Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.571
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 25101-25112, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691046

RESUMO

The evolution of nano-drug delivery systems addresses the limitations of conventional cancer treatments with stimulus-responsive nanomaterial-based delivery systems presenting temporal and spatial advantages. Among various nanomaterials, boron nitride nanoparticles (BNNs) demonstrate significant potential in drug delivery and cancer treatment, providing a high drug loading capacity, multifunctionality, and low toxicity. However, the challenge lies in augmenting nanomaterial accumulation exclusively within tumors while preserving healthy tissues. To address this, we introduce a novel approach involving cancer cell membrane-functionalized BNNs (CM-BIDdT) for the codelivery of doxorubicin (Dox) and indocyanine green to treat homologous tumor. The cancer cell membrane biomimetic CM-BIDdT nanoparticles possess highly efficient homologous targeting capabilities toward tumor cells. The surface modification with acylated TAT peptides (dTAT) further enhances the nanoparticle intracellular accumulation. Consequently, CM-BIDdT nanoparticles, responsive to the acidic tumor microenvironment, hydrolyze amide bonds, activate the transmembrane penetrating function, and achieve precise targeting with substantial accumulation at the tumor site. Additionally, the photothermal effect of CM-BIDdT under laser irradiation not only kills cells through thermal ablation but also destroys the membrane on the surface of the nanoparticles, facilitating Dox release. Therefore, the fabricated CM-BIDdT nanoparticles orchestrate chemo-photothermal combination therapy and effectively inhibit tumor growth with minimal adverse effects, holding promise as a new modality for synergistic cancer treatment.


Assuntos
Compostos de Boro , Doxorrubicina , Verde de Indocianina , Nanopartículas , Doxorrubicina/química , Doxorrubicina/farmacologia , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia , Animais , Humanos , Camundongos , Nanopartículas/química , Linhagem Celular Tumoral , Terapia Fototérmica , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Antineoplásicos/química , Antineoplásicos/farmacologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732135

RESUMO

Glioblastoma (GBM) is the most lethal and common malignant primary brain tumor in adults. An important feature that supports GBM aggressiveness is the unique composition of its extracellular matrix (ECM). Particularly, fibronectin plays an important role in cancer cell adhesion, differentiation, proliferation, and chemoresistance. Thus, herein, a hydrogel with mechanical properties compatible with the brain and the ability to disrupt the dynamic and reciprocal interaction between fibronectin and tumor cells was produced. High-molecular-weight hyaluronic acid (HMW-HA) functionalized with the inhibitory fibronectin peptide Arg-Gly-Asp-Ser (RGDS) was used to produce the polymeric matrix. Liposomes encapsulating doxorubicin (DOX) were also included in the hydrogel to kill GBM cells. The resulting hydrogel containing liposomes with therapeutic DOX concentrations presented rheological properties like a healthy brain. In vitro assays demonstrated that unmodified HMW-HA hydrogels only caused GBM cell killing after DOX incorporation. Conversely, RGDS-functionalized hydrogels displayed per se cytotoxicity. As GBM cells produce several proteolytic enzymes capable of disrupting the peptide-HA bond, we selected MMP-2 to illustrate this phenomenon. Therefore, RGDS internalization can induce GBM cell apoptosis. Importantly, RGDS-functionalized hydrogel incorporating DOX efficiently damaged GBM cells without affecting astrocyte viability, proving its safety. Overall, the results demonstrate the potential of the RGDS-functionalized hydrogel to develop safe and effective GBM treatments.


Assuntos
Doxorrubicina , Fibronectinas , Glioblastoma , Ácido Hialurônico , Hidrogéis , Oligopeptídeos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fibronectinas/metabolismo , Fibronectinas/antagonistas & inibidores , Hidrogéis/química , Linhagem Celular Tumoral , Ácido Hialurônico/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Lipossomos/química , Apoptose/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo
3.
Sci Rep ; 14(1): 10646, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724530

RESUMO

Individual theranostic agents with dual-mode MRI responses and therapeutic efficacy have attracted extensive interest due to the real-time monitor and high effective treatment, which endow the providential treatment and avoid the repeated medication with side effects. However, it is difficult to achieve the integrated strategy of MRI and therapeutic drug due to complicated synthesis route, low efficiency and potential biosafety issues. In this study, novel self-assembled ultrasmall Fe3O4 nanoclusters were developed for tumor-targeted dual-mode T1/T2-weighted magnetic resonance imaging (MRI) guided synergetic chemodynamic therapy (CDT) and chemotherapy. The self-assembled ultrasmall Fe3O4 nanoclusters synthesized by facilely modifying ultrasmall Fe3O4 nanoparticles with 2,3-dimercaptosuccinic acid (DMSA) molecule possess long-term stability and mass production ability. The proposed ultrasmall Fe3O4 nanoclusters shows excellent dual-mode T1 and T2 MRI capacities as well as favorable CDT ability due to the appropriate size effect and the abundant Fe ion on the surface of ultrasmall Fe3O4 nanoclusters. After conjugation with the tumor targeting ligand Arg-Gly-Asp (RGD) and chemotherapy drug doxorubicin (Dox), the functionalized Fe3O4 nanoclusters achieve enhanced tumor accumulation and retention effects and synergetic CDT and chemotherapy function, which serve as a powerful integrated theranostic platform for cancer treatment.


Assuntos
Imageamento por Ressonância Magnética , Nanomedicina Teranóstica , Imageamento por Ressonância Magnética/métodos , Nanomedicina Teranóstica/métodos , Animais , Camundongos , Humanos , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Succímero/química , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia
4.
Biomed Mater ; 19(4)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38697132

RESUMO

During the process of malignant tumor treatment, photodynamic therapy (PDT) exerts poor efficacy due to the hypoxic environment of the tumor cells, and long-time chemotherapy reduces the sensitivity of tumor cells to chemotherapy drugs due to the presence of drug-resistant proteins on the cell membranes for drug outward transportation. Therefore, we reported a nano platform based on mesoporous silica coated with polydopamine (MSN@PDA) loading PDT enhancer MnO2, photosensitizer indocyanine green (ICG) and chemotherapeutic drug doxorubicin (DOX) (designated as DMPIM) to achieve a sequential release of different drugs to enhance treatment of malignant tumors. MSN was first synthesized by a template method, then DOX was loaded into the mesoporous channels of MSN, and locked by the PDA coating. Next, ICG was modified by π-π stacking on PDA, and finally, MnO2layer was accumulated on the surface of DOX@MSN@PDA- ICG@MnO2, achieving orthogonal loading and sequential release of different drugs. DMPIM first generated oxygen (O2) through the reaction between MnO2and H2O2after entering tumor cells, alleviating the hypoxic environment of tumors and enhancing the PDT effect of sequentially released ICG. Afterwards, ICG reacted with O2in tumor tissue to produce reactive oxygen species, promoting lysosomal escape of drugs and inactivation of p-glycoprotein (p-gp) on tumor cell membranes. DOX loaded in the MSN channels exhibited a delay of approximately 8 h after ICG release to exert the enhanced chemotherapy effect. The drug delivery system achieved effective sequential release and multimodal combination therapy, which achieved ideal therapeutic effects on malignant tumors. This work offers a route to a sequential drug release for advancing the treatment of malignant tumors.


Assuntos
Doxorrubicina , Liberação Controlada de Fármacos , Verde de Indocianina , Indóis , Compostos de Manganês , Óxidos , Fotoquimioterapia , Fármacos Fotossensibilizantes , Polímeros , Fotoquimioterapia/métodos , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Verde de Indocianina/química , Indóis/química , Animais , Compostos de Manganês/química , Humanos , Polímeros/química , Linhagem Celular Tumoral , Óxidos/química , Fármacos Fotossensibilizantes/química , Dióxido de Silício/química , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Portadores de Fármacos/química , Porosidade
5.
Int J Nanomedicine ; 19: 4339-4356, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774026

RESUMO

Background: The in vivo barriers and multidrug resistance (MDR) are well recognized as great challenges for the fulfillment of antitumor effects of current drugs, which calls for the development of novel therapeutic agents and innovative drug delivery strategies. Nanodrug (ND) combining multiple drugs with distinct modes of action holes the potential to circumvent these challenges, while the introduction of photothermal therapy (PTT) can give further significantly enhanced efficacy in cancer therapy. However, facile preparation of ND which contains dual drugs and photothermal capability with effective cancer treatment ability has rarely been reported. Methods: In this study, we selected curcumin (Cur) and doxorubicin (Dox) as two model drugs for the creation of a cocktail ND (Cur-Dox ND). We utilized polyvinylpyrrolidone (PVP) as a stabilizer and regulator to prepare Cur-Dox ND in a straightforward one-pot method. Results: The size of the resulting Cur-Dox ND can be easily adjusted by tuning the charged ratios. It was noted that both loaded drugs in Cur-Dox ND can realize their functions in the same target cell. Especially, the P-glycoprotein inhibition effect of Cur can synergistically cooperate with Dox, leading to enhanced inhibition of 4T1 cancer cells. Furthermore, Cur-Dox ND exhibited pH-responsive dissociation of loaded drugs and a robust photothermal translation capacity to realize multifunctional combat of cancer for photothermal enhanced anticancer performance. We further demonstrated that this effect can also be realized in 3D multicellular model, which possibly attributed to its superior drug penetration as well as photothermal-enhanced cellular uptake and drug release. Conclusion: In summary, Cur-Dox ND might be a promising ND for better cancer therapy.


Assuntos
Curcumina , Doxorrubicina , Povidona , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Povidona/química , Curcumina/química , Curcumina/farmacologia , Curcumina/farmacocinética , Linhagem Celular Tumoral , Animais , Camundongos , Humanos , Nanopartículas/química , Tamanho da Partícula , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Terapia Fototérmica/métodos , Liberação Controlada de Fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Portadores de Fármacos/química , Sobrevivência Celular/efeitos dos fármacos
6.
ACS Appl Bio Mater ; 7(5): 3337-3345, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38700956

RESUMO

A stimuli-responsive drug delivery nanocarrier with a core-shell structure combining photothermal therapy and chemotherapy for killing cancer cells was constructed in this study. The multifunctional nanocarrier ReS2@mSiO2-RhB entails an ReS2 hierarchical nanosphere coated with a fluorescent mesoporous silica shell. The three-dimensional hierarchical ReS2 nanostructure is capable of effectively absorbing near-infrared (NIR) light and converting it into heat. These ReS2 nanospheres were generated by a hydrothermal synthesis process leading to the self-assembly of few-layered ReS2 nanosheets. The mesoporous silica shell was further coated on the surface of the ReS2 nanospheres through a surfactant-templating sol-gel approach to provide accessible mesopores for drug uploading. A fluorescent dye (Rhodamine B) was covalently attached to silica precursors and incorporated during synthesis in the mesoporous silica walls toward conferring imaging capability to the nanocarrier. Doxorubicin (DOX), a known cancer drug, was used in a proof-of-concept study to assess the material's ability to function as a drug delivery carrier. While the silica pores are not capped, the drug molecule loading and release take advantage of the pH-governed electrostatic interactions between the drug and silica wall. The ReS2@mSiO2-RhB enabled a drug loading content as high as 19.83 mg/g doxorubicin. The ReS2@mSiO2-RhB-DOX nanocarrier's cumulative drug release rate at pH values that simulate physiological conditions showed significant pH responsiveness, reaching 59.8% at pH 6.8 and 98.5% and pH 5.5. The in vitro testing using HeLa cervical cancer cells proved that ReS2@mSiO2-RhB-DOX has a strong cancer eradication ability upon irradiation with an NIR laser owing to the combined drug delivery and photothermal effect. The results highlight the potential of ReS2@mSiO2-RhB nanoparticles for combined cancer therapy in the future.


Assuntos
Doxorrubicina , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Teste de Materiais , Nanopartículas , Tamanho da Partícula , Terapia Fototérmica , Rênio , Dióxido de Silício , Dióxido de Silício/química , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Concentração de Íons de Hidrogênio , Nanopartículas/química , Rênio/química , Rênio/farmacologia , Dissulfetos/química , Porosidade , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Células HeLa
7.
ACS Nano ; 18(20): 12716-12736, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38718220

RESUMO

Mesoporous silica nanoparticles (MSNs) represent a promising avenue for targeted brain tumor therapy. However, the blood-brain barrier (BBB) often presents a formidable obstacle to efficient drug delivery. This study introduces a ligand-free PEGylated MSN variant (RMSN25-PEG-TA) with a 25 nm size and a slight positive charge, which exhibits superior BBB penetration. Utilizing two-photon imaging, RMSN25-PEG-TA particles remained in circulation for over 24 h, indicating significant traversal beyond the cerebrovascular realm. Importantly, DOX@RMSN25-PEG-TA, our MSN loaded with doxorubicin (DOX), harnessed the enhanced permeability and retention (EPR) effect to achieve a 6-fold increase in brain accumulation compared to free DOX. In vivo evaluations confirmed the potent inhibition of orthotopic glioma growth by DOX@RMSN25-PEG-TA, extending survival rates in spontaneous brain tumor models by over 28% and offering an improved biosafety profile. Advanced LC-MS/MS investigations unveiled a distinctive protein corona surrounding RMSN25-PEG-TA, suggesting proteins such as apolipoprotein E and albumin could play pivotal roles in enabling its BBB penetration. Our results underscore the potential of ligand-free MSNs in treating brain tumors, which supports the development of future drug-nanoparticle design paradigms.


Assuntos
Barreira Hematoencefálica , Doxorrubicina , Sistemas de Liberação de Medicamentos , Nanopartículas , Dióxido de Silício , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Dióxido de Silício/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Animais , Porosidade , Camundongos , Humanos , Polietilenoglicóis/química , Portadores de Fármacos/química , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Tamanho da Partícula , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Ligantes , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem
8.
Sci Rep ; 14(1): 9983, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693143

RESUMO

The need for tumor postoperative treatments aimed at recurrence prevention and tissue regeneration have raised wide considerations in the context of the design and functionalization of implants. Herein, an injectable hydrogel system encapsulated with anti-tumor, anti-oxidant dual functional nanoparticles has been developed in order to prevent tumor relapse after surgery and promote wound repair. The utilization of biocompatible gelatin methacryloyl (GelMA) was geared towards localized therapeutic intervention. Zeolitic imidazolate framework-8@ceric oxide (ZIF-8@CeO2, ZC) nanoparticles (NPs) were purposefully devised for their proficiency as reactive oxygen species (ROS) scavengers. Furthermore, injectable GelMA hydrogels loaded with ZC NPs carrying doxorubicin (ZC-DOX@GEL) were tailored as multifunctional postoperative implants, ensuring the efficacious eradication of residual tumor cells and alleviation of oxidative stress. In vitro and in vivo experiments were conducted to substantiate the efficacy in cancer cell elimination and the prevention of tumor recurrence through the synergistic chemotherapy approach employed with ZC-DOX@GEL. The acceleration of tissue regeneration and in vitro ROS scavenging attributes of ZC@GEL were corroborated using rat models of wound healing. The results underscore the potential of the multifaceted hydrogels presented herein for their promising application in tumor postoperative treatments.


Assuntos
Doxorrubicina , Hidrogéis , Estruturas Metalorgânicas , Metacrilatos , Nanopartículas , Cicatrização , Animais , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Cicatrização/efeitos dos fármacos , Nanopartículas/química , Hidrogéis/química , Ratos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Gelatina/química , Cério/química , Cério/farmacologia , Zeolitas/química , Zeolitas/farmacologia , Linhagem Celular Tumoral , Masculino , Imidazóis/química , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Ratos Sprague-Dawley
9.
Int J Nanomedicine ; 19: 3957-3972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711614

RESUMO

Purpose: Current treatment approaches for Prostate cancer (PCa) often come with debilitating side effects and limited therapeutic outcomes. There is urgent need for an alternative effective and safe treatment for PCa. Methods: We developed a nanoplatform to target prostate cancer cells based on graphdiyne (GDY) and a copper-based metal-organic framework (GDY-CuMOF), that carries the chemotherapy drug doxorubicin (DOX) for cancer treatment. Moreover, to provide GDY-CuMOF@DOX with homotypic targeting capability, we coated the PCa cell membrane (DU145 cell membrane, DCM) onto the surface of GDY-CuMOF@DOX, thus obtaining a biomimetic nanoplatform (DCM@GDY-CuMOF@DOX). The nanoplatform was characterized by using transmission electron microscope, atomic force microscope, X-ray diffraction, etc. Drug release behavior, antitumor effects in vivo and in vitro, and biosafety of the nanoplatform were evaluated. Results: We found that GDY-CuMOF exhibited a remarkable capability to load DOX mainly through π-conjugation and pore adsorption, and it responsively released DOX and generated Cu+ in the presence of glutathione (GSH). In vivo experiments demonstrated that this nanoplatform exhibits remarkable cell-killing efficiency by generating lethal reactive oxygen species (ROS) and mediating cuproptosis. In addition, DCM@GDY-CuMOF@DOX effectively suppresses tumor growth in vivo without causing any apparent side effects. Conclusion: The constructed DCM@GDY-CuMOF@DOX nanoplatform integrates tumor targeting, drug-responsive release and combination with cuproptosis and chemodynamic therapy, offering insights for further biomedical research on efficient PCa treatment.


Assuntos
Cobre , Doxorrubicina , Grafite , Estruturas Metalorgânicas , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Humanos , Linhagem Celular Tumoral , Cobre/química , Cobre/farmacologia , Grafite/química , Grafite/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Liberação Controlada de Fármacos , Espécies Reativas de Oxigênio/metabolismo , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Camundongos Nus , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Portadores de Fármacos/química , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Nanomedicine ; 19: 3827-3846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708180

RESUMO

Background: New treatment modalities for hepatocellular carcinoma (HCC) are desperately critically needed, given the lack of specificity, severe side effects, and drug resistance with single chemotherapy. Engineered bacteria can target and accumulate in tumor tissues, induce an immune response, and act as drug delivery vehicles. However, conventional bacterial therapy has limitations, such as drug loading capacity and difficult cargo release, resulting in inadequate therapeutic outcomes. Synthetic biotechnology can enhance the precision and efficacy of bacteria-based delivery systems. This enables the selective release of therapeutic payloads in vivo. Methods: In this study, we constructed a non-pathogenic Escherichia coli (E. coli) with a synchronized lysis circuit as both a drug/gene delivery vehicle and an in-situ (hepatitis B surface antigen) Ag (ASEc) producer. Polyethylene glycol (CHO-PEG2000-CHO)-poly(ethyleneimine) (PEI25k)-citraconic anhydride (CA)-doxorubicin (DOX) nanoparticles loaded with plasmid encoded human sulfatase 1 (hsulf-1) enzyme (PNPs) were anchored on the surface of ASEc (ASEc@PNPs). The composites were synthesized and characterized. The in vitro and in vivo anti-tumor effect of ASEc@PNPs was tested in HepG2 cell lines and a mouse subcutaneous tumor model. Results: The results demonstrated that upon intravenous injection into tumor-bearing mice, ASEc can actively target and colonise tumor sites. The lytic genes to achieve blast and concentrated release of Ag significantly increased cytokine secretion and the intratumoral infiltration of CD4/CD8+T cells, initiated a specific immune response. Simultaneously, the PNPs system releases hsulf-1 and DOX into the tumor cell resulting in rapid tumor regression and metastasis prevention. Conclusion: The novel drug delivery system significantly suppressed HCC in vivo with reduced side effects, indicating a potential strategy for clinical HCC therapy.


Assuntos
Carcinoma Hepatocelular , Doxorrubicina , Escherichia coli , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/terapia , Humanos , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Células Hep G2 , Camundongos , Escherichia coli/efeitos dos fármacos , Antígenos de Superfície da Hepatite B , Sulfotransferases/genética , Nanopartículas/química , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Medicamentos/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Rep ; 14(1): 11350, 2024 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762628

RESUMO

A new 3D metal-organic frameworks [Cd6(L)4(bipy)3(H2O)2·H2O] (1) was gained by employing Cd(II) and organic ligand [H3L = 4,4',4''-(benzene-1,3,5-triyltris(oxy))tribenzoic acid)benzene acid; bipy = 4,4'-bipyridine] in the solvothermal condition, which has been fully examined via single-X ray diffraction, FTIR and elemental analysis and so on. Using natural polysaccharides hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) as raw materials, we successfully prepared HA/CMCS hydrogels and observed their internal micromorphology by scanning electron microscopy. Using doxorubicin (Dox) as a drug model, we synthesized a novel metal gel particle loaded with doxorubicin, and their encapsulation and release effects were studied using fluorescence spectroscopy, followed by further investigation of their components through thermogravimetric analysis. Based on this, the therapeutic effect on leukemia was evaluated. Finally, an enhanced learning method for automatically designing new ligand structures from host ligands was proposed. Through generative modeling and molecular docking simulations, the biological behavior of the host and predicted cadmium complexes was extensively studied.


Assuntos
Quitosana , Doxorrubicina , Hidrogéis , Leucemia , Doxorrubicina/química , Doxorrubicina/farmacologia , Hidrogéis/química , Quitosana/química , Quitosana/análogos & derivados , Humanos , Leucemia/tratamento farmacológico , Simulação de Acoplamento Molecular , Cádmio/química , Ácido Hialurônico/química , Estruturas Metalorgânicas/química , Portadores de Fármacos/química , Linhagem Celular Tumoral , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia
12.
ACS Appl Mater Interfaces ; 16(15): 18311-18326, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564228

RESUMO

Proteins are promising substances for introducing new drug carriers with efficient blood circulation due to low possibilities of clearance by macrophages. However, such natural biopolymers have highly sophisticated molecular structures, preventing them from being assembled into nanoplatforms with manipulable payload release profiles. Here, we report a novel anticancer nanodrug carrier moonlighting protein, Aprotinin, to be used as a newly identified carrier for cytotoxic drugs. The Aprotinin-Doxorubicin (Apr-Dox) nanobioconjugate was prepared via a single-step microfluidics coflow mixing technique, a feasible and simple way to synthesize a carrier-based drug design with a double-barreled approach that can release and actuate two therapeutic agents simultaneously, i.e., Apr-Dox in 1:11 ratio (the antimetastatic carrier drug aprotinin and the chemotherapeutic drug DOX). With a significant stimuli-sensitive (i.e., pH) drug release ability, this nanobioconjugate achieves superior bioperformances, including high cellular uptake, efficient tumor penetration, and accumulation into the acidic tumor microenvironment, besides inhibiting further tumor growth by halting the urokinase plasminogen activator (uPA) involved in metastasis and tumor progression. Distinctly, in healthy human umbilical vein endothelial (HUVEC) cells, drastically lower cellular uptake of nanobioconjugates has been observed and validated compared to the anticancer agent Dox. Our findings demonstrate an enhanced cellular internalization of nanobioconjugates toward breast cancer, prostate cancer, and lung cancer both in vitro and in physiologically relevant biological 3D-spheroid models. Consequently, the designed nanobioconjugate shows a high potential for targeted drug delivery via a natural and biocompatible moonlighting protein, thus opening a new avenue for proving aprotinin in cancer therapy as both an antimetastatic and a drug-carrying agent.


Assuntos
Antineoplásicos , Neoplasias da Mama , Nanopartículas , Masculino , Humanos , Aprotinina , Microfluídica , Nanopartículas/química , Doxorrubicina/química , Antineoplásicos/química , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química , Neoplasias da Mama/tratamento farmacológico , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos , Microambiente Tumoral
13.
Biosens Bioelectron ; 256: 116273, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621341

RESUMO

Simple and reliable profiling of tumor-derived exosomes (TDEs) holds significant promise for the early detection of cancer. Nonetheless, this remains challenging owing to the substantial heterogeneity and low concentration of TDEs. Herein, we devised an accurate and highly sensitive electrochemical sensing strategy for TDEs via simultaneously targeting exosomal mucin 1 (MUC1) and programmed cell death ligand 1 (PD-L1). This approach employs high-affinity aptamers as specific recognition elements, utilizes rolling circle amplification and DNA nanospheres as effective bridges and signal amplifiers, and leverages methylene blue (MB) and doxorubicin (DOX) as robust signal reporters. The crux of this separation- and label-free method is the specific response of MB and DOX to G-quadruplex structures and DNA nanospheres, respectively. Quantifying TDEs using this strategy enabled precise discrimination of lung cancer patients (n = 25) from healthy donors (n = 12), showing 100% specificity (12/12), 92% sensitivity (23/25), and an overall accuracy of 94.6% (35/37), with an area under the receiver operating characteristic curve (AUC) of 0.97. Furthermore, the assay results strongly correlated with findings from computerized tomography and pathological analyses. Our approach could facilitate the early diagnosis of lung cancer through TDEs-based liquid biopsy.


Assuntos
Aptâmeros de Nucleotídeos , Antígeno B7-H1 , Técnicas Biossensoriais , Doxorrubicina , Técnicas Eletroquímicas , Exossomos , Neoplasias Pulmonares , Humanos , Técnicas Biossensoriais/métodos , Exossomos/química , Técnicas Eletroquímicas/métodos , Neoplasias Pulmonares/química , Aptâmeros de Nucleotídeos/química , Doxorrubicina/química , DNA/química , Azul de Metileno/química , Nanosferas/química , Quadruplex G
14.
J Mater Chem B ; 12(16): 4018-4028, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38578014

RESUMO

On-demand controlled drug release holds great promise for cancer therapy. Light-degradable nanocarriers have gained increasing attention for designing controllable drug delivery systems owing to their spatiotemporally controllable properties. Herein, a highly luminescent and light-degradable nanocarrier is constructed by intercalating glutathione-capped gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8) via competitive coordination assembly, named AuNC@ZIF-8, for light-triggered drug release. Glutathione-capped AuNCs and 2-methylimidazole (MIm) competitively coordinated with Zn2+ to form AuNC@ZIF-8 using a one step process in an aqueous solution. Specifically, the obtained AuNC@ZIF-8 has a high quantum yield of 52.96% and displays a distinctive property of photolysis. Competitive coordination interactions within AuNC@ZIF-8 were evidenced by X-ray diffraction and X-ray photoelectron spectroscopy, in which Zn2+ strongly coordinated with the N of MIm and weakly coordinated with the carboxyl/amino groups in the glutathione of AuNCs. Under light irradiation, the Au-S bond in AuNCs breaks, enhancing the coordination ability between carboxyl/amino groups and Zn2+. This collapses the crystal structure of AuNC@ZIF-8 and causes subsequent fluorescence quenching. Additionally, AuNC@ZIF-8 is successfully employed as a luminescent nanocarrier of anticancer drugs to form drug-AuNC@ZIF-8, in which three typical anticancer drugs are selected due to different coordination interactions. The obtained smart drug-AuNC@ZIF-8 can be effectively internalized into HeLa cells and degraded in response to blue light, with negligible dark cytotoxicity and high light cytotoxicity. This study highlights the crucial role of competitive coordination interactions in synthesizing functional materials with fluorescence efficiency and photolytic properties.


Assuntos
Liberação Controlada de Fármacos , Ouro , Luz , Nanopartículas Metálicas , Estruturas Metalorgânicas , Ouro/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Humanos , Nanopartículas Metálicas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Células HeLa , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Tamanho da Partícula , Propriedades de Superfície , Doxorrubicina/química , Doxorrubicina/farmacologia
15.
Anal Chem ; 96(16): 6381-6389, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38593059

RESUMO

Pyroptosis is closely related to the development and treatment of various cancers; thus, comprehensive studies of the correlations between pyroptosis and its inductive or inhibitive factors can provide new ideas for the intervention and diagnosis of tumors. The dysfunction of mitochondria may induce pyroptosis in cancer cells, which can be reflected by the fluctuations of the microenvironmental parameters in mitochondria as well as the changes of mitochondrial DNA level and morphology, etc. To precisely track and assess the mitochondria-associated pyroptosis process, simultaneous visualization of changes in multiphysiological parameters in mitochondria is highly desirable. In this work, we reported a nonreaction-based, multifunctional small-molecule fluorescent probe Mito-DK with the capability of crosstalk-free response to polarity and mtDNA as well as mitochondrial morphology. Accurate assessment of mitochondria-associated pyroptosis induced by palmitic acid/H2O2 was achieved through monitoring changes in mitochondrial multiple parameters with the help of Mito-DK. In particular, the pyroptosis-inducing ability of an antibiotic doxorubicin and the pyroptosis-inhibiting capacity of an anticancer agent puerarin were evaluated by Mito-DK. These results provide new perspectives for visualizing mitochondria-associated pyroptosis and offer new approaches for screening pyroptosis-related anticancer agents.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Piroptose , Piroptose/efeitos dos fármacos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Doxorrubicina/farmacologia , Doxorrubicina/química
16.
Nanoscale ; 16(19): 9412-9425, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38650478

RESUMO

Nanotechnology has the potential to provide formulations of antitumor agents with increased selectivity towards cancer tissue thereby decreasing systemic toxicity. This in vivo study evaluated the potential of novel nanoformulation based on poly(lactic-co-glycolic acid) (PLGA) to reduce the cardiotoxic potential of doxorubicin (DOX). In vivo toxicity of PLGADOX was compared with clinically approved non-PEGylated, liposomal nanoformulation of DOX (LipoDOX) and conventional DOX form (ConvDOX). The study was performed using Wistar Han rats of both sexes that were treated intravenously for 28 days with 5 doses of tested substances at intervals of 5 days. Histopathological analyses of heart tissues showed the presence of myofiber necrosis, degeneration processes, myocytolysis, and hemorrhage after treatment with ConvDOX, whereas only myofiber degeneration and hemorrhage were present after the treatment with nanoformulations. All DOX formulations caused an increase in the troponin T with the greatest increase caused by convDOX. qPCR analyses revealed an increase in the expression of inflammatory markers IL-6 and IL-8 after ConvDOX and an increase in IL-8 expression after lipoDOX treatments. The mass spectra imaging (MSI) of heart tissue indicates numerous metabolic and lipidomic changes caused by ConvDOX, while less severe cardiac damages were found after treatment with nanoformulations. In the case of LipoDOX, autophagy and apoptosis were still detectable, whereas PLGADOX induced only detectable mitochondrial toxicity. Cardiotoxic effects were frequently sex-related with the greater risk of cardiotoxicity observed mostly in male rats.


Assuntos
Cardiotoxicidade , Doxorrubicina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Wistar , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/análogos & derivados , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Ratos , Masculino , Cardiotoxicidade/prevenção & controle , Feminino , Apoptose/efeitos dos fármacos , Nanopartículas/química , Miocárdio/patologia , Miocárdio/metabolismo , Polietilenoglicóis/química , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Coração/efeitos dos fármacos , Lipossomos/química
17.
ACS Appl Mater Interfaces ; 16(19): 24341-24350, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687629

RESUMO

Magnetic micro/nanorobots are promising platforms for targeted drug delivery, and their construction with soft and flexible features has received extensive attention for practical applications. Despite significant efforts in this field, facile fabrication of magnetic microrobots with flexible structures and versatility in targeted therapy remains a big challenge. Herein, we proposed a novel universal strategy to fabricate a biohybrid flexible sperm-like microrobot (BFSM) based on a Chlorella (Ch.) cell and artificial flagella, which showed great potential for targeted chemo-photothermal therapy for the first time. In this approach, microspherical Ch. cells were utilized to construct the microrobotic heads, which were intracellularly deposited with core-shell Pd@Au, extracellularly magnetized with Fe3O4, and further loaded with anticancer drug. The magnetic heads with excellent photothermal and chemotherapeutic capability were further assembled with flexible polypyrrole nanowires via biotin-streptavidin bonding to construct the BFSMs. Based on the exquisite head-to-tail structures, the BFSMs could be effectively propelled under precessing magnetic fields and move back and forth without a U-turn. Moreover, in vitro chemo-photothermal tests were conducted to verify their performance of targeted drug delivery toward localized HeLa cells. Due to this superior versatility and facile fabrication, the BFSMs demonstrated great potential for targeted anticancer therapy.


Assuntos
Terapia Fototérmica , Humanos , Células HeLa , Robótica , Sistemas de Liberação de Medicamentos , Antineoplásicos/química , Antineoplásicos/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Polímeros/química , Nanofios/química , Ouro/química
18.
Acta Biomater ; 180: 407-422, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614414

RESUMO

Facile construction of a fully biodegradable spherical nucleic acid (SNA) nanoplatform is highly desirable for clinical translations but remains rarely explored. We developed herein the first polycarbonate-based biodegradable SNA nanoplatform for self-codelivery of a chemotherapeutic drug, doxorubicin (DOX), and a human liver-specific miR122 for synergistic chemo-gene therapy of hepatocellular carcinoma (HCC). Ring-opening polymerization (ROP) of a carbonate monomer leads to a well-defined polycarbonate backbone for subsequent DOX conjugation to the pendant side chains via acidic pH-cleavage Schiff base links and miR122 incorporation to the chain termini via click coupling, affording an amphiphilic polycarbonate-DOX-miR122 conjugate, PBis-Mpa30-DOX-miR122 that can self-assemble into stabilized SNA. Besides the desired biodegradability, another notable merit of this nanoplatform is the use of miR122 not only for gene therapy but also for enhanced innate immune response. Together with the ICD-triggering effect of DOX, PBis-Mpa30-DOX-miR122 SNA-mediated DOX and miR122 codelivery leads to synergistic immunogenicity enhancement, resulting in tumor growth inhibition value (TGI) of 98.1 % significantly higher than those of the groups treated with only drug or gene in a Hepa1-6-tumor-bearing mice model. Overall, this study develops a useful strategy toward biodegradable SNA construction, and presents a drug and gene-based self-codelivery SNA with synergistic immunogenicity enhancement for efficient HCC therapy. STATEMENT OF SIGNIFICANCE: Facile construction of a fully biodegradable SNA nanoplatform is useful for in vivo applications but remains relatively unexplored likely due to the synthetic challenge. We report herein construction of a polycarbonate-based SNA nanoplatform for co-delivering a chemotherapeutic drug, DOX, and a human liver-specific miR-122 for synergistic HCC treatment. In addition to the desired biodegradability properties, this SNA nanoplatform integrates DOX-triggered ICD and miR-122-enhanced innate immunity for simultaneously activating adaptive and innate immunities, which leads to potent antitumor efficiency with a TGI value of 98.1 % in a Hepa1-6-tumor-bearing mice model.


Assuntos
Imunidade Adaptativa , Doxorrubicina , Imunidade Inata , MicroRNAs , Doxorrubicina/farmacologia , Doxorrubicina/química , MicroRNAs/genética , Animais , Imunidade Inata/efeitos dos fármacos , Humanos , Imunidade Adaptativa/efeitos dos fármacos , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/imunologia , Nanopartículas/química , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos Nus , Camundongos Endogâmicos BALB C
19.
Biomacromolecules ; 25(5): 2980-2989, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38587905

RESUMO

We developed a supramolecular system for codelivery of doxorubicin (Dox) and p53 gene based on a ß-CD-containing star-shaped cationic polymer. First, a star-shaped cationic polymer consisting of a ß-CD core and 3 arms of oligoethylenimine (OEI), named CD-OEI, was used to form a supramolecular inclusion complex with hydrophobic Dox. The CD-OEI/Dox complex was subsequently used to condense plasmid DNA via electrostatic interactions to form CD-OEI/Dox/DNA polyplex nanoparticles with positive surface charges that enhanced the cellular uptake of both Dox and DNA. This supramolecular drug and gene codelivery system showed high gene transfection efficiency and effective protein expression in cancer cells. The codelivery of Dox and DNA encoding the p53 gene resulted in reduced cell viability and enhanced antitumor effects at low Dox concentrations. With its enhanced cellular uptake and anticancer efficacy, the system holds promise as a delivery carrier for potential combination cancer therapies.


Assuntos
Doxorrubicina , Nanopartículas , Eletricidade Estática , beta-Ciclodextrinas , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Humanos , Nanopartículas/química , beta-Ciclodextrinas/química , Proteína Supressora de Tumor p53/genética , DNA/química , Sobrevivência Celular/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem , Técnicas de Transferência de Genes , Portadores de Fármacos/química
20.
J Chem Inf Model ; 64(9): 3874-3883, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652138

RESUMO

The lipid raft subdomains in cancer cell membranes play a key role in signal transduction, biomolecule recruitment, and drug transmembrane transport. Augmented membrane rigidity due to the formation of a lipid raft is unfavorable for the entry of drugs, a limiting factor in clinical oncology. The short-chain ceramide (CER) has been reported to promote drug entry into membranes and disrupt lipid raft formation, but the underlying mechanism is not well understood. We recently explored the carrier-membrane fusion dynamics of PEG-DPPE micelles in delivering doxorubicin (DOX). Based on the phase-segregated membrane model composed of DPPC/DIPC/CHOL/GM1/PIP2, we aim to explore the dynamic mechanism of the PEG-DPPE micelle-encapsulating DOXs in association with the raft-included cell membrane modulated by C8 acyl tail CERs. The results show that the lipid raft remains integrated and DOX-resistant subjected to free DOXs and the micelle-encapsulating ones. Addition of CERs disorganizes the lipid raft by pushing CHOL aside from DPPC. It subsequently allows for a good permeability for PEG-DPPE micelle-encapsulated DOXs, which penetrate deeper as CER concentration increases. GM1 is significant in guiding drugs' redistributing between bilayer phases, and the anionic PIP2 further helps DOXs attain the inner bilayer surface. These results elaborate on the perturbing effect of CERs on lipid raft stability, which provides a new comprehensive approach for further design of drug delivery systems.


Assuntos
Ceramidas , Doxorrubicina , Microdomínios da Membrana , Micelas , Simulação de Dinâmica Molecular , Polietilenoglicóis , Polietilenoglicóis/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Ceramidas/química , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/química , Fosfatidiletanolaminas/química , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA