Neoplasias Cutâneas/radioterapia , Algoritmos , Humanos , Dosagem Radioterapêutica , Neoplasias Cutâneas/patologia
12.
Radiat Prot Dosimetry ; 184(1): 90-97, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30428076

RESUMO

The aim of this work was to investigate the optically-stimulated luminescence (OSL) properties of potassium chloride (KCl) and its potential use in radiation dosimetry. The optimal condition for OSL readout with blue light stimulation were designated using a commercially available Risø TL/OSL reader. KCl was studied in three sample forms: crystals, powder and pellets. The following OSL characteristics were determined: signal reproducibility, OSL measurement-induced sensitivity changes, temperature dependence of OSL and signal stability over time. The results show a high reproducibility of KCl samples and strong sensitivity changes, which can be corrected for by using a test-dose. The long-term OSL studies confirmed the occurrence of both inverse fading and fading phenomena in KCl. In addition, a comparison with corresponding measurements using sodium chloride (NaCl) were carried out. Although it was confirmed that NaCl is more suitable for dosimetry, there might be benefits of combining NaCl with KCl for more accurate absorbed dose determinations.


Assuntos
Dosimetria por Luminescência Estimulada Opticamente/métodos , Cloreto de Potássio/química , Exposição à Radiação/análise , Radiação Ionizante , Radiometria/métodos , Cloreto de Sódio/química , Humanos , Luminescência , Medições Luminescentes , Dosimetria por Luminescência Estimulada Opticamente/instrumentação , Cloreto de Potássio/efeitos da radiação , Doses de Radiação , Radiometria/instrumentação , Cloreto de Sódio/efeitos da radiação
13.
J Cancer Res Ther ; 14(6): 1341-1349, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30488854

RESUMO

AIM: The aim of this study was to assess and analyze the exit dose in radiotherapy using optically stimulated luminescence dosimeter (OSLD) with therapeutic photon beams. MATERIALS AND METHODS: Measurements were carried out with OSLD to estimate the exit dose in phantom for different field sizes, various phantom thicknesses, and with added backscatter material. The data obtained were validated with ionization chamber data where applicable. A correction factor was found to determine the actual dose delivered at the exit surface using measured and theoretical dose. RESULTS: The exit dose factor with Co-60, 6 MV, and 18 MV beams for 10 cm phantom thickness was found to be 0.752 ± 0.38%, 0.808 ± 0.34%, and 0.882 ± 0.42%. The dose enhancement factor with field size was ranging from 3% to 7.7% for Co-60 beam, from 2.6% to 6.6% for 6 MV, and from 2.5% to 4.7% for 18 MV beams at 10 cm depth of the phantom with 20 cm backscatter. The percentage reduction in exit dose with no backscatter material at 25 cm depth with field size of 10 cm × 10 cm was 5.6%, 4.4%, and 4.0%, less than the dose with full backscatter thickness of 20 cm for Co-60 beam, 6 MV, and 18 MV beam. CONCLUSIONS: The promising results confirm that accurate in vivo exit dose measurements are possible with this potential dosimeter. This technique could be implemented as a part of quality assurance to achieve quality treatment in radiotherapy.


Assuntos
Dosimetria in Vivo/métodos , Dosimetria por Luminescência Estimulada Opticamente/métodos , Radioterapia/métodos , Radioisótopos de Cobalto/química , Humanos , Imagens de Fantasmas , Dosímetros de Radiação , Radiometria/métodos , Dosagem Radioterapêutica
14.
Phys Med Biol ; 63(16): 165006, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-29999496

RESUMO

In vivo dosimetry helps ensure the accuracy of radiation treatments. However, standard techniques are only capable of point sampling, making it difficult to accurately measure dose variation along curved surfaces in a continuous manner. The purpose of this work is to introduce a flexible dosimeter band and validate its performance using pre-clinical and clinical x-ray sources. Dosimeter bands were fabricated by uniformly mixing BaFBr:Eu storage phosphor powders into a silicone based elastomer. An optical readout device with dual-wavelength excitation was designed and built to correct for non-uniform phosphor density and extract accurate dose information. Results demonstrated significant correction of the non-uniform readout signal and excellent dose linearity up to 8 Gy irradiation using a pre-clinical 320 kV x-ray system. Beam profile measurements were demonstrated over a long distance of ~30 cm by placing multiple dosimeters in a single line and stitching the results. The performance of the dosimeters was also tested using a clinical linear accelerator (6 MV) and compared to radiochromic film. Once bias corrected, the bands displayed a linear dose response over the 1.02-9.36 Gy range (R 2 > 0.99). The proposed system can be further improved by reducing the size of the readout beam and by more uniformly mixing the phosphor powder with the elastomer. We expect this technique to find application for large-field treatments such as total-skin irradiation and total-body irradiation.


Assuntos
Dosimetria Fotográfica/instrumentação , Dosimetria in Vivo/métodos , Luminescência , Dosimetria por Luminescência Estimulada Opticamente/métodos , Aceleradores de Partículas/instrumentação , Raios gama , Humanos , Doses de Radiação , Raios X
15.
J Cancer Res Ther ; 13(2): 304-312, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28643752

RESUMO

AIM: The modern radiotherapy techniques impose new challenges for dosimetry systems with high precision and accuracy in in vivo and in phantom dosimetric measurements. The knowledge of the basic characterization of a dosimetric system before patient dose verification is crucial. This incites the investigation of the potential use of nanoDot optically stimulated luminescence dosimeter (OSLD) for application in radiotherapy with therapeutic photon beams. MATERIALS AND METHODS: Measurements were carried out with nanoDot OSLDs to evaluate the dosimetric characteristics such as dose linearity, dependency on field size, dose rate, energy and source-to-surface distance (SSD), reproducibility, fading effect, reader stability, and signal depletion per read out with cobalt-60 (60 Co) beam, 6 and 18 MV therapeutic photon beams. The data acquired with OSLDs were validated with ionization chamber data where applicable. RESULTS: Good dose linearity was observed for doses up to 300 cGy and above which supralinear behavior. The standard uncertainty with field size observed was 1.10% ± 0.4%, 1.09% ± 0.34%, and 1.2% ± 0.26% for 6 MV, 18 MV, and 60 Co beam, respectively. The maximum difference with dose rate was 1.3% ± 0.4% for 6 MV and 1.4% ± 0.4% for 18 MV photon beams. The largest variation in SSD was 1.5% ± 1.2% for 60 Co, 1.5% ± 0.9% for 6 MV, and 1.5% ± 1.3% for 18 MV photon beams. The energy dependence of OSL response at 18 MV and 60 Co with 6 MV beam was 1.5% ± 0.7% and 1.7% ± 0.6%, respectively. In addition, good reproducibility, stability after the decay of transient signal, and predictable fading were observed. CONCLUSION: The results obtained in this study indicate the efficacy and suitability of nanoDot OSLD for dosimetric measurements in clinical radiotherapy.


Assuntos
Relação Dose-Resposta à Radiação , Dosimetria por Luminescência Estimulada Opticamente/métodos , Fótons , Radioterapia , Humanos , Luminescência , Imagens de Fantasmas , Reprodutibilidade dos Testes
16.
Appl Radiat Isot ; 110: 155-159, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26784853

RESUMO

Optically stimulated luminescence (OSL) and thermoluminescence (TL) are similar techniques widely used in radiation dosimetry. The main difference between these techniques is the stimulus to induce luminescence emission: TL technique uses thermal stimulation, whereas OSL uses optical stimulation. One of the main intrinsic characteristics of the OSL technique is the possibility of reading several times the dosimetric materials with a negligible loss of signal. In the case of BeO, recent studies have shown that TL stimulation up to 250°C does not affect its OSL signal. Taking the advantages of dosimetric characteristics of BeO combined with both techniques, in this study, we demonstrated the possibility of measuring accumulated and single doses in the same BeO-based detector in order to use it to improve individual monitoring of radiation workers exposed to X-ray or gamma-ray fields. Single doses were measured using TL technique by heating the detector up to 250°C, whereas accumulated doses were estimated using OSL technique in the same detector in a relatively short time of optical stimulation. The detectors were exposed to two energies: 28keV X-rays and 1.25MeV Co-60 gamma rays. The doses estimated by OSL and TL of BeO (Thermalox 995) were compared with those obtained with LiF (TLD-100) and recorded with a calibrated ionization chamber. The results indicate that combined OSL and TL signals of BeO detectors can provide additional information of accumulated dose, with additional exploration of the advantages of both techniques, such as speed in readouts with OSL, and double-check the doses using TL and OSL intensities from BeO.


Assuntos
Berílio , Dosimetria por Luminescência Estimulada Opticamente/métodos , Dosimetria Termoluminescente/métodos , Calibragem , Raios gama , Humanos , Exposição Ocupacional , Doses de Radiação , Radiometria , Raios X
17.
Med Phys ; 41(8): 081720, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25086530

RESUMO

PURPOSE: To evaluate the accuracy of skin dose determination for composite multibeam 3D conformal radiation therapy (3DCRT) and intensity modulated radiation therapy (IMRT) treatments using optically stimulated luminescent dosimeters (OSLDs) and Eclipse treatment planning system. METHODS: Surface doses measured by OSLDs in the buildup region for open field 6 MV beams, either perpendicular or oblique to the surface, were evaluated by comparing against dose measured by Markus Parallel Plate (PP) chamber, surface diodes, and calculated by Monte Carlo simulations. The accuracy of percent depth dose (PDD) calculation in the buildup region from the authors' Eclipse system (Version 10), which was precisely commissioned in the buildup region and was used with 1 mm calculation grid, was also evaluated by comparing to PP chamber measurements and Monte Carlo simulations. Finally, an anthropomorphic pelvic phantom was CT scanned with OSLDs in place at three locations. A planning target volume (PTV) was defined that extended close to the surface. Both an 8 beam 3DCRT and IMRT plan were generated in Eclipse. OSLDs were placed at the CT scanned reference locations to measure the skin doses and were compared to diode measurements and Eclipse calculations. Efforts were made to ensure that the dose comparison was done at the effective measurement points of each detector and corresponding locations in CT images. RESULTS: The depth of the effective measurement point is 0.8 mm for OSLD when used in the buildup region in a 6 MV beam and is 0.7 mm for the authors' surface diode. OSLDs and Eclipse system both agree well with Monte Carlo and/or Markus PP ion chamber and/or diode in buildup regions in 6 MV beams with normal or oblique incidence and across different field sizes. For the multiple beam 3DCRT plan and IMRT plans, the differences between OSLDs and Eclipse calculations on the surface of the anthropomorphic phantom were within 3% and distance-to-agreement less than 0.3 mm. CONCLUSIONS: The authors' experiment showed that OSLD is an accurate dosimeter for skin dose measurements in complex 3DCRT or IMRT plans. It also showed that an Eclipse system with accurate commissioning of the data in the buildup region and 1 mm calculation grid can calculate surface doses with high accuracy and has a potential to replace in vivo measurements.


Assuntos
Dosimetria por Luminescência Estimulada Opticamente/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Simulação por Computador , Humanos , Modelos Biológicos , Método de Monte Carlo , Dosimetria por Luminescência Estimulada Opticamente/instrumentação , Pelve , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/instrumentação , Radioterapia Conformacional/instrumentação , Pele/efeitos da radiação , Tomografia Computadorizada por Raios X , Incerteza
18.
Med Phys ; 40(11): 112102, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24320455

RESUMO

PURPOSE: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom. METHODS: The authors designed and built an 8 × 8 × 10 cm(3) prototype phantom that had two slots capable of holding Al2O3:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all (192)Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian (192)Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits. RESULTS: The linearity correction factor was kL = (-9.43 × 10(-5) × dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using (60)Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian (192)Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023-1.028], and for the Varian source, it was 1.000 (95% CI = 0.995-1.005). Variations in lateral source positioning up to 0.8 mm and distal∕proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ± 5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of four Nucletron sources and four Varian sources revealed an average RPC-to-institution dose ratio of 1.000 (standard deviation = 0.011). CONCLUSIONS: The authors have created an OSLD-based (192)Ir HDR brachytherapy source remote audit tool which offers sufficient dose measurement accuracy to allow the RPC to establish a remote audit program with a ± 5% acceptance criterion. The feasibility of the system has been demonstrated with eight trial audits to date.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Radioisótopos de Irídio/química , Neoplasias/radioterapia , Dosimetria por Luminescência Estimulada Opticamente/métodos , Ensaios Clínicos como Assunto , Radioisótopos de Cobalto/química , Humanos , Óptica e Fotônica , Imagens de Fantasmas , Doses de Radiação , Radiometria/métodos , Dosagem Radioterapêutica , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA