Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
PLoS Pathog ; 20(8): e1012479, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39178325

RESUMO

Alveolar echinococcosis (AE) is a highly lethal helminth infection. Current chemotherapeutic strategies for AE primarily involve the use of benzimidazoles (BZs) such as mebendazole (MDZ) and albendazole (ABZ), which exhibit limited efficacy. In a previous study, the vaccine of recombinant Echinococcus granulosus P29 (rEgP29) showed significant immunoprotection against E. granulosus in both mice and sheep. In the current study, we utilized hybridoma technology to generate five monoclonal antibodies (mAbs) against P29, among which 4G10F4 mAb exhibited the highest antigen-specific binding capacity. This mAb was selected for further investigation of anti-AE therapy, both in vivo and in vitro. In vitro, 4G10F4 inhibited a noteworthy inhibition of E. multilocularis protoscoleces and primary cells viability through complement-dependent cytotoxicity (CDC) mechanism. In vivo, two experiments were conducted. In the first experiment, mice were intraperitoneally injected with Em protoscoleces, and subsequently treated with 4G10F4 mAb (2.5/5/10 mg/kg) at 12 weeks postinfection once per week for 8 times via tail vein injection. Mice that were treated with 4G10F4 mAb only in dosage of 5mg/kg exhibited a significant lower mean parasite burden (0.89±0.97 g) compared to isotype mAb treated control mice (2.21±1.30 g). In the second experiment, mice were infected through hepatic portal vein and treated with 4G10F4 mAb (5mg/kg) at one week after surgery once per week for 8 times. The numbers of hepatic metacestode lesions of the 4G10F4 treatment group were significantly lower in comparison to the isotype control group. Pathological analysis revealed severe disruption of the inner structure of the metacestode in both experiments, particularly affecting the germinal and laminated layers, resulting in the transformation into infertile vesicles after treatment with 4G10F4. In addition, the safety of 4G10F4 for AE treatment was confirmed through assessment of mouse weight and evaluation of liver and kidney function. This study presents antigen-specific monoclonal antibody immunotherapy as a promising therapeutic approach against E. multilocularis induced AE.


Assuntos
Anticorpos Monoclonais , Equinococose , Animais , Equinococose/tratamento farmacológico , Equinococose/imunologia , Anticorpos Monoclonais/farmacologia , Camundongos , Proteínas de Helminto/imunologia , Proteínas de Helminto/farmacologia , Camundongos Endogâmicos BALB C , Echinococcus multilocularis/imunologia , Echinococcus multilocularis/efeitos dos fármacos , Feminino , Echinococcus granulosus/imunologia , Ovinos , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/imunologia
2.
Nat Commun ; 15(1): 6345, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068159

RESUMO

Immune exhaustion corresponds to a loss of effector function of T cells that associates with cancer or chronic infection. Here, our objective was to decipher the mechanisms involved in the immune suppression of myeloid-derived suppressor cells (MDSCs) and to explore the potential to target these cells for immunotherapy to enhance checkpoint blockade efficacy in a chronic parasite infection. We demonstrated that programmed cell-death-1 (PD-1) expression was significantly upregulated and associated with T-cell dysfunction in advanced alveolar echinococcosis (AE) patients and in Echinococcus multilocularis-infected mice. PD-1 blockade ex vivo failed to reverse AE patients' peripheral blood T-cell dysfunction. PD-1/PD-L1 blockade or PD-1 deficiency had no significant effects on metacestode in mouse model. This was due to the inhibitory capacities of immunosuppressive granulocytic MDSCs (G-MDSCs), especially in the liver surrounding the parasite pseudotumor. MDSCs suppressed T-cell function in vitro in an indoleamine 2, 3 dioxygenase 1 (IDO1)-dependent manner. Although depleting MDSCs alone restored T-cell effector functions and led to some limitation of disease progression in E. multilocularis-infected mice, combination with PD-1 blockade was better to induce antiparasitic efficacy. Our findings provide preclinical evidence in support of targeting MDSC or combining such an approach with checkpoint blockade in patients with advanced AE. (200 words).


Assuntos
Equinococose , Echinococcus multilocularis , Inibidores de Checkpoint Imunológico , Células Supressoras Mieloides , Receptor de Morte Celular Programada 1 , Linfócitos T , Animais , Células Supressoras Mieloides/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Equinococose/imunologia , Camundongos , Humanos , Linfócitos T/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Feminino , Echinococcus multilocularis/imunologia , Camundongos Endogâmicos C57BL , Masculino , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Antígeno B7-H1/imunologia , Modelos Animais de Doenças , Imunoterapia/métodos , Pessoa de Meia-Idade , Adulto
3.
Infect Immun ; 92(8): e0023224, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39037247

RESUMO

Helminths serve as principal regulators in modulating host immune responses, and their excretory-secretory proteins are recognized as potential therapeutic agents for inflammatory bowel disease. Nevertheless, our comprehension of the mechanisms underlying immunoregulation remains restricted. This investigation delves into the immunomodulatory role of a secretory protein serpin (Emu-serpin), within the larval stage of Echinococcus multilocularis. Our observations indicate that Emu-serpin effectively alleviates dextran sulfate sodium-induced colitis, yielding a substantial reduction in immunopathology and an augmentation of anti-inflammatory cytokines. Furthermore, this suppressive regulatory effect is concomitant with the reduction of gut microbiota dysbiosis linked to colitis, as evidenced by a marked impediment to the expansion of the pathobiont taxa Enterobacteriaceae. In vivo experiments demonstrate that Emu-serpin facilitates the expansion of M2 phenotype macrophages while concurrently diminishing M1 phenotype macrophages, alongside an elevation in anti-inflammatory cytokine levels. Subsequent in vitro investigations involving RAW264.7 and bone marrow macrophages reveal that Emu-serpin induces a conversion of M2 macrophage populations from a pro-inflammatory to an anti-inflammatory phenotype through direct inhibition. Adoptive transfer experiments reveal the peritoneal macrophages induced by Emu-serpin alleviate colitis and gut microbiota dysbiosis. In summary, these findings propose that Emu-serpin holds the potential to regulate macrophage polarization and maintain gut microbiota homeostasis in colitis, establishing it as a promising candidate for developing helminth therapy for preventing inflammatory diseases.


Assuntos
Colite , Disbiose , Echinococcus multilocularis , Microbioma Gastrointestinal , Macrófagos , Serpinas , Animais , Camundongos , Serpinas/metabolismo , Colite/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Echinococcus multilocularis/imunologia , Proteínas de Helminto/metabolismo , Células RAW 264.7 , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Citocinas/metabolismo , Camundongos Endogâmicos C57BL , Feminino
4.
Acta Trop ; 255: 107247, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729330

RESUMO

Fatty acid binding proteins (FABPs) have emerged as attractive vaccination candidates for several platyhelminth species. To explore the physiological functions of Echinococcus multilocularis (E. multilocularis) FABP, the molecular characteristics of EmFABP1 were analyzed by online software, and the regulatory roles of rEmFABP1 protein in murine macrophages were further investigated. The emfabp1 gene encodes 133 amino acids with the characteristic ß-barrel shape of the cytoplasmic FABP family. Natural EmFABP1 protein is predominantly expressed in protoscoleces tegument and germinal layer cells and is also detected in cyst fluid and exosomes of E. multilocularis. rEmFABP1 protein demonstrated a notable suppression of phagocytic activity and nitric oxide production in murine macrophages. Additionally, the protein was observed to promote apoptosis and regulate cytokine expression in macrophages. These findings suggested that E. multilocularis FABP1 is critical in modifying macrophage physiological processes and that this protein may have immunomodulatory roles during infection.


Assuntos
Echinococcus multilocularis , Proteínas de Ligação a Ácido Graxo , Proteínas de Helminto , Macrófagos , Fagocitose , Animais , Echinococcus multilocularis/genética , Echinococcus multilocularis/imunologia , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Proteínas de Helminto/imunologia , Óxido Nítrico/metabolismo , Apoptose , Citocinas/metabolismo , Células RAW 264.7
5.
PLoS Negl Trop Dis ; 15(3): e0008690, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33720943

RESUMO

Human echinococcosis is present worldwide but it is in China that disease prevalence is the highest. In western China, especially in the Tibetan Plateau, the burden of echinococcosis is the most important. Dogs are a major definitive host of Echinococcus and monitoring the presence of Echinococcus worms in dogs is therefore essential to efficiently control the disease. Detection kits based on three different technologies including sandwich ELISA, (indirect) ELISA, and gold immunodiffusion, are currently marketed and used in China. The objective of this work was to assess the efficacy of these kits, in particular with respect to sensitivity and specificity. Four fecal antigen detection kits for canine infection reflecting the three technologies were obtained from companies and tested in parallel on 220 fecal samples. The results indicate that the performance is lower than expected, in particular in terms of sensitivity. The best results were obtained with the sandwich ELISA technology. The gold immunofiltration yielded the poorest results. In all cases, further development is needed to improve the performance of these kits which are key components for the control of echinococcosis.


Assuntos
Antígenos de Protozoários/análise , Equinococose/diagnóstico , Equinococose/epidemiologia , Echinococcus granulosus/imunologia , Echinococcus multilocularis/imunologia , Animais , China/epidemiologia , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Cães , Ensaio de Imunoadsorção Enzimática , Fezes/parasitologia , Humanos , Kit de Reagentes para Diagnóstico , Sensibilidade e Especificidade , Tibet/epidemiologia
6.
Pharmacology ; 106(1-2): 3-8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32739918

RESUMO

INTRODUCTION: The E. multilocularis laminated layer (LL) is a heavily glycosylated parasitic structure that plays an important role in protecting the larval stage (metacestode) of this parasite from physiological and immunological host reactions. We elaborated an experimental design with the idea to modify the (glycan) surface of the LL by a targeted digestion. This should allow the host defense to more easily recognize and attack (or kill) the parasite by immune-mediated effects. METHODS: Experimentally, E. multilocularis (clone H95) metacestodes were cultured in vitro with or without addition of α1-3,4,6-galactosidase or ß1-3-galactosidase in the medium. Morphological changes were subsequently measured by microscopy at different time points. Parasites were then recovered at day 5 and reinjected into mice for assessing their viability and infectious status. For finally recovered parasites, the respective load was assessed ex vivo by wet weight measurement, and host-related PD1 and IL-10 levels were determined as the key immunoregulators by using flow cytometry. RESULTS: Our experiments demonstrated that the parasite vesicular structure can be directly destroyed by adding galactosidases into the in vitro culture system, resulting in the fact that the parasite metacestode vesicles could not anymore infect and develop in mice after this glycan digestion. Moreover, when compared to the mice inoculated with E. multilocularis metacestode without galactosidases, PD1 expression was upregulated in CD4+ Teffs from mice inoculated with E. multilocularis metacestode pretreated with ß1-3-galactosidase, with a lower IL-10 secretion from CD4+ Teffs; there was no difference of PD1 and IL-10 expression levels regarding CD4+ Teff from mice inoculated with E. multilocularis metacestode pretreated with α1-3,4,6-galac-tosidase. DISCUSSION: We raised our hypothesis that this "aborting" effect may be linked to an altered PD1 and IL-10 response fine-tuning between immunopathology and immune protection. These findings justify a continuation of these experiments upon therapeutical in vivo administration of the enzymes.


Assuntos
Equinococose/terapia , Echinococcus multilocularis/química , Echinococcus multilocularis/efeitos dos fármacos , Galactosidases/farmacologia , Açúcares/química , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Meios de Cultura , Equinococose/parasitologia , Echinococcus multilocularis/imunologia , Echinococcus multilocularis/ultraestrutura , Feminino , Citometria de Fluxo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia , Polissacarídeos/química , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo
7.
Parasitology ; 148(1): 53-62, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33087186

RESUMO

Susceptibility to Echinococcus multilocularis infection considerably varies among intermediate (mostly rodents) and dead-end host species (e.g. humans and pig), in particular regarding intestinal oncosphere invasion and subsequent hepatic metacestode development. Wistar rats are highly resistant to infection and subsequent diseases upon oral inoculation with E. multilocularis eggs, however, after immunosuppressive treatment with dexamethasone, rats become susceptible. To address the role of the cellular innate immunity, Wistar rats were individually or combined depleted of natural killer (NK) cells, macrophages (MΦ) and granulocytes (polymorphonuclear cells, PMN) prior to E. multilocularis egg inoculation. Although NK cell and MΦ depletion did not alter the resistance status of rats, the majority of PMN-depleted animals developed liver metacestodes within 10 weeks, indicating that PMN are key players in preventing oncosphere migration and/or development in Wistar rats. In vitro studies indicated that resistance is not caused by neutrophil reactive oxygen species or NETosis. Also, light microscopical examinations of the small intestine showed that oral inoculation of E. multilocularis eggs does not elicit a mucosal neutrophil response, suggesting that the interaction of oncospheres and neutrophils may occur after the former have entered the peripheral blood. We suggest to consider granulocytes as mediators of resistance in more resistant species, such as humans.


Assuntos
Agranulocitose/complicações , Equinococose Hepática/imunologia , Echinococcus multilocularis , Imunidade Inata , Animais , Modelos Animais de Doenças , Resistência à Doença , Suscetibilidade a Doenças/induzido quimicamente , Equinococose/imunologia , Echinococcus multilocularis/crescimento & desenvolvimento , Echinococcus multilocularis/imunologia , Granulócitos/imunologia , Imunidade nas Mucosas , Imunossupressores/administração & dosagem , Intestinos/imunologia , Intestinos/parasitologia , Células Matadoras Naturais/imunologia , Fígado/parasitologia , Macrófagos/imunologia , Neutrófilos/imunologia , Ratos , Ratos Wistar/parasitologia
8.
PLoS Negl Trop Dis ; 14(12): e0008921, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370302

RESUMO

BACKGROUND: Alveolar (AE) and cystic echinococcosis (CE) in humans are caused by the metacestode of the tapeworms Echinococcus multilocularis and Echinococcus granulosus sensu lato (s.l.). Immunohistochemistry with the monoclonal antibodies (mAb) Em2G11, specific for AE, and the mAb EmG3, specific for AE and CE, is an important pillar of the histological diagnosis of these two infections. Our aim was to further evaluate mAb EmG3 in a diagnostic setting and to analyze in detail the localization, distribution, and impact of small particles of Echinococcus multilocularis (spems) and small particles of Echinococcus granulosus s.l. (spegs) on lymph nodes. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the mAb EmG3 in a cohort of formalin-fixed, paraffin embedded (FFPE) specimens of AE (n = 360) and CE (n = 178). These samples originated from 156 AE-patients and 77 CE-patients. mAb EmG3 showed a specific staining of the metacestode stadium of E. multilocularis and E. granulosus s.l. and had a higher sensitivity for spems than mAb Em2G11. Furthermore, we detected spegs in the surrounding host tissue and in almost all tested lymph nodes (39/41) of infected patients. 38/47 lymph nodes of AE showed a positive reaction for spems with mAb EmG3, whereas 29/47 tested positive when stained with mAb Em2G11. Spegs were detected in the germinal centers, co-located with CD23-positive follicular dendritic cells, and were present in the sinuses. Likewise, lymph nodes with spems and spegs in AE and CE were significantly enlarged in size in comparison to the control group. CONCLUSIONS/SIGNIFICANCE: mAb EmG3 is specific for AE and CE and is a valuable tool in the histological diagnosis of echinococcosis. Based on the observed staining patterns, we hypothesize that the interaction between parasite and host is not restricted to the main lesion since spegs are detected in lymph nodes. Moreover, in AE the number of spems-affected lymph nodes is higher than previously assumed. The enlargement of lymph nodes with spems and spegs points to an immunological interaction with the small immunogenic particles (spems and spegs) of Echinococcus spp.


Assuntos
Equinococose Hepática/diagnóstico , Equinococose/diagnóstico , Echinococcus granulosus/imunologia , Echinococcus multilocularis/imunologia , Linfadenopatia/parasitologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Monoclonais/imunologia , Criança , Testes Diagnósticos de Rotina , Equinococose/parasitologia , Equinococose/patologia , Equinococose Hepática/parasitologia , Equinococose Hepática/patologia , Feminino , Humanos , Imuno-Histoquímica/métodos , Linfonodos/parasitologia , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
Parasit Vectors ; 13(1): 232, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375891

RESUMO

Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are life-threatening parasitic infections worldwide caused by Echinococcus granulosus (sensu lato) and E. multilocularis, respectively. Very little is known about the factors affecting innate susceptibility and resistance to infection with Echinococcus spp. Although benzimidazolic drugs against CE and AE have definitively improved the treatment of these cestodes; however, the lack of successful control campaigns, including the EG95 vaccine, at a continental level indicates the importance of generating novel therapies. This review represents an update on the latest developments in the regulatory functions of innate immune pathways such as apoptosis, toll-like receptors (TLRs), and inflammasomes against CE and AE. We suggest that apoptosis can reciprocally play a bi-functional role among the host-Echinococcus metabolite relationships in suppressive and survival mechanisms of CE. Based on the available information, further studies are needed to determine whether the orchestrated in silico strategy for designing inhibitors and interfering RNA against anti-apoptotic proteins and TLRs would be effective to improve new treatments as well as therapeutic vaccines against the E. granulosus and E. multilocularis.


Assuntos
Equinococose/imunologia , Imunidade Inata , Animais , Apoptose , Equinococose/parasitologia , Equinococose/terapia , Echinococcus granulosus/imunologia , Echinococcus multilocularis/imunologia , Humanos , Inflamassomos , RNA Interferente Pequeno/farmacologia , Receptores Toll-Like , Proteína Supressora de Tumor p53/metabolismo , Vacinas
10.
Parasite Immunol ; 42(6): e12711, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32171024

RESUMO

AIMS: Alveolar echinococcosis is a severe chronic helminthic infection that mimics a tumour-like disease. This study aimed at investigating in vitro interactions between Echinococcus multilocularis vesicular fluid (VF) and different immune checkpoints (PD-1/PD-L1, CTLA-4, LAG-3 and TIM-3). METHODS AND RESULTS: Peripheral blood mononuclear cells (PBMC) from healthy blood donors were isolated by Ficoll. Natural killer (NK) cells were selected. Each type of cell was stimulated individually with E. multilocularis-VF. Expression of the different immune checkpoints was measured by flow cytometry on day 3 and day 6; all supernatants were used for immunoassays. Cells and supernatants from 22 healthy donors were analysed. A significant increase of PD-1, PD-L1, LAG-3 and TIM-3 was observed upon E. multilocularis-VF exposure for NK cells on day 3 (P < .05, Wilcoxon signed-rank test). A significant increase of PD-L1 and CTLA-4 was observed upon E. multilocularis-VF exposure for T cells on day 6 (P < .05, Wilcoxon signed-rank test), which was associated with increased levels of Th1 and Th2 cytokines P < .05, Wilcoxon signed-rank test). CONCLUSION: These preliminary data suggest that immune checkpoints could be a way for E. multilocularis to modulate the host immune response during alveolar echinococcosis.


Assuntos
Equinococose/imunologia , Echinococcus multilocularis/imunologia , Células Matadoras Naturais/imunologia , Animais , Antígenos CD/metabolismo , Antígeno B7-H1/metabolismo , Antígeno CTLA-4/metabolismo , Citocinas/imunologia , Equinococose/parasitologia , Equinococose/patologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Leucócitos Mononucleares/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Células Th1/imunologia , Células Th2/imunologia , Proteína do Gene 3 de Ativação de Linfócitos
11.
Parasite Immunol ; 42(3): e12695, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31884696

RESUMO

The diagnosis of cystic echinococcosis (CE) is based on imaging, while serology is a complementary test of particular use when imaging is inconclusive. Serology has several limitations. Among them, false-positive results are often obtained in subjects with alveolar echinococcosis (AE), rendering difficult the differential diagnosis. We set up an immune assay based on IL-4-specific production after stimulating whole blood with an antigen B (AgB)-enriched fraction from E granulosus that associates with CE and CE cysts in active stage. We aimed to evaluate potential cross-reactivity of this test using samples from patients with AE. Twelve patients with AE were recruited; IL-4 levels ranged from 0 to 0.07 pg/mL. Based on the previously identified cut-off of 0.39 pg/mL using samples from patients with CE, none of samples from AE patients scored positive. In contrast, almost 80% of samples from AE patients scored positive in serology tests based on different E granulosus-derived antigenic preparations. Our preliminary data show that this experimental whole-blood assay has no cross-reactivity in our cohort of patients with AE, in turn indicating a high specificity of the assay for CE diagnosis. This result supports further work towards the development of improved diagnostic tests for CE.


Assuntos
Equinococose/diagnóstico , Echinococcus granulosus/fisiologia , Echinococcus multilocularis/fisiologia , Ensaio de Imunoadsorção Enzimática/métodos , Interleucina-4/sangue , Idoso , Animais , Antígenos de Helmintos/imunologia , Reações Cruzadas , Diagnóstico Diferencial , Equinococose/parasitologia , Echinococcus granulosus/imunologia , Echinococcus multilocularis/imunologia , Feminino , Humanos , Interleucina-4/imunologia , Masculino , Pessoa de Meia-Idade , Testes Sorológicos , Especificidade da Espécie
12.
Front Immunol ; 11: 600635, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488594

RESUMO

Echinococcus multilocularis larvae, predominantly located in the liver, cause a tumor-like parasitic disease, alveolar echinococcosis (AE), that is characterized by increased infiltration of various immune cells, including macrophages, around the lesion that produces an "immunosuppressive" microenvironment, favoring its persistent infection. However, the role of hepatic macrophages in the host defense against E. multilocularis infection remains poorly defined. Using human liver tissues from patients with AE and a hepatic experimental mouse model of E. multilocularis, we investigated the phenotype and function of hepatic macrophages during the parasite infection. In the present study, we found that a large number of CD68+ macrophages accumulated around the metacestode lesion in the liver of human AE samples and that both S100A9+ proinflammatory (M1 phenotype) and CD163+ anti-inflammatory (M2 phenotype) macrophages were significantly higher in close liver tissue (CLT) than in distant liver tissue (DLT), whereas M2 macrophages represent the dominant macrophage population. Furthermore, E. multilocularis-infected mice exhibited a massive increase in macrophage (F4/80+) infiltration in the liver as early as day 5, and the infiltrated macrophages were mainly monocyte-derived macrophages (CD11bhi F4/80int MoMFs) that preferentially differentiated into the M1 phenotype (iNOS+) at the early stage of E. multilocularis infection and then polarized to anti-inflammatory macrophages of the M2 phenotype (CD206+) at the chronic stage of infection. We further showed that elimination of macrophages by treatment of mice with clodronate-liposomes before E. multilocularis infection impaired worm expulsion and was accompanied by a reduction in liver fibrosis, yielding a high parasite burden. These results suggest that hepatic macrophages may play a dual role in the establishment and development of E. multilocularis metacestodes in which early larvae clearance is promoted by M1 macrophages while persistent metacestode infection is favored by M2 macrophages.


Assuntos
Equinococose , Echinococcus multilocularis/imunologia , Estágios do Ciclo de Vida/imunologia , Fígado , Macrófagos , Animais , Equinococose/imunologia , Equinococose/parasitologia , Equinococose/patologia , Feminino , Humanos , Fígado/imunologia , Fígado/parasitologia , Fígado/patologia , Macrófagos/imunologia , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos
13.
Parasite Immunol ; 40(12): e12596, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30315719

RESUMO

The growth potential of the tumour-like Echinococcus multilocularis metacestode (causing alveolar echinococcosis, AE) is directly dependent upon the nature/function of the periparasitic adaptive host immune-mediated processes. PD-1/PD-L1 pathway (programmed cell death 1), which inhibits lymphocytic proliferation in tumour development, is over-expressed at the chronic stage of AE. We tested the impact of a PD-1/PD-L1 pathway blockade on the outcome of both chronic AE (intraperitoneal metacestode inoculation, secondary AE and SAE) and acute AE (peroral egg infection, primary AE and PAE). To assess the parasite proliferation potential, we measured parasite mass weight for SAE and liver lesion number for PAE. In both models, the parasite load was significantly decreased in response to anti-PD-L1 antibody treatment. In SAE, anti-PDL1 administration was associated with increased Th1 response parameters and decreased Treg responses, while in PAE anti-PDL1 administration was associated with fewer lesions in the liver and decreased Treg/Th2 responses. Our findings highly suggested that a PD-1/PD-L1 pathway blockade triggered the host immune responses in favour of an immune-mediated control of E. multilocularis proliferation. Based on this, future studies that combine PD-1/PD-L1 blockade with a parasitostatic albendazole medication may yield in a putatively curative therapeutic approach to control alveolar echinococcosis.


Assuntos
Antígeno B7-H1/imunologia , Equinococose/imunologia , Equinococose/terapia , Echinococcus multilocularis/fisiologia , Imunoterapia , Receptor de Morte Celular Programada 1/imunologia , Animais , Antígeno B7-H1/genética , Equinococose/genética , Equinococose/parasitologia , Echinococcus multilocularis/genética , Echinococcus multilocularis/imunologia , Feminino , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/genética , Linfócitos T Reguladores/imunologia , Células Th1/imunologia
14.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30037796

RESUMO

Alveolar echinococcosis (AE) is a lethal disease caused by infection with the metacestode stage of the helminth Echinococcus multilocularis, which develops into a tumorlike mass in susceptible intermediate hosts. The growth potential of this parasite stage is directly linked to the nature of the surrounding periparasitic immune-mediated processes. In a first step (experiment 1), mice were orally infected with E. multilocularis eggs, to be used for assessing the hepatic expression profiles of 15 selected cytokine and chemokine genes related to acquired immunity from 21 to 120 days postinfection. The early stage of infection in immunocompetent animals was marked by a mixed Th1/Th2 immune response, as characterized by the concomitant presence of gamma interferon (IFN-γ) and interleukin-4 (IL-4) and their related chemokines. At the late stage of AE, the profile extended to a combined tolerogenic mode including Foxp3, IL-10, and transforming growth factor beta (TGF-ß) as key components. In a second step (experiment 2), the effect of T regulatory cell (Treg) deficiency on metacestode growth was assessed in E. multilocularis-infected DEREG (depletion of regulatory T cells) mice upon induction of Treg deficiency with diphtheria toxin (DT). The parasite lesions were significantly smaller in the livers of treated mice than in corresponding control groups. Foxp3+ Tregs appear to be one of the key players in immune-regulatory processes favoring metacestode survival by affecting antigen presentation and suppressing Th1-type immune responses. For these reasons, we suggest that affecting Foxp3+ Tregs could offer an attractive target in the development of an immunotherapy against AE.


Assuntos
Equinococose/imunologia , Equinococose/terapia , Echinococcus multilocularis/imunologia , Imunoterapia , Óvulo/imunologia , Linfócitos T Reguladores/imunologia , Animais , Quimiocinas/genética , Quimiocinas/imunologia , Citocinas/genética , Citocinas/imunologia , Equinococose/parasitologia , Echinococcus multilocularis/genética , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/imunologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Células Th1/imunologia , Células Th2/imunologia
15.
Parasit Vectors ; 11(1): 159, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523176

RESUMO

BACKGROUND: Human echinococcoses are parasitic helminth infections that constitute a serious public health concern in several regions across the world. Cystic (CE) and alveolar echinococcosis (AE) in China represent a high proportion of the total global burden of these infections. This study was conducted to predict the spatial distribution of human seropositivity for Echinococcus species in Xiji County, Ningxia Hui Autonomous Region (NHAR), with the aim of identifying communities where targeted prevention and control efforts are required. METHODS: Bayesian geostatistical models with environmental and demographic covariates were developed to predict spatial variation in the risk of human seropositivity for Echinococcus granulosus (the cause of CE) and E. multilocularis (the cause of AE). Data were collected from three cross-sectional surveys of school children conducted in Xiji County in 2002-2003, 2006-2007 and 2012-2013. Environmental data were derived from high-resolution satellite images and meteorological data. RESULTS: The overall seroprevalence of E. granulosus and E. multilocularis was 33.4 and 12.2%, respectively, across the three surveys. Seropositivity for E. granulosus was significantly associated with summer and winter precipitation, landscape fragmentation variables and the extent of areas covered by forest, shrubland, water and bareland/artificial surfaces. Seropositivity for E. multilocularis was significantly associated with summer and winter precipitations, landscape fragmentation variables and the extent of shrubland and water bodies. Spatial correlation occurred over greater distances for E. granulosus than for E. multilocularis. The predictive maps showed that the risk of seropositivity for E. granulosus expanded across Xiji during the three surveys, while the risk of seropositivity for E. multilocularis became more confined in communities located in the south. CONCLUSIONS: The identification of high-risk areas for seropositivity for these parasites, and a better understanding of the role of the environment in determining the transmission dynamics of Echinococcus spp. may help to guide and monitor improvements in human echinococcosis control strategies by allowing targeted allocation of resources.


Assuntos
Anticorpos Anti-Helmínticos/sangue , Equinococose/epidemiologia , Echinococcus granulosus/imunologia , Echinococcus multilocularis/imunologia , Exposição Ambiental , Topografia Médica , Adolescente , Animais , Criança , China/epidemiologia , Estudos Transversais , Equinococose/parasitologia , Feminino , Humanos , Masculino , Modelos Estatísticos , Fatores de Risco , Estudos Soroepidemiológicos , Análise Espacial
16.
Appl Microbiol Biotechnol ; 102(5): 2143-2154, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29354854

RESUMO

Alveolar echinococcosis is a zoonotic disease caused by the infection of the larval stage Echinococcus multilocularis with worldwide distribution especially in the northwest China. It is important to develop a well-tolerated immunoprophylaxis against E. multilocularis for alveolar echinococcosis control. In this study, a prokaryotic expression system for recombinant immunogen LTB-EMY162 was established, and the immunological features, sensitized lymphocyte, IL-4/IFN-γ secreted, prophylactic effect, and therapeutic effect were also evaluated. Arctic Express (DE3) system, Ni2+-charged and molecular sieve chromatography were used to obtain a high-purity 29 kDa protein. The ELISA and lymphocyte proliferation assay showed that LTB-EMY162 induced high-titer specific IgG against EMY162 and E. multilocularis protoscoleces protein in BALB/c mice and promoted sensitized T lymphocyte cell proliferation, and LTB-EMY162 stimulated Th cell to secrete IL-4 and IFN-γ and induced a Th1/Th2 mixed type immunological response. We also found that LTB-EMY162 significantly inhibited the cysts formation by challenging with 1000 E. multilocularis protoscoleces. The growth of protoscoleces and cysts were also significantly decreased by treating with LTB-EMY162 in 1000 protoscoleces intraperitoneal injection therapeutic mice model. In conclusion, we have constructed a subunit vaccine LTB-EMY162 which has prevention and therapeutic effect against E. multilocularis infection.


Assuntos
Echinococcus multilocularis/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Antígenos de Helmintos/administração & dosagem , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Echinococcus multilocularis/genética , Echinococcus multilocularis/crescimento & desenvolvimento , Feminino , Humanos , Interferon gama/imunologia , Interleucina-4/imunologia , Estágios do Ciclo de Vida , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
17.
Parasitology ; 145(3): 416-423, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28942753

RESUMO

MicroRNAs (miRNAs) are short noncoding RNAs, involved in the regulation of parasite diseases. However, a role of miRNAs in Echinococcus multilocularis infection remains largely unknown. In this study, we first found the expression levels of key genes involved in miRNA biogenesis and function, including Ago2, Xpo5, Tarbp2 and DgcR8, were obviously altered in the macrophage RAW264·7 cells exposed to E. multilocularis metacestodes. Compared with the control, 18 and 32 known miRNAs were found to be differentially expressed (P 2) in the macrophages exposed to E. multilocularis metacestodes for 6 and 12 h, respectively. Among these, several are known to be involved in regulating cytokine activities and immune responses. Quantitative real-time polymerase chain reaction results showed that the expression of nine selected miRNAs was consistent with the sequencing data at each treatment time points. Moreover, there were statistically significant correlations between the expression levels of miRNAs and their corresponding targeted genes. Our data give us some clues to pinpoint a role of miRNAs in the course of infection and immunity of E. multilocularis.


Assuntos
Echinococcus multilocularis/genética , Macrófagos/parasitologia , MicroRNAs/genética , Animais , Citocinas/genética , Equinococose/parasitologia , Echinococcus multilocularis/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Macrófagos/imunologia , Camundongos , MicroRNAs/imunologia , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real
18.
Immunology ; 154(1): 76-88, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29121394

RESUMO

The tumour-like growth of larval Echinococcus multilocularis tissue (causing alveolar echinococcosis, AE) is directly linked to the nature/orientation of the periparasitic host immune-mediated processes. Parasite-mediated immune suppression is a hallmark triggering infection outcome in both chronic human and murine AE. So far, little is known about secondary systemic immune effects of this pathogen on other concomitant diseases, e.g. endogenous gut inflammation. We examined the influence of E. multilocularis infection on murine dextran sodium sulphate (DSS) -induced colitis. At 3 months after E. multilocularis infection (chronic stage), the mice were challenged with 3% DSS in the drinking water for 5 days plus subsequently with tap water (alone) for another 4 days. After necropsy, fixed tissues/organs were sectioned and stained with haematoxylin & eosin for assessing inflammatory reactions. Cytokine levels were measured by flow cytometry and quantitative RT-PCR. Colitis severity was assessed (by board-certified veterinary pathologists) regarding (i) colon length, (ii) weight loss and (iii) a semi-quantitative score of morphological changes. The histopathological analysis of the colon showed a significant reduction of DSS-induced gut inflammation by concomitant E. multilocularis infection, which correlated with down-regulation of T helper type 1 (Th1)/Th17 T-cell responses in the colon tissue. Echinococcus multilocularis infection markedly reduced the severity of DSS-induced gut inflammation upon down-regulation of Th1/Th17 cytokine expression and attenuation of CD11b+ cell activation. In conclusion, E. multilocularis infection remarkably reduces DSS-induced colitis in mice by attenuating Th1/Th17-mediated immune reactions.


Assuntos
Colite/prevenção & controle , Colo/imunologia , Colo/parasitologia , Sulfato de Dextrana , Equinococose/imunologia , Equinococose/parasitologia , Echinococcus multilocularis/imunologia , Células Th1/imunologia , Células Th1/parasitologia , Células Th17/imunologia , Células Th17/parasitologia , Animais , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Antígeno CD11c/imunologia , Antígeno CD11c/metabolismo , Células Cultivadas , Colite/induzido quimicamente , Colite/imunologia , Colite/metabolismo , Colo/metabolismo , Colo/patologia , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Equinococose/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Larva/imunologia , Camundongos Endogâmicos C57BL , Baço/imunologia , Baço/metabolismo , Baço/parasitologia , Células Th1/metabolismo , Células Th17/metabolismo , Fatores de Tempo
19.
Artigo em Inglês | MEDLINE | ID: mdl-28906255

RESUMO

Alveolar echinococcosis is a severe chronic helminthic disease that mimics slow-growing liver cancer. The immune evasion strategy of Echinococcus multilocularis Leuckart, 1863 remains poorly understood. The aim of this study was to investigate in vitro the impact of E. multilocularis vesicular fluid (Em-VF) on peripheral blood mononuclear cells (PBMC) and on natural killer (NK) cells. PBMC and NK cells were exposed to Em-VF (1 µg/ml) during six days. The effect of Em-VF was assessed on CD69, viability and proliferation, and on and transforming growth factor ß (TGF-ß), interferon γ (IFN-γ), interleukin 17 (IL-17) and interleukin 10, using flow cytometry and ELISA, respectively. Exposure to Em-VF had no bearing on PBMC's viability, proliferation and expression of CD69. In contrast, higher levels of IL-17 at day three and of TGF-ß at day six were observed in PBMC supernatant after exposure to Em-VF (p < 0.05, Wilcoxon signed-rank test). Exposure to Em-VF induced a significant decrease of CD69 expression of NK cells at day three and a significant decrease of proliferation of NK cells at day six (p < 0.05, Wilcoxon signed-rank test). In contrast, NK cells viability and levels of cytokines did not vary significantly over Em-VF stimulation. Exposure to Em-VF had a significant bearing on activation and proliferation of NK cells. NK cells may play an important role in the immune response of the host against E. multilocularis.


Assuntos
Equinococose/imunologia , Echinococcus multilocularis/imunologia , Animais , Antígenos CD/análise , Antígenos de Diferenciação de Linfócitos T/análise , Biomarcadores/análise , Proliferação de Células , Citocinas/análise , Equinococose/parasitologia , Humanos , Células Matadoras Naturais/imunologia , Lectinas Tipo C/análise , Leucócitos Mononucleares/imunologia
20.
Sci Rep ; 7(1): 11153, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894272

RESUMO

The local immune mechanisms responsible for either self-healing or sustained chronic infection are not clear, in the development of E. multilocularis larvae. Here, we developed a suitable experimental model that mimics naturally infected livers, according to the parasite load. We demonstrated that local cellular immunity and fibrogenesis are actually protective and fully able to limit metacestode growth in the liver of low or medium dose-infected mice (LDG or MDG), or even to clear it, while impairment of cellular immunity is followed by a more rapid and severe course of the disease in high dose-infected mice (HDG). And recruitment and/ or proliferation of memory T cells (including CD4 Tem, CD8 Tcm and CD8 Tem) and imbalance of T1/T2/T17/Treg-type T cells in liver were not only associated with clearance of the parasite infection in LDG, but also with increased hepatic injury in HDG; in particular the dual role of CD8 T cells depending on the parasite load and the various stages of metacestode growth. Besides, we first demonstrate the association between LAG3- or 2B4-expressing T cells exhaustion and HD inocula in late stages. Our quantitative experimental model appears fully appropriate to study immunomodulation as a therapeutic strategy for patients with Alveolar Echinococcosis.


Assuntos
Equinococose Hepática/imunologia , Equinococose Hepática/parasitologia , Echinococcus multilocularis/imunologia , Tolerância Imunológica , Linfócitos T/imunologia , Animais , Antígenos de Protozoários/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Equinococose Hepática/patologia , Feminino , Humanos , Imunidade Celular , Cirrose Hepática , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Camundongos , Fenótipo , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA