Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 745
Filtrar
1.
J Drugs Dermatol ; 23(5): 347-352, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38709700

RESUMO

This paper outlines a process undertaken by a physician to design a peptide aimed at impacting the extracellular matrix. From a position of very little expertise, a new peptide was designed with amino acid constituents based on the structural proteins collagen and elastin. Sequencing was also considered, given the periodic repetition observed in these proteins, and a peptide with reasonable molecular weight and physical characteristics was designed using available software. The sequence of events concerning intellectual property, functionality investigation, and eventual use of the peptide in new formulations is detailed. This may be of interest to physicians who consider this exercise out of the scope of the usual practice. J Drugs Dermatol. 2024;23(5):347-352.    doi:10.36849/JDD.7921.


Assuntos
Peptídeos , Humanos , Peptídeos/química , Desenho de Fármacos , Elastina/química , Colágeno/química , Matriz Extracelular , Propriedade Intelectual , Médicos
2.
Sci Rep ; 14(1): 10253, 2024 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704431

RESUMO

The tegument protein pp150 of Human Cytomegalovirus (HCMV) is known to be essential for the final stages of virus maturation and mediates its functions by interacting with capsid proteins. Our laboratory has previously identified the critical regions in pp150 important for pp150-capsid interactions and designed peptides similar in sequence to these regions, with a goal to competitively inhibit capsid maturation. Treatment with a specific peptide (PepCR2 or P10) targeted to pp150 conserved region 2 led to a significant reduction in murine CMV (MCMV) growth in cell culture, paving the way for in vivo testing in a mouse model of CMV infection. However, the general pharmacokinetic parameters of peptides, including rapid degradation and limited tissue and cell membrane permeability, pose a challenge to their successful use in vivo. Therefore, we designed a biopolymer-stabilized elastin-like polypeptide (ELP) fusion construct (ELP-P10) to enhance the bioavailability of P10. Antiviral efficacy and cytotoxic effects of ELP-P10 were studied in cell culture, and pharmacokinetics, biodistribution, and antiviral efficacy were studied in a mouse model of CMV infection. ELP-P10 maintained significant antiviral activity in cell culture, and this conjugation significantly enhanced P10 bioavailability in mouse tissues. The fluorescently labeled ELP-P10 accumulated to higher levels in mouse liver and kidneys as compared to the unconjugated P10. Moreover, viral titers from vital organs of MCMV-infected mice indicated a significant reduction of virus load upon ELP-P10 treatment. Therefore, ELP-P10 has the potential to be developed into an effective antiviral against CMV infection.


Assuntos
Antivirais , Infecções por Citomegalovirus , Elastina , Muromegalovirus , Peptídeos , Fosfoproteínas , Proteínas da Matriz Viral , Animais , Elastina/química , Elastina/metabolismo , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/virologia , Camundongos , Antivirais/farmacologia , Antivirais/farmacocinética , Antivirais/química , Peptídeos/farmacologia , Peptídeos/química , Muromegalovirus/efeitos dos fármacos , Humanos , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/química , Citomegalovirus/efeitos dos fármacos , Capsídeo/metabolismo , Capsídeo/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/farmacocinética , Modelos Animais de Doenças , Polipeptídeos Semelhantes à Elastina
3.
Sci Rep ; 14(1): 10157, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698072

RESUMO

Extraction of nucleic acids (NAs) is critical for many methods in molecular biology and bioanalytical chemistry. NA extraction has been extensively studied and optimized for a wide range of applications and its importance to society has significantly increased. The COVID-19 pandemic highlighted the importance of early and efficient NA testing, for which NA extraction is a critical analytical step prior to the detection by methods like polymerase chain reaction. This study explores simple, new approaches to extraction using engineered smart nanomaterials, namely NA-binding, intrinsically disordered proteins (IDPs), that undergo triggered liquid-liquid phase separation (LLPS). Two types of NA-binding IDPs are studied, both based on genetically engineered elastin-like polypeptides (ELPs), model IDPs that exhibit a lower critical solution temperature in water and can be designed to exhibit LLPS at desired temperatures in a variety of biological solutions. We show that ELP fusion proteins with natural NA-binding domains can be used to extract DNA and RNA from physiologically relevant solutions. We further show that LLPS of pH responsive ELPs that incorporate histidine in their sequences can be used for both binding, extraction and release of NAs from biological solutions, and can be used to detect SARS-CoV-2 RNA in samples from COVID-positive patients.


Assuntos
COVID-19 , Elastina , Peptídeos , SARS-CoV-2 , Elastina/química , Concentração de Íons de Hidrogênio , Peptídeos/química , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/genética , Humanos , Proteínas Intrinsicamente Desordenadas/química , Extração Líquido-Líquido/métodos , Ácidos Nucleicos/isolamento & purificação , Ácidos Nucleicos/química , DNA/química , DNA/isolamento & purificação , Polipeptídeos Semelhantes à Elastina , Separação de Fases
4.
ACS Biomater Sci Eng ; 10(5): 2945-2955, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38669114

RESUMO

Metal-coordination bonds, a highly tunable class of dynamic noncovalent interactions, are pivotal to the function of a variety of protein-based natural materials and have emerged as binding motifs to produce strong, tough, and self-healing bioinspired materials. While natural proteins use clusters of metal-coordination bonds, synthetic materials frequently employ individual bonds, resulting in mechanically weak materials. To overcome this current limitation, we rationally designed a series of elastin-like polypeptide templates with the capability of forming an increasing number of intermolecular histidine-Ni2+ metal-coordination bonds. Using single-molecule force spectroscopy and steered molecular dynamics simulations, we show that templates with three histidine residues exhibit heterogeneous rupture pathways, including the simultaneous rupture of at least two bonds with more-than-additive rupture forces. The methodology and insights developed improve our understanding of the molecular interactions that stabilize metal-coordinated proteins and provide a general route for the design of new strong, metal-coordinated materials with a broad spectrum of dissipative time scales.


Assuntos
Histidina , Simulação de Dinâmica Molecular , Níquel , Histidina/química , Níquel/química , Elastina/química , Proteínas/química , Peptídeos/química
5.
J Med Chem ; 67(8): 6624-6637, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38588467

RESUMO

The increased remodeling of the extracellular matrix (ECM) in pulmonary fibrosis (PF) generates bioactive ECM fragments called matricryptins, which include elastin-derived peptides (EDPs). The interaction between EDPs and their receptors, including elastin-binding protein (EBP), plays a crucial role in exacerbating fibrosis. Here, we present LXJ-02 for the first time, a novel ultralong-acting inhibitor that disrupts the EDPs/EBP peptide-protein interaction, promoting macrophages to secrete matrix metalloproteinase-12 (MMP-12), and showing great promise as a stable peptide. MMP-12 has traditionally been implicated in promoting inflammation and fibrosis in various acute and chronic diseases. However, we reveal a novel role of LXJ-02 that activates the macrophage-MMP-12 axis to increase MMP-12 expression and degrade ECM components like elastin. This leads to the preventing of PF while also improving EDP-EBP interaction. LXJ-02 effectively reverses PF in mouse models with minimal side effects, holding great promise as an excellent therapeutic agent for lung fibrosis.


Assuntos
Desenho de Fármacos , Elastina , Fibrose Pulmonar , Receptores de Superfície Celular , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Animais , Camundongos , Elastina/química , Elastina/metabolismo , Humanos , Metaloproteinase 12 da Matriz/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/síntese química , Camundongos Endogâmicos C57BL , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino
6.
Transgenic Res ; 33(1-2): 21-33, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573429

RESUMO

Plants can produce complex pharmaceutical and technical proteins. Spider silk proteins are one example of the latter and can be used, for example, as compounds for high-performance textiles or wound dressings. If genetically fused to elastin-like polypeptides (ELPs), the silk proteins can be reversibly precipitated from clarified plant extracts at moderate temperatures of ~ 30 °C together with salt concentrations > 1.5 M, which simplifies purification and thus reduces costs. However, the technologies developed around this mechanism rely on a repeated cycling between soluble and aggregated state to remove plant host cell impurities, which increase process time and buffer consumption. Additionally, ELPs are difficult to detect using conventional staining methods, which hinders the analysis of unit operation performance and process development. Here, we have first developed a surface plasmon resonance (SPR) spectroscopy-based assay to quantity ELP fusion proteins. Then we tested different filters to prepare clarified plant extract with > 50% recovery of spider silk ELP fusion proteins. Finally, we established a membrane-based purification method that does not require cycling between soluble and aggregated ELP state but operates similar to an ultrafiltration/diafiltration device. Using a data-driven design of experiments (DoE) approach to characterize the system of reversible ELP precipitation we found that membranes with pore sizes up to 1.2 µm and concentrations of 2-3 M sodium chloride facilitate step a recovery close to 100% and purities of > 90%. The system can thus be useful for the purification of ELP-tagged proteins produced in plants and other hosts.


Assuntos
Polipeptídeos Semelhantes à Elastina , Seda , Seda/genética , Proteínas de Artrópodes , Elastina/genética , Elastina/química , Elastina/metabolismo , Nicotiana/genética , Proteínas Recombinantes de Fusão/genética
7.
Acc Chem Res ; 57(9): 1227-1237, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38624000

RESUMO

ConspectusVesicles are self-assembled structures comprised of a membrane-like exterior surrounding a hollow lumen with applications in drug delivery, artificial cells, and micro-bioreactors. Lipid or polymer vesicles are the most common and are made of lipids or polymers, respectively. They are highly useful structures for many applications but it can be challenging to decorate them with proteins or encapsulate proteins in them, owing to the use of organic solvent in their formation and the large size of proteins relative to lipid or polymer molecules. By utilization of recombinant fusion proteins to make vesicles, specific protein domains can be directly incorporated while also imparting tunability and stability. Protein vesicle assembly relies on the design and use of self-assembling amphiphilic proteins. A specific protein vesicle platform made in purely aqueous conditions of a globular, functional protein fused to a glutamate-rich leucine zipper (ZE) and a thermoresponsive elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) is discussed here. The hydrophobic conformational change of the ELP above its transition temperature drives assembly, and strong ZE/ZR binding enables incorporation of the desired functional protein. Mixing the soluble proteins on ice induces zipper binding, and then warming above the ELP transition temperature (Tt) triggers the transition to and growth of protein-rich coacervates and, finally, reorganization of proteins into vesicles. Vesicle size is tunable based on salt concentration, rate of heating, protein concentration, size of the globular protein, molar ratio of the proteins, and the ELP sequence. Increasing the salt concentration decreases vesicle size by decreasing the Tt, resulting in a shorter coacervation transition stage. Likewise, directly changing the heating rate also changes this time and increasing protein concentration increases coalescence. Increasing globular protein size decreases the size of the vesicle due to steric hindrance. By changing the ELP sequence, which consists of (VPGXG)n, through the guest residue (X) or number of repeats (n), Tt is changed, affecting size. Additionally, the chemical nature of X variation has endowed vesicles with stimuli responsiveness and stability at physiological conditions.Protein vesicles have been used for biocatalysis, biomacromolecular drug delivery, and vaccine applications. Photo-cross-linkable vesicles were used to deliver small molecule cargo to cancer cells in vitro and antigen to immune cells in vivo. pH-responsive vesicles effectively delivered functional protein cargo, including cytochrome C, to the cytosol of cancer cells in vitro, using hydrophobic ion pairing to improve cargo distribution in the vesicles and release. The globular protein used to make the vesicles can be varied to achieve different functions. For example, enzyme vesicles exhibit biocatalysis, and antigen vesicles induce antibody and cellular immune responses after vaccination in mice. Collectively, the development and engineering of the protein vesicle platform has employed amphiphilic self-assembly strategies and rational protein engineering to control physical, chemical, and biological properties for biotechnology and nanomedicine applications.


Assuntos
Elastina , Elastina/química , Humanos , Proteínas Recombinantes/química , Zíper de Leucina
8.
Biomacromolecules ; 25(4): 2408-2422, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38546162

RESUMO

Elastin-collagen nanovesicles (ECnV) have emerged as a promising platform for drug delivery due to their tunable physicochemical properties and biocompatibility. The potential of nine distinct ECnVs to serve as drug-delivery vehicles was investigated in this study, and it was demonstrated that various small-molecule cargo (e.g., dexamethasone, methotrexate, doxorubicin) can be encapsulated in and released from a set of ECnVs, with extents of loading and rates of release dictated by the composition of the elastin domain of the ECnV and the type of cargo. Elastin-like peptides (ELPs) and collagen-like peptides (CLPs) of various compositions were produced; the secondary structure of the corresponding peptides was determined using CD, and the morphology and average hydrodynamic diameter (∼100 nm) of the ECnVs were determined using TEM and DLS. It was observed that hydrophobic drugs exhibited slower release kinetics than hydrophilic drugs, but higher drug loading was achieved for the more hydrophilic Dox. The collagen-binding ability of the ECnVs was demonstrated through a 2D collagen-binding assay, suggesting the potential for longer retention times in collagen-enriched tissues or matrices. Sustained release of drugs for up to 7 days was observed and, taken together with the collagen-binding data, demonstrates the potential of this set of ECnVs as a versatile drug delivery vehicle for longer-term drug release of a variety of cargo. This study provides important insights into the drug delivery potential of ECnVs and offers useful information for future development of ECnV-based drug delivery systems for the treatment of various diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Peptídeos , Preparações de Ação Retardada , Peptídeos/química , Doxorrubicina/química , Colágeno/química , Matriz Extracelular , Elastina/química
9.
Q Rev Biophys ; 57: e3, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501287

RESUMO

Elastin function is to endow vertebrate tissues with elasticity so that they can adapt to local mechanical constraints. The hydrophobicity and insolubility of the mature elastin polymer have hampered studies of its molecular organisation and structure-elasticity relationships. Nevertheless, a growing number of studies from a broad range of disciplines have provided invaluable insights, and several structural models of elastin have been proposed. However, many questions remain regarding how the primary sequence of elastin (and the soluble precursor tropoelastin) governs the molecular structure, its organisation into a polymeric network, and the mechanical properties of the resulting material. The elasticity of elastin is known to be largely entropic in origin, a property that is understood to arise from both its disordered molecular structure and its hydrophobic character. Despite a high degree of hydrophobicity, elastin does not form compact, water-excluding domains and remains highly disordered. However, elastin contains both stable and labile secondary structure elements. Current models of elastin structure and function are drawn from data collected on tropoelastin and on elastin-like peptides (ELPs) but at the tissue level, elasticity is only achieved after polymerisation of the mature elastin. In tissues, the reticulation of tropoelastin chains in water defines the polymer elastin that bears elasticity. Similarly, ELPs require polymerisation to become elastic. There is considerable interest in elastin especially in the biomaterials and cosmetic fields where ELPs are widely used. This review aims to provide an up-to-date survey of/perspective on current knowledge about the interplay between elastin structure, solvation, and entropic elasticity.


Assuntos
Elastina , Tropoelastina , Tropoelastina/química , Elastina/química , Elasticidade , Estrutura Secundária de Proteína , Peptídeos , Água/química
10.
Biomacromolecules ; 25(4): 2390-2398, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38478587

RESUMO

Thermoresponsive elastin-like peptides (ELPs) have been extensively investigated in biotechnology and medicine, but little attention has been paid to the process by which coacervation causes ELP-decorated particles to aggregate. Using gold nanoparticles (AuNPs) functionalized with a cysteine-terminated 96-repeat of the VPGVG sequence (V96-Cys), we show that the size of the clusters that reversibly form above the ELP transition temperature can be finely controlled in the 250 to 930 nm range by specifying the concentration of free V96-Cys in solution and using AuNPs of different sizes. We further find that the localized surface plasmon resonance peak of the embedded AuNPs progressively red-shifts with cluster size, likely due to an increase in particle-particle contacts. We exploit this fine control over size to homogeneously load precise amounts of the dye Nile Red and the antibiotic Tetracycline into clusters of different hydrodynamic diameters and deliver cargos near-quantitatively by deconstructing the aggregates below the ELP transition temperature. Beyond establishing a key role for free ELPs in the agglomeration of ELP-functionalized particles, our results provide a path for the thermally controlled delivery of precise quantities of molecular cargo. This capability might prove useful in combination photothermal therapies and theranostic applications, and to trigger spatially and temporally uniform responses from biological, electronic, or optical systems.


Assuntos
Ouro , Nanopartículas Metálicas , Peptídeos/química , Ressonância de Plasmônio de Superfície , Elastina/química , Temperatura
11.
Biomacromolecules ; 25(2): 1027-1037, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38166400

RESUMO

Subunit vaccines would benefit from a safe particle-based adjuvant. Elastin-like polypeptide (ELP)-based micelles are interesting candidate adjuvants due to their well-defined size and easy modification with protein-based cargo. Coiled coils can facilitate noncovalent modifications, while potentially enhancing antigen delivery through interaction with cell membranes. ELP micelles comprise ELP diblock copolymers that self-assemble above a critical micelle temperature. In this study, an amphiphilic ELP was conjugated to peptide "K", which forms a heterodimeric coiled-coil complex with peptide "E". Self-assembled "covalent" micelles containing ELP-OVA323 (i.e., model antigen OVA323 conjugated to ELP), "coiled-coil" micelles containing ELP-K/E-OVA323 and "hybrid" micelles containing ELP-K and ELP-OVA323 were shown to be monodisperse and spherical. Dendritic cells (DCs) were exposed to all micelle compositions, and T-cell proliferation was investigated. The presence of ELP-K enhanced micelle uptake and subsequent DC maturation, resulting in enhanced CD4+ T-cell proliferation, which makes ELPs with coiled coil-associated antigens a promising vaccine platform.


Assuntos
Polipeptídeos Semelhantes à Elastina , Micelas , Elastina/química , Peptídeos/química , Antígenos , Ativação Linfocitária
12.
Adv Drug Deliv Rev ; 206: 115189, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281625

RESUMO

Elastin-like polypeptides (ELP) are versatile, thermo-responsive polymers that can be conjugated to virtually any therapeutic cargo. Derived from short amino-acid sequences and abundant in humans, certain ELPs display low immunogenicity. Substrates for endogenous proteases, ELPs are biodegradable and thus, are candidate biomaterials. Peptides and proteins can be directly coupled with ELPs through genetic engineering, while other polymers and small molecules can be appended through covalent bioconjugation or non-covalent complexation. ELPs that phase separate at physiological temperatures can form the core of nano assemblies; however, ELPs that remain soluble can sterically stabilize the corona of a variety of nanoparticles. Nanoparticles with ELPs at their corona promote colloids with favorable pharmacokinetic (PK) properties that enables therapeutic efficacy with intermittent administration. This review highlights a comprehensive spectrum of ELP fusions shown to stabilize the solubility, and sometimes bioactivity, of their cargo - with a focus on biophysical properties that underlie their therapeutic effects.


Assuntos
Polipeptídeos Semelhantes à Elastina , Nanopartículas , Humanos , Elastina/química , Peptídeos/química , Sequência de Aminoácidos , Nanopartículas/química
13.
Macromol Biosci ; 24(3): e2300236, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37698188

RESUMO

Elastin-like polypeptides are biotechnological protein and peptide carriers that offer a vast scope of applicability. This work aims to build a model for the expression of antimicrobial peptides (AMPs) by genetically engineering the Human Elastin-like Polypeptide platform developed in the lab. The well-characterized AMP indolicidin is selected as an example of an antimicrobial domain for the recombinant fusion at the C-terminus of the carrier. The fusion construct has been designed to allow the release of the antimicrobial domain. The expression product has been purified and its physicochemical and antimicrobial properties has been characterized. Taking advantage of the self-assembling and matrix-forming properties of the recombinant biopolymer, the materials that are obtained have been evaluated for antimicrobial activity toward bacterial-strain models. This approach represents a cost-effective strategy for the production of smart components and materials endowed with antimicrobial capacity triggered by external stimuli.


Assuntos
Anti-Infecciosos , Elastina , Humanos , Elastina/química , Biopolímeros , Bactérias/metabolismo , Anti-Infecciosos/farmacologia
14.
Biomacromolecules ; 25(1): 508-521, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38047916

RESUMO

A fusion protein composed of a bacterial protein, azurin, having antineoplastic properties and a thermally responsive structural cationic elastin-like protein (ELP), is designed, cloned, expressed, and purified. A simple method of inverse transition cycle (ITC) is employed to purify the fusion protein azurin-ELP diblock copolymer (d-bc). The molecular weight of the azurin-ELP fusion protein is ∼32 kDa. Further, its self-assembly properties are investigated. Interestingly, the engineered azurin-ELP d-bc in response to increasing temperature shows a dual-step phase separation into biofunctional nanostructures. Around the physiological temperature, azurin-ELP d-bc forms stable coacervates, which is dependent on the concentration and time of incubation. These coacervates are formed below the lower critical solubility temperature (LCST) of the ELP block at physiological temperature. Above LCST, i.e., 50-55°C, micelles of size ranging from 25 to 30 nm are formed. The cytotoxicity of azurin-ELP d-bc depends on the size of the coacervates formed and their cellular uptake at physiological temperature. Further, MTT assay of azurin-ELP d-bc in the cross-linked micelles prepared ex situ shows > six times higher killing of LNCaP cells than the unimeric form of azurin-ELP at 5 µM concentration. The flow cytometric results of these micelles at 20 µM concentration show ∼97% LNCaP cells in the apoptotic phase. Thus, azurin-ELP cross-linked micelles have enhanced potential for anticancer therapy due to their higher avidity.


Assuntos
Azurina , Neoplasias da Próstata , Humanos , Masculino , Polipeptídeos Semelhantes à Elastina , Micelas , Azurina/genética , Peptídeos/química , Elastina/química , Neoplasias da Próstata/tratamento farmacológico
15.
Int J Biol Macromol ; 256(Pt 2): 128107, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38007030

RESUMO

Cancer, a prevalent disease posing significant threats to human health and longevity, necessitates effective therapeutic interventions. Chemotherapy has emerged as a primary strategy following surgical procedures for combating most malignancies. Despite the considerable efficacy of conventional chemotherapeutic agents against cancer cells, their utility is hindered by profound challenges such as multidrug resistance and deleterious toxic side effects, thereby limiting their systemic application. To tackle these challenges, we have devised a promising nanomedicine platform based on a plant virus. Specifically, we have selected the cowpea melanoma mottled virus (CCMV) as our nano-delivery system owing to its monodisperse and homogeneous size, as well as its intrinsic ability for controlled self-assembly. Leveraging the potential of this platform, we have engineered CCMV-based nanoparticles functionalized with elastin-like peptides (ELPs) at their N-terminal region. The target protein, CP-ELP, was expressed via E.coli, enabling encapsulation of the model drug DOX upon structural domain modification of the protein. The resulting nanoparticles exhibit uniform size distribution, facilitating efficient internalization by tumor cells and subsequent intracellular drug release, leading to enhanced antitumor efficacy. In addition, EVLP@DOX nanoparticles were found to activate immune response of tumor microenvironment in vivo, which further inhibiting tumor growth. Our designed nanoparticles have also demonstrated remarkable therapeutic effectiveness and favorable biological safety profiles in both murine melanoma and colorectal cancer models.


Assuntos
Melanoma , Nanopartículas , Camundongos , Humanos , Animais , Proteínas do Capsídeo , Melanoma/tratamento farmacológico , Peptídeos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Elastina/química , Doxorrubicina/química , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Protein Sci ; 33(2): e4878, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147468

RESUMO

The incorporation of unnatural amino acids (uAAs) into protein-based polymers has emerged as a powerful methodology to expand their chemical repertoire. Recently, we demonstrated that incorporating uAAs into two temperature-responsive protein-based polymers-namely resilin- and elastin-like polypeptides (RLPs and ELPs, respectively)-can alter their properties. In this study, we incorporated aromatic uAAs into the protein sequence of RLP-ELP diblocks to yield new and diverse assemblies from a single DNA template. Specifically, we show that incorporating aromatic uAAs can modulate the phase-transition behaviors and self-assembly of the diblocks into various morphologies, including spherical and cylindrical micelles and single- and double-layered vesicles, with some constructs also demonstrating a temperature-responsive shape-shifting behavior. Next, we evaluated the ability of the RLP-ELP assemblies to encapsulate a chemotherapeutic drug, doxorubicin, and show how the identity of the incorporated uAAs and the morphology of the nanostructure affect the encapsulation efficiency. Taken together, our findings demonstrate that the multi-site incorporation of uAAs into temperature-responsive, amphiphilic protein-based diblock copolymers is a promising approach for the functionalization and tuning of self-assembled nanostructures.


Assuntos
Aminoácidos , Peptídeos , Temperatura , Peptídeos/química , Sequência de Aminoácidos , Polímeros , Elastina/química , Elastina/genética
17.
Biomacromolecules ; 25(1): 272-281, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38118170

RESUMO

Elastin-like polypeptides (ELP) are a class of materials that are widely used as purification tags and in potential therapeutic applications. We have used the hydrophobic nature of ELP to extract them into organic solvents and precipitate them to obtain highly pure materials. Although many different types of ELP have been rapidly purified in this manner, the underlying mechanism for this process and its ability to retain functional proteins within organic phase-rich media has been unclear. A cleavable ELP-Intein construct fused with the enzyme chorismate mutase (ELP-I-Cm2) was used to better understand the organic solvent extraction process for ELP and the factors impacting the retention of enzyme activity. Our extraction studies indicated that a cell lysis step was essential to stabilize the ELP-I-Cm2 in the organic phase, prevent intein cleavage, and extract the fusion protein with high efficiency and retained activity. Circular dichroism and infrared spectroscopic characterization of ELP-I-Cm2 in organic solvents and aqueous solutions of the extracted and precipitated material indicated that the ELP secondary structure was retained in both environments. Atomic force microscopy and negative stain transmission electron microscopy imaging of ELP-I-Cm2 in organic solvents revealed highly regular circular features that were ∼50 nm in diameter, in contrast to larger (>100 nm) irregular features found in aqueous solutions. Since reverse micelles have often been used in catalytic processes, we evaluated the enzymatic activity of the ELP-I-Cm2 reversed micelles in different organic solvent mixtures and found that Cm2-mediated reactions in organic media were of comparable rate and efficiency to those in aqueous media. Based on these findings, we report an exciting new opportunity for ELP-enzyme fusion applications by exploiting their ability to form catalytically active reverse micelles in organic media.


Assuntos
Polipeptídeos Semelhantes à Elastina , Micelas , Peptídeos/química , Elastina/química , Solventes , Proteínas Recombinantes de Fusão
18.
J Nanobiotechnology ; 21(1): 418, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951928

RESUMO

Elastin-like polypeptides (ELPs) are thermally responsive biopolymers derived from natural elastin. These peptides have a low critical solution temperature phase behavior and can be used to prepare stimuli-responsive biomaterials. Through genetic engineering, biomaterials prepared from ELPs can have unique and customizable properties. By adjusting the amino acid sequence and length of ELPs, nanostructures, such as micelles and nanofibers, can be formed. Correspondingly, ELPs have been used for improving the stability and prolonging drug-release time. Furthermore, ELPs have widespread use in tissue repair due to their biocompatibility and biodegradability. Here, this review summarizes the basic property composition of ELPs and the methods for modulating their phase transition properties, discusses the application of drug delivery system and tissue repair and clarifies the current challenges and future directions of ELPs in applications.


Assuntos
Elastina , Peptídeos , Elastina/química , Peptídeos/química , Sistemas de Liberação de Medicamentos , Sequência de Aminoácidos , Materiais Biocompatíveis
19.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005254

RESUMO

To enhance the understanding of enzymatic hydrolysis and to accelerate the discovery of key bioactive peptides within enzymatic products, this research focused on elastin as the substrate and investigated the variations in peptide profiles and the production of key bioactive peptides (those exceeding 5% of the total) and their impacts on the biological activity of the hydrolysates. Through the application of advanced analytical techniques, such as stop-flow two-dimensional liquid chromatography and ultra-high-performance liquid chromatography-tandem mass spectrometry, the research tracks the release and profiles of peptides within elastin hydrolysates (EHs). Despite uniform peptide compositions, significant disparities in peptide concentrations were detected across the hydrolysates, hinting at varying levels of bioactive efficacy. A comprehensive identification process pinpointed 403 peptides within the EHs, with 18 peptides surpassing 5% in theoretical maximum content, signaling their crucial role in the hydrolysate's bioactivity. Of particular interest, certain peptides containing sequences of alanine, valine, and glycine were released in higher quantities, suggesting Alcalase® 2.4L's preference for these residues. The analysis not only confirms the peptides' dose-responsive elastase inhibitory potential but also underscores the nuanced interplay between peptide content, biological function, and their collective synergy. The study sets the stage for future research aimed at refining enzymatic treatments to fully exploit the bioactive properties of elastin.


Assuntos
Elastina , Peptídeos , Animais , Bovinos , Hidrólise , Mapeamento de Peptídeos , Elastina/química , Peptídeos/química , Elastase Pancreática , Hidrolisados de Proteína
20.
Biomacromolecules ; 24(12): 5926-5939, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37988588

RESUMO

Hydrogels with encapsulated cells have widespread biomedical applications, both as tissue-mimetic 3D cultures in vitro and as tissue-engineered therapies in vivo. Within these hydrogels, the presentation of cell-instructive extracellular matrix (ECM)-derived ligands and matrix stiffness are critical factors known to influence numerous cell behaviors. While individual ECM biopolymers can be blended together to alter the presentation of cell-instructive ligands, this typically results in hydrogels with a range of mechanical properties. Synthetic systems that allow for the facile incorporation and modulation of multiple ligands without modification of matrix mechanics are highly desirable. In the present work, we leverage protein engineering to design a family of xeno-free hydrogels (i.e., devoid of animal-derived components) consisting of recombinant hyaluronan and recombinant elastin-like proteins (ELPs), cross-linked together with dynamic covalent bonds. The ELP components incorporate cell-instructive peptide ligands derived from ECM proteins, including fibronectin (RGD), laminin (IKVAV and YIGSR), collagen (DGEA), and tenascin-C (PLAEIDGIELTY and VFDNFVL). By carefully designing the protein primary sequence, we form 3D hydrogels with defined and tunable concentrations of cell-instructive ligands that have similar matrix mechanics. Utilizing this system, we demonstrate that neurite outgrowth from encapsulated embryonic dorsal root ganglion (DRG) cultures is significantly modified by cell-instructive ligand content. Thus, this library of protein-engineered hydrogels is a cell-compatible system to systematically study cell responses to matrix-derived ligands.


Assuntos
Elastina , Peptídeos , Animais , Ligantes , Peptídeos/química , Elastina/química , Matriz Extracelular/química , Técnicas de Cultura de Células/métodos , Hidrogéis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA