Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799719

RESUMO

Ecdysteroids (ECs) are steroid hormones originally found in the animal kingdom where they function as insect molting hormones. Interestingly, a relatively high number of these substances can also be formed in plant cells. Moreover, ECs have certain regulatory effects on plant physiology, but their role in plants still requires further study. One of the main aims of the present study was to verify a hypothesis that fenarimol, an inhibitor of the biosynthesis of ECs in the animal kingdom, also affects the content of endogenous ECs in plants using winter wheat Triticum aestivum L. as a model plant. The levels of endogenous ECs in winter wheat, including the estimation of their changes during a course of different temperature treatments, have been determined using a sensitive analytical method based on UHPLC-MS/MS. Under our experimental conditions, four substances of EC character were detected in the tissue of interest in amounts ranging from less than 1 to over 200 pg·g-1 FW: 20-hydroxyecdysone, polypodine B, turkesterone, and isovitexirone. Among them, turkesterone was observed to be the most abundant EC and accumulated mainly in the crowns and leaves of wheat. Importantly, the level of ECs was observed to be dependent on the age of the plants, as well as on growth conditions (especially temperature). Fenarimol, an inhibitor of a cytochrome P450 monooxygenase, was shown to significantly decrease the level of naturally occurring ECs in experimental plants, which may indicate its potential use in studies related to the biosynthesis and physiological function of these substances in plants.


Assuntos
Produtos Biológicos/metabolismo , Ecdisteroides/biossíntese , Pirimidinas/farmacologia , Triticum/metabolismo , Produtos Biológicos/química , Cromatografia Líquida/métodos , Ecdisteroides/química , Fungicidas Industriais/farmacologia , Estrutura Molecular , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Espectrometria de Massas em Tandem/métodos , Temperatura , Triticum/crescimento & desenvolvimento
2.
J Biol Chem ; 295(20): 7154-7167, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32241910

RESUMO

Ecdysteroids are the principal steroid hormones essential for insect development and physiology. In the last 18 years, several enzymes responsible for ecdysteroid biosynthesis encoded by Halloween genes were identified and genetically and biochemically characterized. However, the tertiary structures of these proteins have not yet been characterized. Here, we report the results of an integrated series of in silico, in vitro, and in vivo analyses of the Halloween GST protein Noppera-bo (Nobo). We determined crystal structures of Drosophila melanogaster Nobo (DmNobo) complexed with GSH and 17ß-estradiol, a DmNobo inhibitor. 17ß-Estradiol almost fully occupied the putative ligand-binding pocket and a prominent hydrogen bond formed between 17ß-estradiol and Asp-113 of DmNobo. We found that Asp-113 is essential for 17ß-estradiol-mediated inhibition of DmNobo enzymatic activity, as 17ß-estradiol did not inhibit and physically interacted less with the D113A DmNobo variant. Asp-113 is highly conserved among Nobo proteins, but not among other GSTs, implying that this residue is important for endogenous Nobo function. Indeed, a homozygous nobo allele with the D113A substitution exhibited embryonic lethality and an undifferentiated cuticle structure, a phenocopy of complete loss-of-function nobo homozygotes. These results suggest that the nobo family of GST proteins has acquired a unique amino acid residue that appears to be essential for binding an endogenous sterol substrate to regulate ecdysteroid biosynthesis. To the best of our knowledge, ours is the first study describing the structural characteristics of insect steroidogenic Halloween proteins. Our findings provide insights relevant for applied entomology to develop insecticides that specifically inhibit ecdysteroid biosynthesis.


Assuntos
Proteínas de Drosophila/química , Estradiol/química , Glutationa Transferase/química , Aedes , Substituição de Aminoácidos , Animais , Cristalografia por Raios X , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Ecdisteroides/biossíntese , Ecdisteroides/química , Ecdisteroides/genética , Estradiol/genética , Estradiol/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Mutação com Perda de Função , Mutação de Sentido Incorreto , Relação Estrutura-Atividade
3.
FEBS Lett ; 594(7): 1187-1195, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31845319

RESUMO

Ecdysteroids are critically important for the formation of the insect exoskeleton. Cholesterol is a precursor of ecdysone and its active form 20-hydroxyecdysone, but some steps in the ecdysteroid biosynthesis pathway remain unknown. An essential requirement of glutathione (GSH) transferase GSTE14 in ecdysteroid biosynthesis has been established in Drosophila melanogaster, but its function is entirely unknown. Here, we have determined the crystal structure of GSTE14 in complex with GSH and investigated the kinetic properties of GSTE14 with alternative substrates. GSTE14 has high-ranking steroid double-bond isomerase activity, albeit 50-fold lower than the most efficient mammalian GSTs. Corresponding steroid isomerizations are unknown in insects, and their exact physiological role remains to be shown. Nonetheless, the essential enzyme GSTE14 is here demonstrated to be catalytically competent and have a steroid-binding site.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Ecdisteroides/biossíntese , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Esteroide Isomerases/química , Esteroide Isomerases/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Glutationa/química , Glutationa/metabolismo , Cinética , Modelos Moleculares , Multimerização Proteica , Especificidade por Substrato
4.
Nat Commun ; 10(1): 5463, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784520

RESUMO

Iron Regulatory Protein 1 (IRP1) is a bifunctional cytosolic iron sensor. When iron levels are normal, IRP1 harbours an iron-sulphur cluster (holo-IRP1), an enzyme with aconitase activity. When iron levels fall, IRP1 loses the cluster (apo-IRP1) and binds to iron-responsive elements (IREs) in messenger RNAs (mRNAs) encoding proteins involved in cellular iron uptake, distribution, and storage. Here we show that mutations in the Drosophila 1,4-Alpha-Glucan Branching Enzyme (AGBE) gene cause porphyria. AGBE was hitherto only linked to glycogen metabolism and a fatal human disorder known as glycogen storage disease type IV. AGBE binds specifically to holo-IRP1 and to mitoNEET, a protein capable of repairing IRP1 iron-sulphur clusters. This interaction ensures nuclear translocation of holo-IRP1 and downregulation of iron-dependent processes, demonstrating that holo-IRP1 functions not just as an aconitase, but throttles target gene expression in anticipation of declining iron requirements.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica/genética , Proteína 1 Reguladora do Ferro/genética , Ferro/metabolismo , Porfirias/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Regulação para Baixo , Drosophila , Proteínas de Drosophila/metabolismo , Ecdisteroides/biossíntese , Glândulas Endócrinas/metabolismo , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Heme/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Larva/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Porfirias/metabolismo , RNA Mensageiro/metabolismo
5.
J Insect Sci ; 19(3)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31225881

RESUMO

Prothoracicotropic hormone (PTTH) is a neuropeptide that triggers a cascade of events within the prothoracic gland (PG) cells, leading to the activation of all the crucial enzymes involved in ecdysone biosynthesis, the main insect steroid hormone. Studies concerning ecdysteroidogenesis predicted PTTH action using brain extract (BE), consisting in a complex mixture in which some components positively or negatively interfere with PTTH-stimulated ecdysteroidogenesis. Consequently, the integration of these opposing factors in steroidogenic tissues leads to a complex secretory pattern. A recombinant form of prothoracicotropic hormone (rPTTH) from the tobacco budworm Heliothis virescens (F.) (Lepidoptera: Noctuidae) was expressed and purified to perform in vitro tests in a standard and repeatable manner. A characterization of rPTTH primary and secondary structures was performed. The ability of rPTTH and H. virescens BE to stimulate ecdysteroidogenesis was investigated on the third day of fifth larval stage. rPTTH activity was compared with the BE mixture by enzyme immunoassay and western blot, revealing that they equally stimulate the production of significant amount of ecdysone, through a transduction cascade that includes the TOR pathway, by the phosphorylation of 4E binding protein (4E-BP) and S6 kinase (S6K), the main targets of TOR protein. The results of these experiments suggest the importance of obtaining a functional pure hormone to perform further studies, not depending on the crude brain extract, composed by different elements and susceptible to different uncontrollable variables.


Assuntos
Ecdisteroides/biossíntese , Hormônios de Inseto/farmacologia , Mariposas/metabolismo , Extratos de Tecidos/farmacologia , Animais , Encéfalo , Hormônios de Inseto/isolamento & purificação , Mariposas/efeitos dos fármacos
6.
Gene ; 707: 109-116, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30943440

RESUMO

Ecdysone is involved in regulation of embryonic diapause in the silkworm, Bombyx mori. However, its mechanism still remains unclear. To explore the role of ecdysteroidogenic pathway (EP) genes in diapause process of bivoltine B. mori, the eggs of "Qiufeng", a bivoltine strain, were used as the study materials and arranged into diapause eggs producers (DEPs) and non-diapause eggs producers (NDEPs), respectively. The differential expression of EP genes between two groups was analysed during the early pupal stage. The expression of Shadow was significantly increased in the NDEPs in day-3 pupae and reached the peak simultaneously, indicating that Shadow was in coincidence with diapause process. To validate this hypothesis, a repression of Shadow by RNA interference was performed in day-2 pupae of NDEPs. The expression of Shadow was downregulated by RNAi, and ßFtz-F1, a downstream gene of EP, was also decreased. Furthermore, the genes encoding the kynurenine-synthetase were upregulated in the ovary, and Brown, AdenoK which link Shadow to the kynurenine-synthase gene were also upregulated in the fat body. The progeny eggs appeared a light purple colour at 48 h after oviposition, revealing a certain tendency to diapause. We speculate that inhibition of Shadow upregulates 3-hydroxy-kynurenine synthesis by increasing the expression of Brown and AdenoK. In addition, Shadow was cloned, and expressed in E. coli for further functional study of Shadow protein. Our study provided insight into the role of EP genes in the process of diapause of B. mori.


Assuntos
Bombyx/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Diapausa de Inseto , Ecdisteroides/biossíntese , Perfilação da Expressão Gênica/métodos , Genes de Insetos/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Tecido Adiposo/metabolismo , Animais , Bombyx/classificação , Bombyx/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Ecdisteroides/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Proteínas de Insetos/genética , Masculino , Ovário/metabolismo , Transdução de Sinais , Distribuição Tecidual
7.
Insect Biochem Mol Biol ; 97: 1-9, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29680288

RESUMO

In the tobacco hornworm Manduca sexta, juvenile hormone (JH) is critical for the control of species-specific size. However, whether the basic helix-loop-helix/Per-Arnt-Sim domain receptor methoprene-tolerant (Met) is involved remains unconfirmed. In the present paper, we found that RNA interference (RNAi)-aided knockdown of Met gene (LdMet) lowered the larval and pupal fresh weights and shortened the larval development period in the Colorado potato beetle Leptinotarsa decemlineata. Dietary introduction of JH into the LdMet RNAi larvae rescued neither the decreased weights nor the reduced development phase, even though JH ingestion by control larvae extended developmental time and caused large pupae. Moreover, the transcript levels of five genes involved in prothoracicotropic hormone and cap 'n' collar isoform C/Kelch-like ECH associated protein 1 pathways were upregulated in the LdMet silenced larvae. Ecdysteroidogenesis was thereby activated; 20-hydroxyecdysone (20E) titer was increased; and 20E signaling pathway was elicited in the LdMet RNAi larvae. Therefore, JH, acting through its receptor Met, inhibits PTTH production and release before the attainment of critical weight. Once the critical weight is reached, JH production and release are averted; and the hemolymph JH is removed. The elimination of JH allows the brain to release PTTH. PTTH subsequently stimulates ecdysteroid biosynthesis and release to start larval-pupal transition in L. decemlineata.


Assuntos
Tamanho Corporal/efeitos dos fármacos , Besouros/crescimento & desenvolvimento , Resistência a Medicamentos , Ecdisteroides/biossíntese , Metoprene/farmacologia , Animais , Larva/crescimento & desenvolvimento
8.
Gen Comp Endocrinol ; 258: 149-156, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526479

RESUMO

The steroid hormone 20-hydroxyecdysone (20E), the major developmental hormone in insects, controls all the developmental transitions including ecdysis and metamorphosis. In our study with last larval stages of the red flour beetle, Tribolium castaneum, dsRNA-mediated gene silencing of Forkhead box protein O (FoxO) resulted in reduced food intake and larval mass and this agreed with a reduction in the expression of insulin signaling-related genes (insulin-like peptides 2, 3, 4, and chico). Interestingly, we also observed a significant delay in the moment of the pupation and these FoxO-silenced larvae then turned brown at the middle pupal stage followed by death. The observed delay of pupation concurred with a significant delay in 20E titer in dsFoxO-injected larvae and this in turn agreed with a significant delay in expression of prothoracicotropic hormone (ptth) that is a gene stimulating ecdysteroid biosynthesis, and of spook (spo) that is one of the early Halloween genes involved in ecdysteroid biosynthesis. In addition, there was also a delayed expression of the ecdysteroid response gene hormone receptor 3 (HR3). In an attempt to rescue the effects by dsFoxO, injection of 20E into T. castaneum larvae stimulated the expression of HR3 and induced one extra larval-larval molt, confirming the responsiveness for ecdysteroid signaling in dsFoxO-injected larvae. The observations of this project suggest that FoxO is a player in the timing of pupation via the regulating of ecdysteroid biosynthesis, together with the regulation of both insulin signaling and nutrition.


Assuntos
Ecdisteroides/biossíntese , Proteína Forkhead Box O1/fisiologia , Metamorfose Biológica/genética , Pupa/genética , Tribolium/crescimento & desenvolvimento , Tribolium/genética , Animais , Ecdisterona/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Larva , Redes e Vias Metabólicas/genética , Muda/genética , Pupa/crescimento & desenvolvimento , Interferência de RNA/fisiologia
9.
PLoS One ; 11(12): e0167421, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907116

RESUMO

Bursicon is a heterodimeric neurohormone that acts through a G protein-coupled receptor named rickets (rk), thus inducing an increase in cAMP and the activation of tyrosine hydroxylase, the rate-limiting enzyme in the cuticular tanning pathway. In insects, the role of bursicon in the post-ecdysial tanning of the adult cuticle and wing expansion is well characterized. Here we investigated the roles of the genes encoding the bursicon subunits during the adult cuticle development in the honeybee, Apis mellifera. RNAi-mediated knockdown of AmBurs α and AmBurs ß bursicon genes prevented the complete formation and tanning (melanization/sclerotization) of the adult cuticle. A thinner, much less tanned cuticle was produced, and ecdysis toward adult stage was impaired. Consistent with these results, the knockdown of bursicon transcripts also interfered in the expression of genes encoding its receptor, AmRk, structural cuticular proteins, and enzymes in the melanization/sclerotization pathway, thus evidencing roles for bursicon in adult cuticle formation and tanning. Moreover, the expression of AmBurs α, AmBurs ß and AmRk is contingent on the declining ecdysteroid titer that triggers the onset of adult cuticle synthesis and deposition. The search for transcripts of AmBurs α, AmBurs ß and candidate targets in RNA-seq libraries prepared with brains and integuments strengthened our data on transcript quantification through RT-qPCR. Together, our results support our premise that bursicon has roles in adult cuticle formation and tanning, and are in agreement with other recent studies pointing for roles during the pharate-adult stage, in addition to the classical post-ecdysial ones.


Assuntos
Abelhas/genética , Ecdisteroides/genética , Hormônios de Invertebrado/genética , Metamorfose Biológica/genética , Animais , Abelhas/crescimento & desenvolvimento , AMP Cíclico/genética , Ecdisteroides/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Hormônios de Invertebrado/antagonistas & inibidores , Muda/genética , Interferência de RNA , Receptores Acoplados a Proteínas G/genética , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
10.
Insect Biochem Mol Biol ; 70: 160-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26772671

RESUMO

A critical step in mosquito reproduction is the ingestion of a blood meal from a vertebrate host. In mosquitoes like Aedes aegypti, blood feeding stimulates the release of ovary ecdysteroidogenic hormone (OEH) and insulin-like peptide 3 (ILP3). This induces the ovaries to produce ecdysteroid hormone (ECD), which then drives egg maturation. In many immature insects, prothoracicotropic hormone (PTTH) stimulates the prothoracic glands to produce ECD that directs molting and metamorphosis. The receptors for OEH, ILP3 and PTTH are different receptor tyrosine kinases with OEH and ILP3 signaling converging downstream in the insulin pathway and PTTH activating the mitogen-activated protein kinase pathway. Calcium (Ca(2+)) flux and cAMP have also been implicated in PTTH signaling, but the role of Ca(2+) in OEH, ILP3, and cAMP signaling in ovaries is unknown. Here, we assessed whether Ca(2+) flux affects OEH, ILP3, and cAMP activity in A. aegypti ovaries and also asked whether PTTH stimulated ovaries to produce ECD. Results indicated that Ca(2+) flux enhanced but was not essential for OEH or ILP3 activity, whereas cAMP signaling was dependent on Ca(2+) flux. Recombinant PTTH from Bombyx mori fully activated ECD production by B. mori PTGs, but exhibited no activity toward A. aegypti ovaries. Recombinant PTTH from A. aegypti also failed to stimulate either B. mori PTGs or A. aegypti ovaries to produce ECD. We discuss the implications of these results in the context of mosquito reproduction and ECD biosynthesis by insects generally.


Assuntos
Cálcio/metabolismo , Ecdisteroides/biossíntese , Neuropeptídeos/metabolismo , Ovário/metabolismo , Aedes , Sequência de Aminoácidos , Animais , AMP Cíclico/metabolismo , Feminino , Insulina/metabolismo , Dados de Sequência Molecular , Neuropeptídeos/química , Homologia de Sequência de Aminoácidos , Transdução de Sinais
11.
J Insect Physiol ; 72: 61-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25497117

RESUMO

In the present study, we investigated the modulatory effects of ecdysteroidogenesis of prothoracic glands (PGs) by bombyxin, an endogenous insulin-like peptide in the silkworm, Bombyx mori. The results showed that bombyxin stimulated ecdysteroidogenesis during a long-term incubation period and in a dose-dependent manner. Moreover, the injection of bombyxin into day 4-last instar larvae increased ecdysteroidogenesis 24h after the injection, indicating its possible in vivo function. Phosphorylation of the insulin receptor and Akt, and the target of rapamycin (TOR) signaling were stimulated by bombyxin, and stimulation of Akt phosphorylation and TOR signaling appeared to be dependent on phosphatidylinositol 3-kinase (PI3K). Bombyxin inhibited the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK), and the inhibition appeared to be PI3K-independent. Bombyxin-stimulated ecdysteroidogenesis was blocked by either an inhibitor of PI3K (LY294002) or a chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside, AICAR), indicating involvement of the PI3K/Akt and AMPK signaling pathway. Bombyxin did not stimulate extracellular signal-regulated kinase (ERK) signaling of PGs. Bombyxin, but not prothoracicotropic hormone (PTTH) stimulated cell viability of PGs. In addition, bombyxin treatment also affected mRNA expression levels of insulin receptor, Akt, AMPKα, -ß, and -γ in time-dependent manners. These results suggest that bombyxin modulates ecdysteroidogenesis in B. mori PGs during development.


Assuntos
Bombyx/metabolismo , Ecdisteroides/biossíntese , Neuropeptídeos/farmacologia , Aminoimidazol Carboxamida/agonistas , Aminoimidazol Carboxamida/análogos & derivados , Animais , Bombyx/crescimento & desenvolvimento , Cromonas/farmacologia , Glândulas Endócrinas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hormônios de Inseto/biossíntese , Proteínas de Insetos/metabolismo , Larva/metabolismo , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Ribonucleotídeos/agonistas , Transdução de Sinais
12.
PLoS One ; 8(5): e63102, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671658

RESUMO

In this study, we investigated inhibition of the phosphorylation of adenosine 5'-monophosphate-activated protein kinase (AMPK) by prothoracicotropic hormone (PTTH) in prothoracic glands of the silkworm, Bombyx mori. We found that treatment with PTTH in vitro inhibited AMPK phosphorylation in time- and dose-dependent manners, as seen on Western blots of glandular lysates probed with antibody directed against AMPKα phosphorylated at Thr172. Moreover, in vitro inhibition of AMPK phosphorylation by PTTH was also verified by in vivo experiments: injection of PTTH into day 7 last instar larvae greatly inhibited glandular AMPK phosphorylation. PTTH-inhibited AMPK phosphorylation appeared to be partially reversed by treatment with LY294002, indicating involvement of phosphatidylinositol 3-kinase (PI3K) signaling. A chemical activator of AMPK (5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside, AICAR) increased both basal and PTTH-inhibited AMPK phosphorylation. Treatment with AICAR also inhibited PTTH-stimulated ecdysteroidogenesis of prothoracic glands. The mechanism underlying inhibition of PTTH-stimulated ecdysteroidogenesis by AICAR was further investigated by determining the phosphorylation of eIF4E-binding protein (4E-BP) and p70 ribosomal protein S6 kinase (S6K), two known downstream signaling targets of the target of rapamycin complex 1 (TORC1). Upon treatment with AICAR, decreases in PTTH-stimulated phosphorylation of 4E-BP and S6K were detected. In addition, treatment with AICAR did not affect PTTH-stimulated extracellular signal-regulated kinase (ERK) phosphorylation, indicating that AMPK phosphorylation is not upstream signaling for ERK phosphorylation. Examination of gene expression levels of AMPKα, ß, and γ by quantitative real-time PCR (qRT-PCR) showed that PTTH did not affect AMPK transcription. From these results, it is assumed that inhibition of AMPK phosphorylation, which lies upstream of PTTH-stimulated TOR signaling, may play a role in PTTH stimulation of ecdysteroidogenesis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Bombyx/efeitos dos fármacos , Ecdisteroides/biossíntese , Glândulas Endócrinas/efeitos dos fármacos , Hormônios de Inseto/farmacologia , Proteínas de Insetos/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Sequência de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Western Blotting , Bombyx/genética , Bombyx/metabolismo , Cromonas/farmacologia , Relação Dose-Resposta a Droga , Glândulas Endócrinas/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Dados de Sequência Molecular , Morfolinas/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleotídeos/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Tempo
13.
Genes Dev ; 25(14): 1459-63, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21764850

RESUMO

Nitric oxide (NO) is an important second messenger involved in numerous biological processes, but how it regulates gene expression is not well understood. In this issue of Genes & Development, Cáceres and colleagues (pp. 1476-1485) report a critical requirement of NO as a direct regulator of gene expression through its binding to a heme-containing nuclear receptor in Drosophila. This may be an anciently evolved mechanism to coordinate behavior and metabolism during animal development.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Metamorfose Biológica/fisiologia , Óxido Nítrico/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/genética , Ecdisteroides/biossíntese , Proteínas de Insetos/metabolismo , Metamorfose Biológica/genética , Ligação Proteica , Receptores de Esteroides/metabolismo
14.
Insect Biochem Mol Biol ; 41(3): 197-202, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21199670

RESUMO

The prothoracicotropic hormone (PTTH) stimulates ecdysteroidogenesis by prothoracic gland in larval insects. Previous studies showed that Ca(2+), cAMP, extracellular signal-regulated kinase (ERK), and tyrosine kinase are involved in PTTH-stimulated ecdysteroidogenesis by the prothoracic glands of both Bombyx mori and Manduca sexta. In the present study, the involvement of phosphoinositide 3-kinase (PI3K)/Akt signaling in PTTH-stimulated ecdysteroidogenesis by B. mori prothoracic glands was further investigated. The results showed that PTTH-stimulated ecdysteroidogenesis was partially blocked by LY294002 and wortmannin, indicating that PI3K is involved in PTTH-stimulated ecdysteroidogenesis. Akt phosphorylation in the prothoracic glands appeared to be moderately stimulated by PTTH in vitro. PTTH-stimulated Akt phosphorylation was inhibited by LY294002. An in vivo PTTH injection into day 6 last instar larvae also increased Akt phosphorylation of the prothoracic glands. In addition, PTTH-stimulated ERK phosphorylation of the prothoracic glands was not inhibited by either LY294002 or wortmannin, indicating that PI3K is not involved in PTTH-stimulated ERK signaling. A23187 and thapsigargin, which stimulated B. mori prothoracic gland ERK phosphorylation and ecdysteroidogenesis, could not activate Akt phosphorylation. PTTH-stimulated ecdysteroidogenesis was not further activated by insulin, indicating the absence of an additive action of insulin and PTTH on the prothoracic glands. The present study, together with the previous demonstration that insulin stimulates B. mori ecdysteroidogenesis through PI3K/Akt signaling, suggests that crosstalk exists in B. mori prothoracic glands between insulin and PTTH signaling, which may play a critical role in precisely regulated ecdysteroidogenesis during development.


Assuntos
Bombyx/enzimologia , Ecdisteroides/biossíntese , Hormônios de Inseto/metabolismo , Transdução de Sinais , 1-Fosfatidilinositol 4-Quinase/metabolismo , Androstadienos/antagonistas & inibidores , Animais , Bombyx/metabolismo , Calcimicina/metabolismo , Cromonas/antagonistas & inibidores , Ecdisteroides/metabolismo , Insulina/metabolismo , Larva/enzimologia , Larva/metabolismo , Morfolinas/antagonistas & inibidores , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tapsigargina/metabolismo , Wortmanina
15.
Arch Insect Biochem Physiol ; 72(4): 234-48, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19750548

RESUMO

The phytoecdysteroid profiles of extracts of aerial parts of flowering plants of 7 ecdysteroid-containing species in the genus Silene (Caryophyllaceae; S. fridvaldszkyana Hampe, S. gigantea L., S. graminifolia Otth, S. mellifera Boiss. & Reuter, S. repens Patr., S. schmuckeri Wettst., and S. sendtneri Boiss.) have been examined and identified by HPLC and, in the case of two new compounds, by mass spectrometry and NMR. S. frivaldszkyana was found to contain predominantly 20-hydroxyecdysone (20E), with smaller amounts of 2-deoxyecdysone (2dE), 2-deoxy-20-hydroxyecdysone (2d20E), polypodine B (polB), integristerone A (IntA), 26-hydroxypolypodine B (26polB), and 20,26-dihydroxyecdysone (20,26E). Additionally, a new minor ecdysteroid, 26-hydroxyintegristerone A, has been identified from this species. S. gigantea contains 3 major ecdysteroids (2dE, 2d20E, and 20E) and much smaller amounts of intA and 2-deoxy-20-hydroxyecdysone 25-beta-D-glucoside, which is a new ecdysteroid. Ecdysteroids in the other 5 species have been identified by co-chromatography with reference compounds on RP- and NP-HPLC systems. There is considerable variability with regard to ecdysteroid profiles within the genus Silene. The chemotaxonomic value of ecdysteroid profiles within the genus Silene is discussed.


Assuntos
Ecdisteroides/biossíntese , Silene/química , Cromatografia Líquida de Alta Pressão , Ecdisteroides/química , Ecdisteroides/isolamento & purificação , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Extratos Vegetais/química
16.
Gen Comp Endocrinol ; 155(3): 780-8, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18093588

RESUMO

Crustacean Y-organs synthesize ecdysteroid molting hormones. Synthesis of ecdysteroids by Y-organs is negatively regulated by a polypeptide neurohormone, molt-inhibiting hormone (MIH). Our laboratory has recently cloned from Y-organs of the blue crab (Callinectes sapidus) a cDNA (CsGC-YO1) encoding a putative receptor guanylyl cyclase (CsGC-YO1). We hypothesize that CsGC-YO1 is an MIH receptor. In studies reported here, antipeptide antibodies (anti-CsGC-YO1) were raised against a fragment of the extracellular domain of CsGC-YO1. Western blots showed affinity purified anti-CsGC-YO1 bound to the heterologously expressed extracellular domain, and to a protein in Y-organs that corresponded in size to the theoretical molecular mass of CsGC-YO1. Immunocytochemical studies with anti-CsGC-YO1 as primary antibody, showed CsGC-YO1 immunoreactivity was restricted to the peripheral margins of cells, and was not present in cytoplasm or nuclei. The results strongly suggest that CsGC-YO1 is a membrane-associated protein. Preincubation of Y-organs with anti-CsCG-YO1 blunted MIH-induced suppression of ecdysteroidogenesis. This finding represents the first demonstration of a link between CsGC-YO1 and MIH action. A real-time PCR assay for quantifying CsCG-YO1 was developed and validated. The assay was used to determine the abundance of the CsCG-YO1 transcript in Y-organs during a molt cycle: the level of CsGC-YO1 in Y-organs was elevated during intermolt (C(4)) and lower during premolt stages D(1)-D(3). The data suggest that the biological action of CsGC-YO1 in Y-organs is likely to be most pronounced during intermolt. The combined results are consistent with the hypothesis that CsGC-YO1 is an MIH receptor.


Assuntos
Braquiúros/genética , Ecdisteroides/biossíntese , Glândulas Endócrinas/metabolismo , Muda/genética , Receptores Acoplados a Guanilato Ciclase/genética , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Braquiúros/metabolismo , Clonagem Molecular , Glândulas Endócrinas/efeitos dos fármacos , Hormônios de Invertebrado/farmacologia , Muda/efeitos dos fármacos , Ligação Proteica , RNA Mensageiro/metabolismo , Receptores Acoplados a Guanilato Ciclase/imunologia , Receptores Acoplados a Guanilato Ciclase/metabolismo , Distribuição Tecidual
17.
Mol Cell Endocrinol ; 273(1-2): 51-8, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17590269

RESUMO

The FXPRL-amide peptide family (pyrokinin/PBAN family) consists of insect peptides that function broadly in insect life processes and are characterized by a conserved C-terminal motif. In the silkworm, Bombyx mori, sex pheromone biosynthesis and induction of embryonic diapause are regulated by peptides from this family. To elucidate other functions of Bombyx FXPRL-amide peptides, we analyzed the tissue expression patterns of two known Bombyx G-protein coupled receptors for these peptides. We found that the Bombyx diapause hormone receptor (BmDHR), is expressed in the prothoracic gland (PG), the organ which synthesizes and releases the insect molting hormones, ecdysteroids. Furthermore, diapause hormone (DH), a member of the Bombyx FXPRL-amide peptides, increases both intracellular Ca(2+) and cAMP concentrations and induces ecdysteroidogenesis in late fifth instar PGs coincident with BmDHR expression in the PGs. DH also has the highest prothoracicotropic activity among the FXPRL-amide peptides, which corresponds well to the ligand specificity of heterologously expressed BmDHR. These results demonstrate that FXPRL-amide peptides can function as prothoracicotropic factors through the activation of BmDHR and may play an important role in controlling molting and metamorphosis.


Assuntos
Bombyx/efeitos dos fármacos , Bombyx/metabolismo , Ecdisteroides/biossíntese , Peptídeos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Tórax/efeitos dos fármacos , Tórax/metabolismo , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Larva/efeitos dos fármacos , Dados de Sequência Molecular , Neuropeptídeos/farmacologia , Oócitos , Peptídeos/química , Receptores Acoplados a Proteínas G/genética , Fosfolipases Tipo C/metabolismo , Xenopus
18.
Mol Cell Endocrinol ; 253(1-2): 76-82, 2006 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-16765511

RESUMO

Crustacean molt-inhibiting hormone (MIH), a polypeptide secreted by the X-organ/sinus gland complex of the eyestalks, regulates molting by inhibiting the synthesis of ecdysteroids by Y-organs. Previous results indicate the biosynthetic activity of Y-organs is likely controlled not only by the level of hemolymphatic MIH, but also by the responsiveness of Y-organs to MIH. The present studies were conducted to (a) identify the second messenger that mediates MIH-induced suppression of ecdysteroidogenesis, and (b) assess the possible involvement of cyclic nucleotide phosphodiesterase (PDE) in determining the responsiveness of Y-organs to MIH. Adding 8-bromo cAMP or 8-bromo cGMP to incubation medium significantly suppressed ecdysteroid production by Y-organs of the crayfish (Procambarus clarkii). Incubating Y-organs with MIH produced a significant increase in glandular cGMP, but MIH had no effect on glandular cAMP. The composite data indicate that MIH-induced suppression of ecdysteroidogenesis in Y-organs of P. clarkii is mediated by cGMP. Subsequently, Y-organs from various stages of the molt cycle were incubated with MIH, 3-isobutyl-1-methylxanthine (IBMX, an inhibitor of PDE), or both. Y-Organs from middle and late premolt stages were poorly responsive to MIH alone. Including IBMX in the incubation medium enhanced the responsiveness of the Y-organs to MIH at these stages. Moreover, glandular PDE activity in the Y-organs at these stages was significantly higher than other stages. The combined results suggest that molt cycle-associated changes in PDE activity affect the ability of MIH to stimulate cGMP accumulation and suppress ecdysteroidogenesis in Y-organs of P. clarkii.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Astacoidea/metabolismo , GMP Cíclico/metabolismo , Ecdisteroides/biossíntese , Glândulas Endócrinas/metabolismo , Neuropeptídeos/fisiologia , Animais , Ecdisteroides/antagonistas & inibidores , Glândulas Endócrinas/química , Glândulas Endócrinas/efeitos dos fármacos , Muda/efeitos dos fármacos , Neuropeptídeos/farmacologia
19.
FEBS J ; 272(18): 4817-25, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16156800

RESUMO

The fern Polypodium vulgare is a phytoecdysteroid (PE)-producing plant. Cultures of P. vulgare prothalus produce PE, whereas prothalus-derived callus cultures do not. However, this callus line can transform topically applied ecdysone (E) to 20-hydroxyecdysone (20E), which is the last step in the biosynthetic pathway of the main plant PE. This hydroxylation is catalysed by a cytochrome P450 enzyme. E treatment of the callus line results in an increased amount of P450, showing a linear correspondence between the amount of P450 and in vivo E 20-hydroxylation activity, estimated by measuring the bioconversion of E to 20E. This activity can be inhibited by molecules that bind to the P450-heme group. E shows a P450-substrate-binding spectrum with microsomes that overexpress the P450 protein. Finally, a P450 protein was purified from E-treated calli, this being the first P450 to be described in the pterydophyte group.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Ecdisteroides/biossíntese , Polypodium/enzimologia , Linhagem Celular , Ecdisona/metabolismo , Gleiquênias/citologia , Gleiquênias/enzimologia , Gleiquênias/metabolismo , Hidroxilação , Fitosteróis/metabolismo , Proteínas de Plantas/metabolismo , Polypodium/citologia , Polypodium/metabolismo
20.
Arch Insect Biochem Physiol ; 58(1): 17-26, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15599936

RESUMO

The cellular mechanism underlying ecdysteroidogenesis throughout the last larval instar of the silkworm, Bombyx mori, was analyzed by determining the in vitro ecdysteroid secretory activity of the prothoracic glands and cAMP accumulation of gland cells, as well as changes in responsiveness to stimulation by prothoracicotropic hormone (PTTH) and 1-methyl-3-isobutylxanthine (MIX). It was found that the prothoracic glands during the first 3 days of the last instar cannot produce detectable ecdysteroid and showed no response to stimulation by PTTH or 1-methyl-3-isobutylxanthine (MIX). However, artificial elevation of cellular cAMP levels by in vitro dibutyryl cAMP treatment stimulated the glands to secrete detectable ecdysteroid, implying the presence of a cAMP-dependent ecdysteroidogenic apparatus during this stage. From days 3 to 8, basal gland activities fluctuated, but the glands showed activation responses to PTTH and to the chemicals that increase cellular cAMP levels. After the occurrence of the peak in basal gland activity on day 9, glands on day 10 showed no response to PTTH, implying a refractory state of the glands to PTTH stimulation. For cAMP accumulation, it was found that glands on day 2 began to show increased cAMP accumulation to PTTH, implying that the acquisition of gland competency for elevation of cAMP levels after stimulation by PTTH precedes that of ecdysteroid production. Moreover, during most parts of the last larval instar (between days 3 and 8) and at the pupation stage, greatly increased cAMP accumulation upon stimulation by PTTH was observed only in the presence of MIX, indicating that cAMP phosphodiesterase levels may be high during these stages. From these results, we concluded that development-specific PTTH signal transduction during the last larval instar, which shows a different pattern from that of the penultimate larval instar, may play an important role in regulating changes in prothoracic gland activity and in leading to larval-pupal metamorphosis.


Assuntos
Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Ecdisteroides/biossíntese , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Bucladesina/farmacologia , AMP Cíclico/metabolismo , Expressão Gênica , Larva/efeitos dos fármacos , Larva/metabolismo , Metamorfose Biológica/fisiologia , Neuropeptídeos/farmacologia , Pupa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA