Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.206
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Opt Lett ; 49(10): 2817-2820, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748169

RESUMO

Alteration in the elastic properties of biological tissues may indicate changes in the structure and components. Acoustic radiation force optical coherence elastography (ARF-OCE) can assess the elastic properties of the ocular tissues non-invasively. However, coupling the ultrasound beam and the optical beam remains challenging. In this Letter, we proposed an OCE method incorporating homolateral parallel ARF excitation for measuring the elasticity of the ocular tissues. An acoustic-optic coupling unit was established to reflect the ultrasound beam while transmitting the light beam. The ARF excited the ocular tissue in the direction parallel to the light beam from the same side of the light beam. We demonstrated the method on the agar phantoms, the porcine cornea, and the porcine retina. The results show that the ARF-OCE method can measure the elasticity of the cornea and the retina, resulting in higher detection sensitivity and a more extensive scanning range.


Assuntos
Córnea , Técnicas de Imagem por Elasticidade , Imagens de Fantasmas , Tomografia de Coerência Óptica , Técnicas de Imagem por Elasticidade/métodos , Animais , Suínos , Córnea/diagnóstico por imagem , Córnea/fisiologia , Tomografia de Coerência Óptica/métodos , Elasticidade , Retina/diagnóstico por imagem , Retina/fisiologia
2.
Gynecol Endocrinol ; 40(1): 2352139, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38733361

RESUMO

OBJECTIVE: The main purpose of this systematic review and meta-analysis was to investigate the diagnostic value of ultrasound elastography in the evaluation of polycystic ovary syndrome (PCOS). METHODS: A comprehensive and methodical investigation was carried out in the databases of PubMed, EMBASE, Cochrane, Scopus, Web of Science, and China National Knowledge Infrastructure, covering the entire duration of these databases until October 18, 2023. The primary purpose of this research was to evaluate and contrast ovarian tissue elasticity in people with and without PCOS. The elasticity of ovarian tissue was quantified using standardized mean difference (SMD). RESULTS: A total of eight studies were ultimately selected for systematic evaluation and meta-analysis. Five studies used shear wave elastography (SWE) as a diagnostic tool, and it was discovered that women with PCOS had higher levels of ovarian shear wave elasticity than their healthy counterparts. The SMD was determined to be 1.86 kilopascal (95% CI: 1.27 to 2.44). Three studies were conducted using strain elastography (SE) to compare the ovarian strain ratio of patients with PCOS to that of a healthy control group. The SMD for the PCOS group was 2.07 (95% CI: 1.79 to 2.34), which indicated that the ovarian strain ratio was significantly higher in that group. CONCLUSION: This systematic review and meta-analysis found that women with PCOS had stiffer ovarian tissue than women without the disorder. Ultrasound elastography may provide clinicians with value beyond 2D ultrasound in the diagnosis of PCOS.


Assuntos
Técnicas de Imagem por Elasticidade , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/diagnóstico por imagem , Síndrome do Ovário Policístico/fisiopatologia , Humanos , Técnicas de Imagem por Elasticidade/métodos , Feminino , Ovário/diagnóstico por imagem , Elasticidade
3.
Biophys Chem ; 310: 107256, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728807

RESUMO

Understanding the mechanisms by which drugs interact with cell membranes is crucial for unraveling the underlying biochemical and biophysical processes that occur on the surface of these membranes. Our research focused on studying the interaction between an ester-type derivative of tristearoyl uridine and model cell membranes composed of lipid monolayers at the air-water interface. For that, we selected a specific lipid to simulate nontumorigenic cell membranes, namely 1,2-dihexadecanoyl-sn-glycero-3-phospho-l-serine. We noted significant changes in the surface pressure-area isotherms, with a noticeable shift towards larger areas, which was lower than expected for ideal mixtures, indicating monolayer condensation. Furthermore, the viscoelastic properties of the interfacial film demonstrated an increase in both the elastic and viscous parameters for the mixed film. We also observed structural alterations using vibrational spectroscopy, which revealed an increase in the all-trans to gauche conformers ratio. This confirmed the stiffening effect of the prodrug on the lipid monolayer. In summary, this study indicates that this lipophilic prodrug significantly impacts the lipid monolayer's thermodynamic, rheological, electrical, and molecular characteristics. This information is crucial for understanding how the drug interacts with specific sites on the cellular membrane. It also has implications for drug delivery, as the drug's passage into the cytosol may involve traversing the lipid bilayer.


Assuntos
Membrana Celular , Pró-Fármacos , Uridina , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Uridina/química , Uridina/farmacologia , Fosfatidilserinas/química , Termodinâmica , Propriedades de Superfície , Viscosidade , Elasticidade
4.
Sci Adv ; 10(19): eadl1586, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718128

RESUMO

Viscoelastic transformation of tissue drives aberrant cellular functions and is an early biomarker of disease pathogenesis. Tissues scale a range of viscoelastic moduli, from biofluids to bone. Moreover, viscoelastic behavior is governed by the frequency at which tissue is probed, yielding distinct viscous and elastic responses modulated over a wide frequency band. Existing tools do not quantify wideband viscoelastic spectra in tissues, leaving a vast knowledge gap. We present wideband laser speckle rheological microscopy (WB-SHEAR) that reveals elastic and viscous response over sub-megahertz frequencies previously not investigated in tissue. WB-SHEAR uses an optical, noncontact approach to quantify wideband viscoelastic spectra in specimens spanning a range of moduli from low-viscosity fibrin to highly elastic bone. Via laser scanning, micromechanical imaging is enabled to access wideband viscoelastic spectra in heterogeneous tumor specimens with high spatial resolution (25 micrometers). The ability to interrogate the viscoelastic landscape of diverse biospecimens could transform our understanding of mechanobiological processes in various diseases.


Assuntos
Elasticidade , Reologia , Viscosidade , Reologia/métodos , Humanos , Animais , Lasers , Microscopia/métodos
5.
J Refract Surg ; 40(5): e344-e352, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717086

RESUMO

PURPOSE: To compare the effects of three common refractive surgeries on corneal biomechanics. METHODS: Two hundred seven patients who had refractive surgery were included in this study, of whom 65 received transepithelial photorefractive keratectomy (tPRK), 73 received femtosecond laser-assisted laser in situ keratomileusis (FSLASIK), and 69 received small incision lenticule extraction (SMILE). Each patient had biomechanical measurements using the Corvis ST (Oculus Optikgeräte GmbH) preoperatively and at 3 and 6 months postoperatively. The measurements included five parameters expected to be associated with corneal biomechanics: deformation amplitude ratio at 2 mm (DAR2), integrated inverse radius (IIR), stiffness parameter at first applanation (SP-A1), highest concavity time (HCT), and the updated stress-strain index (SSIv2). The variations in these parameters postoperatively among the three surgeries, and their relationship with corneal thickness (CCT) and intraocular pressure measured by the Dynamic Contour Tonometer (DCT-IOP) were analyzed. RESULTS: SP-A1 decreased significantly from preoperatively to 3 months postoperatively in all three groups, whereas DAR2 and IIR increased significantly, all indicating stiffness losses. Between 3 and 6 months postoperatively, the results were inconsistent, with DAR2 decreasing (indicating stiffness increases) and IIR increasing (denoting stiffness decreases) in the FS-LASIK and SMILE groups. The decrease in SSIv2 (the only measure of corneal material stiffness) postoperatively was comparatively less pronounced at both 3 and 6 months postoperatively. On the other hand, HCT remained generally stable after all three surgeries. Unlike DAR2, IIR, and SP-A1, the changes postoperatively in stiffness parameters HCT and SSIv2 were independent of the corresponding changes in both DCT-IOP and CCT. CONCLUSIONS: Among the stiffness parameters considered, SSIv2 was not correlated with CCT or DCT-IOP, and holds promise for representing the corneal material stiffness and how it remains largely unaffected by refractive surgeries. Overall, FS-LASIK had the most significant impact on corneal stiffness, followed by SMILE, and finally tPRK. [J Refract Surg. 2024;40(5):e344-e352.].


Assuntos
Córnea , Elasticidade , Pressão Intraocular , Ceratomileuse Assistida por Excimer Laser In Situ , Lasers de Excimer , Miopia , Humanos , Córnea/fisiopatologia , Córnea/cirurgia , Adulto , Feminino , Masculino , Fenômenos Biomecânicos , Lasers de Excimer/uso terapêutico , Ceratomileuse Assistida por Excimer Laser In Situ/métodos , Adulto Jovem , Elasticidade/fisiologia , Miopia/cirurgia , Miopia/fisiopatologia , Pressão Intraocular/fisiologia , Ceratectomia Fotorrefrativa/métodos , Acuidade Visual/fisiologia , Refração Ocular/fisiologia , Pessoa de Meia-Idade , Estudos Prospectivos , Cirurgia da Córnea a Laser/métodos , Topografia da Córnea
6.
Int J Med Sci ; 21(5): 775-783, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617013

RESUMO

Pulmonary surfactants, a complex assembly of phospholipids and surfactant proteins such as SP-B and SP-C, are critical for maintaining respiratory system functionality by lowering surface tension (ST) and preventing alveolar collapse. Our study introduced five synthetic SP-B peptides and one SP-C peptide, leading to the synthesis of CHAsurf candidates (CHAsurf-1 to CHAsurf-5) for evaluation. We utilized a modified Wilhelmy balance test to assess the surface tension properties of the surfactants, measuring spreading rate, surface adsorption, and ST-area diagrams to comprehensively evaluate their performance. Animal experiments were performed on New Zealand white rabbits to test the efficacy of CHAsurf-4B, a variant chosen for its economic viability and promising ST reduction properties, comparable to Curosurf®. The study confirmed that higher doses of SP-B in CHAsurf-4 are associated with improved ST reduction. However, due to cost constraints, CHAsurf-4B was selected for in vivo assessment. The animal model revealed that CHAsurf-4B could restore alveolar structure and improve lung elasticity, akin to Curosurf®. Our research highlights the significance of cysteine residues and disulfide bonds in the structural integrity and function of synthetic SP-B analogues, offering a foundation for future surfactant therapy in respiratory disorders. This study's findings support the potential of CHAsurf-4B as a therapeutic agent, meriting further investigation to solidify its role in clinical applications.


Assuntos
Surfactantes Pulmonares , Animais , Coelhos , Cisteína , Elasticidade , Surfactantes Pulmonares/farmacologia , Tensoativos
7.
Soft Matter ; 20(16): 3483-3498, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38587658

RESUMO

A breast-cancer tumor develops within a stroma, a tissue where a complex extracellular matrix surrounds cells, mediating the cancer progression through biomechanical and -chemical cues. Current materials partially mimic the stromal matrix in 3D cell cultures but methods for measuring the mechanical properties of the matrix at cell-relevant-length scales and stromal-stiffness levels are lacking. Here, to address this gap, we developed a characterization approach that employs probe-based microrheometry and Bayesian modeling to quantify length-scale-dependent mechanics and mechanical heterogeneity as in the stromal matrix. We examined the interpenetrating network (IPN) composed of alginate scaffolds (for adjusting mechanics) and type-1 collagen (a stromal-matrix constituent). We analyzed viscoelasticity: absolute-shear moduli (stiffness/elasticity) and phase angles (viscous and elastic characteristics). We determined the relationship between microrheometry and rheometry information. Microrheometry reveals lower stiffness at cell-relevant scales, compared to macroscale rheometry, with dependency on the length scale (10 to 100 µm). These data show increasing IPN stiffness with crosslinking until saturation (≃15 mM of Ca2+). Furthermore, we report that IPN stiffness can be adjusted by modulating collagen concentration and interconnectivity (by polymerization temperature). The IPNs are heterogeneous structurally (in SEM) and mechanically. Interestingly, increased alginate crosslinking changes IPN heterogeneity in stiffness but not in phase angle, until the saturation. In contrast, such changes are undetectable in alginate scaffolds. Our nonlinear viscoelasticity analysis at tumor-cell-exerted strains shows that only the softer IPNs stiffen with strain, like the stromal-collagen constituent. In summary, our approach can quantify the stromal-matrix-related viscoelasticity and is likely applicable to other materials in 3D culture.


Assuntos
Alginatos , Matriz Extracelular , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Alginatos/química , Técnicas de Cultura de Células em Três Dimensões , Viscosidade , Células Estromais/citologia , Células Estromais/metabolismo , Elasticidade , Alicerces Teciduais/química , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Fenômenos Biomecânicos , Reologia , Modelos Biológicos , Teorema de Bayes
8.
Acta Biomater ; 180: 197-205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38599439

RESUMO

During physiological and pathological processes, cells experience significant morphological alterations with the re-arrangement of cytoskeletal filaments, resulting in anisotropic viscoelasticity. Here, a structure-based cell model is proposed to study the anisotropic viscoelastic mechanical behaviors of living cells. We investigate how cell shape affects its creep responses in longitudinal and perpendicular directions. It is shown that cells exhibit power-law rheological behavior in both longitudinal and perpendicular directions under step stress, with a more solid-like behavior along the longitudinal direction. We reveal that the cell volume and cytoskeletal filament orientation, which have been neglected in most existing models, play a critical role in regulating cellular anisotropic viscoelasticity. The stiffness of the cell in both directions increases linearly with increasing its aspect ratio, due to the decrease of cell volume. Moreover, the increase in the cell's aspect ratio produces the aggregation of cytoskeletal filaments along the longitudinal direction, resulting in higher stiffness in this direction. It is also shown that the increase in cell's aspect ratio corresponds to a process of cellular ordering, which can be quantitatively characterized by the orientational entropy of cytoskeletal filaments. In addition, we present a simple yet robust method to establish the relationship between cell's aspect ratio and cell volume, thus providing a theoretical framework to capture the anisotropic viscoelastic behavior of cells. This study suggests that the structure-based cell models may be further developed to investigate cellular rheological responses to external mechanical stimuli and may be extended to the tissue scale. STATEMENT OF SIGNIFICANCE: The viscoelastic behaviors of cells hold significant importance in comprehending the roles of mechanical forces in embryo development, invasion, and metastasis of cancer cells. Here, a structure-based cell model is proposed to study the anisotropic viscoelastic mechanical behaviors of living cells. Our study highlights the crucial role of previously neglected factors, such as cell volume and cytoskeletal filament orientation, in regulating cellular anisotropic viscoelasticity. We further propose an orientational entropy of cytoskeletal filaments to quantitatively characterize the ordering process of cells with increasing aspect ratios. Moreover, we derived the analytical interrelationships between cell aspect ratio, cell stiffness, cell volume, and cytoskeletal fiber orientation. This study provides a theoretical framework to describe the anisotropic viscoelastic mechanical behavior of cells.


Assuntos
Citoesqueleto , Elasticidade , Modelos Biológicos , Anisotropia , Citoesqueleto/metabolismo , Viscosidade , Reologia , Humanos , Tamanho Celular , Estresse Mecânico
9.
Acta Biomater ; 180: 244-261, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615812

RESUMO

Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.


Assuntos
Tecido Adiposo , Hidrogéis , Células-Tronco Mesenquimais , Núcleo Pulposo , Regeneração , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Núcleo Pulposo/citologia , Núcleo Pulposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Regeneração/efeitos dos fármacos , Tecido Adiposo/citologia , Viscosidade , Elasticidade , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Alginatos/química , Alginatos/farmacologia
10.
PLoS One ; 19(4): e0302293, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38640122

RESUMO

Smoking is a worldwide epidemic and increased prices are one of the most cost-effective measures to reduce tobacco consumption. This article aims to estimate the price and income elasticity of cigarettes for different population groups in Ecuador. The National Survey of Urban and Rural Household Income and Expenditures (ENIGHUR) 2011-2012 was used, which has information on household cigarette consumption and its sociodemographic characteristics. Deaton's Almost Ideal Demand System, which decouples the effect of quality on the price of the good, was applied. The elasticities were calculated for several groups: urban/rural, income levels (tertiles), education level, sex and age ranges of the household head, and frequency of cigarette purchases in households. The estimated price elasticity nationwide is -0.89 and the income elasticity is 0.41, both statistically significant. Households headed by women (-2.22) are more sensitive to an increase in cigarette prices than those headed by men (-0.65) and households headed by people between 20 and 40 years of age (-2.32) have a higher price elasticity compared to country-level estimations. Differences within other groups are not statistically significant.


Assuntos
Impostos , Produtos do Tabaco , Masculino , Humanos , Feminino , Equador/epidemiologia , Comércio , Fatores Socioeconômicos , Elasticidade
11.
Sci Rep ; 14(1): 8160, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589521

RESUMO

To analyze the changing trend of CH and CRF values under different influencing factors in T2DM patients. A total of 650 patients with T2DM were included. We discovered that the course of T2DM, smoking history, BMI, and FBG, DR, HbA1c, TC, TG, and LDL-C levels were common risk factors for T2DM, while HDL-C levels were a protective factor. Analyzing the CH and CRF values according to the course of diabetes, we discovered that as T2DM continued to persist, the values of CH and CRF gradually decreased. Moreover, with the increase in FBG levels and the accumulation of HbA1c, the values of CH and CRF gradually decreased. In addition, in patients with HbA1c (%) > 12, the values of CH and CRF decreased the most, falling by 1.85 ± 0.33 mmHg and 1.28 ± 0.69 mmHg, respectively. Compared with the non-DR group, the CH and CRF values gradually decreased in the mild-NPDR, moderate-NPDR, severe-NPDR and PDR groups, with the lowest CH and CRF values in the PDR group. In patients with T2DM, early measurement of corneal biomechanical properties to evaluate the change trend of CH and CRF values in different situations will help to identify and prevent diabetic keratopathy in a timely manner.


Assuntos
Córnea , Diabetes Mellitus Tipo 2 , Humanos , Hemoglobinas Glicadas , Fenômenos Biomecânicos , Pressão Intraocular , Elasticidade , Tonometria Ocular
12.
J Environ Manage ; 358: 120909, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642487

RESUMO

Achieving an equilibrium between exceptional oil absorption and remarkable elasticity has emerged as a formidable challenge for magnetic porous materials designed for oil absorption. Here, we propose an original, magnetic and superhydrophobic cellulose nanofibril (CNF) based aerogel system with a rope-ladder like skeleton by to greatly improve the issue. Within this system, CNF as the skeleton was combined with multiwalled carbon nanotubes (MWCNT)@Fe3O4 as the magnetic and enhanced component, both methyltrimethoxysilane (MTMS) and acetonitrile-extracted lignin (AEL) as the soft-hard associating constituents. The resultant CNF based aerogel shows a rope-ladder like pore structure to contribute to high elasticity and excellent oil absorption (28.34-61.09 g/g for various oils and organic solvents) under the synergistic effect of Fe3O4@MWCNT, AEL and MTMS, as well as good specific surface area (27.97 m2/g), low density (26.4 mg/cm3). Notably, despite the introduced considerable proportion (0.5 times of mass-CNF) of Fe3O4@MWCNT, the aerogel retained an impressive compression-decompression rate (88%) and the oil absorption efficiency of above 87% for various oils due to the soft-hard associating structure supported by both MTMS and AEL. This study provides a prospective strategy to balance between high elasticity and excellent oil absorption of CNF based aerogel doping inorganic particles.


Assuntos
Celulose , Interações Hidrofóbicas e Hidrofílicas , Nanofibras , Celulose/química , Nanofibras/química , Óleos/química , Géis/química , Nanotubos de Carbono/química , Elasticidade , Porosidade
13.
Int J Colorectal Dis ; 39(1): 56, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662090

RESUMO

PURPOSE: This study aimed to clarify the relationship between changes in elasticity and anorectal function before and after chemoradiotherapy. METHODS: This is a single-center prospective cohort study (Department of Surgical Oncology, The University of Tokyo). We established a technique to quantify internal anal sphincter hardness as elasticity using transanal ultrasonography with real-time tissue elastography. Twenty-seven patients with post-chemoradiotherapy rectal cancer during 2019-2022 were included. Real-time tissue elastography with transanal ultrasonography was performed before and after chemoradiotherapy to measure internal anal sphincter hardness as "elasticity" (hardest (0) to softest (255); decreased elasticity indicated sclerotic changes). The relationship between the increase or decrease in elasticity pre- and post-chemoradiotherapy and the maximum resting pressure, maximum squeeze pressure, and Wexner score were the outcome measures. RESULTS: A decrease in elasticity was observed in 16/27 (59.3%) patients after chemoradiotherapy. Patients with and without elasticity decrease after chemoradiotherapy comprised the internal anal sphincter sclerosis and non-sclerosis groups, respectively. The maximum resting pressure post-chemoradiotherapy was significantly high in the internal anal sphincter sclerosis group (63.0 mmHg vs. 47.0 mmHg), and a majority had a worsening Wexner score (60.0% vs. 18.2%) compared with that of the non-sclerosis group. Decreasing elasticity (internal anal sphincter sclerosis) correlated with a higher maximum resting pressure (r = 0.36); no correlation was observed between the degree of elasticity change and maximum squeeze pressure. CONCLUSION: Internal anal sphincter sclerosis due to chemoradiotherapy may correlate to anorectal dysfunction.


Assuntos
Canal Anal , Quimiorradioterapia , Técnicas de Imagem por Elasticidade , Neoplasias Retais , Humanos , Canal Anal/diagnóstico por imagem , Canal Anal/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Quimiorradioterapia/efeitos adversos , Idoso , Neoplasias Retais/terapia , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/fisiopatologia , Reto/fisiopatologia , Reto/diagnóstico por imagem , Elasticidade , Estudos Prospectivos , Adulto , Cuidados Pré-Operatórios , Pressão
14.
Lab Chip ; 24(9): 2440-2453, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38600866

RESUMO

Extensive research has demonstrated the potential of cell viscoelastic properties as intrinsic indicators of cell state, functionality, and disease. For this, several microfluidic techniques have been developed to measure cell viscoelasticity with high-throughput. However, current microchannel designs introduce complex stress distributions on cells, leading to inaccuracies in determining the stress-strain relationship and, consequently, the viscoelastic properties. Here, we introduce a novel approach using hyperbolic microchannels that enable precise measurements under a constant extensional stress and offer a straightforward stress-strain relationship, while operating at a measurement rate of up to 100 cells per second. We quantified the stresses acting in the channels using mechanical calibration particles made from polyacrylamide (PAAm) and found that the measurement buffer, a solution of methyl cellulose and phosphate buffered saline, shows strain-thickening following a power law up to 200 s-1. By measuring oil droplets with varying viscosities, we successfully detected changes in the relaxation times of the droplets and our approach could be used to get the interfacial tension and viscosity of liquid-liquid droplet systems from the same measurement. We further applied this methodology to PAAm microgel beads, demonstrating the accurate recovery of Young's moduli and the near-ideal elastic behavior of the beads. To explore the influence of altered cell viscoelasticity, we treated HL60 human leukemia cells with latrunculin B and nocodazole, resulting in clear changes in cell stiffness while relaxation times were only minimally affected. In conclusion, our approach offers a streamlined and time-efficient solution for assessing the viscoelastic properties of large cell populations and other microscale soft particles.


Assuntos
Elasticidade , Técnicas Analíticas Microfluídicas , Viscosidade , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Resinas Acrílicas/química , Dispositivos Lab-On-A-Chip , Ensaios de Triagem em Larga Escala/instrumentação
15.
Eur Arch Otorhinolaryngol ; 281(5): 2609-2617, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38461420

RESUMO

PURPOSE: The aim of this prospective study was to investigate the diagnostic performance of shear wave elastography (SWE) in differentiating benign and malignant thyroid nodules and their correlation with the American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS). METHODS: This prospective study included 370 thyroid nodules in 308 patients aged 18-70 years. All the patients underwent B-mode ultrasound (US), Doppler examination, and SWE and were given an ACR TI-RADS risk score before fine needle aspiration biopsy (FNAB) and/or surgery. The correlation between SWE parameters and ACR TI-RADS categories was investigated statistically and compared with histopathologic results. Additionally, the diagnostic performance of SWE was evaluated to distinguish malignant and benign thyroid nodules. RESULTS: One hundred and thirty-five of the 370 thyroid nodules were malignant, and 235 nodules were benign. The mean shear wave velocity (SWV) value of the malignant nodules (3.70 ± 0.98 m/s) was statistically higher than that of the benign nodules (2.70 ± 0.37 m/s). The best cutoff value of the mean SWV for differentiating benign and malignant nodules was found to be 2.94 m/s (sensitivity 90.4%, specificity 89.9%, positive predictive value 81.3%, negative predictive value 94.1%, p < 0.001). The average score of the nodules according to the ACR TI-RADS was 3.57 ± 1.83 in benign nodules and 7.38 ± 2.69 in malignant nodules (p ≤ 0.001). CONCLUSION: This study showed that combining SWE and TI-RADS improves the specificity of TI-RADS alone in differentiating benign and malignant nodules.


Assuntos
Técnicas de Imagem por Elasticidade , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/patologia , Técnicas de Imagem por Elasticidade/métodos , Estudos Prospectivos , Estudos Retrospectivos , Ultrassonografia/métodos , Elasticidade
16.
Q Rev Biophys ; 57: e3, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501287

RESUMO

Elastin function is to endow vertebrate tissues with elasticity so that they can adapt to local mechanical constraints. The hydrophobicity and insolubility of the mature elastin polymer have hampered studies of its molecular organisation and structure-elasticity relationships. Nevertheless, a growing number of studies from a broad range of disciplines have provided invaluable insights, and several structural models of elastin have been proposed. However, many questions remain regarding how the primary sequence of elastin (and the soluble precursor tropoelastin) governs the molecular structure, its organisation into a polymeric network, and the mechanical properties of the resulting material. The elasticity of elastin is known to be largely entropic in origin, a property that is understood to arise from both its disordered molecular structure and its hydrophobic character. Despite a high degree of hydrophobicity, elastin does not form compact, water-excluding domains and remains highly disordered. However, elastin contains both stable and labile secondary structure elements. Current models of elastin structure and function are drawn from data collected on tropoelastin and on elastin-like peptides (ELPs) but at the tissue level, elasticity is only achieved after polymerisation of the mature elastin. In tissues, the reticulation of tropoelastin chains in water defines the polymer elastin that bears elasticity. Similarly, ELPs require polymerisation to become elastic. There is considerable interest in elastin especially in the biomaterials and cosmetic fields where ELPs are widely used. This review aims to provide an up-to-date survey of/perspective on current knowledge about the interplay between elastin structure, solvation, and entropic elasticity.


Assuntos
Elastina , Tropoelastina , Tropoelastina/química , Elastina/química , Elasticidade , Estrutura Secundária de Proteína , Peptídeos , Água/química
17.
Biophys J ; 123(9): 1098-1105, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38544410

RESUMO

Understanding cancer cell mechanics allows for the identification of novel disease mechanisms, diagnostic biomarkers, and targeted therapies. In this study, we utilized our previously established fluid shear stress assay to investigate and compare the viscoelastic properties of normal immortalized human astrocytes and invasive human glioblastoma (GBM) cells when subjected to physiological levels of shear stress that are present in the brain microenvironment. We used a parallel-flow microfluidic shear system and a camera-coupled optical microscope to expose single cells to fluid shear stress and monitor the resulting deformation in real time, respectively. From the video-rate imaging, we fed cell deformation information from digital image correlation into a three-parameter generalized Maxwell model to quantify the nuclear and cytoplasmic viscoelastic properties of single cells. We further quantified actin cytoskeleton density and alignment in immortalized human astrocytes and GBM cells via fluorescence microscopy and image analysis techniques. Results from our study show that contrary to the behavior of many extracranial cells, normal and cancerous brain cells do not exhibit significant differences in their viscoelastic properties. Moreover, we also found that the viscoelastic properties of the nucleus and cytoplasm as well as the actin cytoskeletal densities of both brain cell types are similar. Our work suggests that malignant GBM cells exhibit unique mechanical behaviors not seen in other cancer cell types. These results warrant future studies to elucidate the distinct biophysical characteristics of the brain and reveal novel mechanical attributes of GBM and other primary brain tumors.


Assuntos
Astrócitos , Neoplasias Encefálicas , Elasticidade , Glioblastoma , Análise de Célula Única , Humanos , Viscosidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Astrócitos/metabolismo , Astrócitos/citologia , Glioblastoma/patologia , Glioblastoma/metabolismo , Fenômenos Biomecânicos , Encéfalo/metabolismo , Encéfalo/patologia , Núcleo Celular/metabolismo , Estresse Mecânico , Citoesqueleto de Actina/metabolismo
18.
Int J Biol Macromol ; 265(Pt 1): 130807, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484808

RESUMO

Magnetic superhydrophobic materials have broad application prospect in oil-water separation. In this study, a magnetic and superhydrophobic aerogel with lamellar structure was successfully prepared using cellulose nanofibrils (CNF) as the skeleton, Fe3O4 as the magnetic ion, 1H, 1H, 2H, 2H trialkylfluorooctane triethoxysilane (FS) and 3-(2-aminoethyl amino)-propyl trimethoxysilane (AS) as the combined modifier. The prepared aerogel shows lower density (38.63 mg/cm3), excellent magnetic (15.13 emu/g), high elasticity and good oil sorption properties (21 g/g). In addition, FS/AS also exhibits excellent mechanical properties and superhydrophobic ability (water contact angle (WCA) of 151.9 ± 1.4°), as it provides sufficient toughness and low surface energy for the layer-branch structure. It should be noted that the entire preparation process is carried out in the aqueous phase, without the use of any organic solvents, providing a green oil-water separation strategy.


Assuntos
Celulose , Água , Elasticidade , Compostos Radiofarmacêuticos , Interações Hidrofóbicas e Hidrofílicas
19.
J Obstet Gynaecol ; 44(1): 2317387, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38466132

RESUMO

BACKGROUND: Cervical cancer survivors can experience vaginal length shortening, vaginal stenosis, vaginal elasticity deterioration, sexual frequency reduction and sexual dysfunction. This prospective, uncontrolled, monocentric clinical interventional study aimed to evaluate the effect of vaginal dilation therapy on vaginal condition and sexual function of cervical cancer survivors who had not received timely vaginal dilation. METHODS: A total of 139 patients completed the study. They received 6 months of vaginal dilation therapy. We evaluated their vaginal elasticity, vaginal diameter, vaginal length and sexual function before and after vaginal dilation therapy. Their vaginal conditions were evaluated by customised vaginal moulds, and the sexual function was assessed by female sexual function index. The SPSS 25 software was used to analyse all the data. RESULTS: Age, vaginal diameter and sexual intercourse frequency before diagnosis were significantly associated with female sexual dysfunction of the patients after cancer treatment. Vaginal dilation therapy improved vaginal stenosis, vaginal length and sexual function in all the patients; however, the vaginal elasticity and incidence of sexual dysfunction did not improve significantly. Sexual intercourse frequency before diagnosis, vaginal elasticity, time interval from last treatment and treatment modalities were significantly associated with the change in female sexual function index score before and after vaginal dilation therapy. Patients with a time interval from the last treatment less than 24 months or those who had moderate or good vaginal elasticity, benefitted more from vaginal dilatation therapy. CONCLUSIONS: Cervical cancer survivors who had not received timely vaginal dilation still benefitted from vaginal dilation therapy, irrespective of the treatment methods they received. Moreover, vaginal dilation therapy should be performed as early as possible after cervical cancer treatment.


Cervical cancer survivors can experience vaginal condition deterioration and sexual dysfunction after treatment. Vaginal dilation can help improve vaginal stenosis, vaginal length and sexual function of these patients. However, some medical institutions in China do not provide timely vaginal dilation for this population. This study aimed to explore whether vaginal dilation was still effective for cervical cancer survivors who had not received timely vaginal dilation. The results showed that these patients still benefitted from vaginal dilation, irrespective of the treatment methods they received. Patients with a time interval from the last treatment less than 24 months or those who had moderate or good vaginal elasticity, benefitted more from vaginal dilation. The findings of the study is an indication to developing countries that more attention should be given to sexual issue of cervical cancer survivors in clinical practice, and vaginal dilation therapy should be performed promptly after treatment.


Assuntos
Sobreviventes de Câncer , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/terapia , Vagina , Constrição Patológica/etiologia , Constrição Patológica/terapia , Dilatação/efeitos adversos , Estudos Prospectivos , Elasticidade
20.
Sci Rep ; 14(1): 5623, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453994

RESUMO

Scoliosis is a three-dimensional spinal deformity, and paraspinal muscles play an important role as stabilizers of the spinal curve. In this prospective study, we compared elasticity changes in the paraspinal muscles of adolescent patients with scoliosis after surgery or bracing. Elasticity was measured on the concave and convex sides of the paraspinal muscles at the apex of the curve at the beginning of treatment and 6 and 12 months after treatment. Twenty-six patients with correction surgery (n = 15) or bracing (n = 11) were included. At initial evaluation, the Cobb angle was larger in the surgery group (72.3 ± 20.2° in surgery vs. 30.6 ± 5.1° in brace, p < 0.001). The estimated mean elasticity value of the paraspinal muscles was lower in the surgery group at baseline on the convex side (15.8 vs. 22.8 kPa, p = 0.037) and 6 months on both the concave (12.1 vs. 22.7 kPa, p = 0.004) and convex (13.4 vs. 23.8 kPa, p = 0.005) sides. There was a significant stiffness decrease from baseline to 6 months on the concave side in the surgery group (5.9 kPa, p = 0.025). However, the elasticity change recovered at 12 months without significant differences between the two groups.


Assuntos
Escoliose , Humanos , Adolescente , Escoliose/diagnóstico por imagem , Escoliose/cirurgia , Músculos Paraespinais/diagnóstico por imagem , Estudos Prospectivos , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/cirurgia , Elasticidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA