Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.327
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Methods Mol Biol ; 2804: 117-125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753144

RESUMO

Several glycoproteins are validated biomarkers of various diseases such as cancer, cardiovascular diseases, chronic alcohol abuse, or congenital disorders of glycosylation (CDG). In particular, CDG represent a group of more than 150 inherited diseases with varied symptoms affecting multiple organs. The distribution of glycans from target glycoprotein(s) can be used to extract information to help the diagnosis and possibly differentiate subtypes of CDG. Indeed, depending on the glycans and the proteins to which they are attached, glycans can play a very broad range of roles in both physical and biological properties of glycoproteins. For glycans in general, capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) has become a staple. Analysis of glycans with CE-LIF requires several sample preparation steps, including release of glycans from the target glycoprotein, fluorescent labeling of glycans, and purification of labeled glycans. Here, we describe the protocol for glycan sample treatment in a microfluidic droplet system prior to CE-LIF of labeled glycans. The microfluidic droplet approach offers full automation, sample, and reagent volume reduction and elimination of contamination from external environment.


Assuntos
Biomarcadores , Eletroforese Capilar , Polissacarídeos , Eletroforese Capilar/métodos , Biomarcadores/análise , Polissacarídeos/análise , Humanos , Glicoproteínas/análise , Glicoproteínas/metabolismo , Microfluídica/métodos , Microfluídica/instrumentação , Glicosilação
2.
J Chromatogr A ; 1725: 464945, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688053

RESUMO

In the field of oligonucleotides drug discovery, phosphorothioate (PS) modification has been recognized as an effective tool to overcome the nuclease digestion, and generates 2n of possible diastereomers, where n equals the number of PS linkages. However, it is also well known that differences in drug efficacy and toxicity are caused by differences in stereochemistry of oligonucleotides. Therefore, the development of a high-resolution analytical method that enables stereo discrimination of oligonucleotides is desired. Under this circumstance, capillary electrophoresis (CE) using polyvinylpyrrolidone (PVP) is considered as one of the useful tools for the separation analysis of diastereomers. In this study, we evaluated the several oligonucleotides with the structural diversities in order to understand the separation mechanism of the diastereomers by CE. Especially, five kinds of 2'-moieties were deeply examined by CE with PVP 1,300,000 polymer solution. We found that different trend of the peak shapes and the peak resolution were observed among these oligonucleotides. For example, the better peak resolution was observed in 6 mer PS3-DNA compared to the rigid structure of 6 mer PS3-LNA. As for this reason, the computational simulation revealed that difference of accessible surface area caused by the steric structure of thiophosphate in each oligonucleotide is one of the key attributes to explain the separation of the diastereomers. In addition, we achieved the separation of sixteen peak tops of the diastereomers in 6 mer PS4-DNA, and the complete separation of fifteen diastereomers in 6 mer PS4-RNA. These knowledge for the separation of the diastereomers by CE will be expected to the quality control of the oligonucleotide drugs.


Assuntos
Eletroforese Capilar , Oligonucleotídeos , Povidona , Eletroforese Capilar/métodos , Estereoisomerismo , Povidona/química , Oligonucleotídeos/química , Oligonucleotídeos/análise , Oligonucleotídeos/isolamento & purificação
3.
Anal Chim Acta ; 1298: 342400, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462348

RESUMO

BACKGROUND: Extracellular ATP is involved in disorders that cause inflammation of the airways and cough, thus limiting its release has therapeutic benefits. Standard luminescence-based ATP assays measure levels indirectly through enzyme degradation and do not provide a simultaneous readout for other nucleotide analogues. Conversely, mass spectrometry can provide direct ATP measurements, however, common RPLC and HILIC methods face issues because these molecules are unstable, metal-sensitive analytes which are often poorly retained. These difficulties have traditionally been overcome using passivation or ion-pairing chromatography, but these approaches can be problematic for LC systems. As a result, more effective analytical methods are needed. RESULTS: Here, we introduce a new application that uses microfluidic chip-based capillary zone electrophoresis-mass spectrometry (µCZE-MS) to measure ATP and its analogues simultaneously in biofluids. The commercially available ZipChip Interface and a High-Resolution Bare-glass microchip (ZipChip, HRB, 908 Devices Inc.) coupled to a Thermo Scientific Tribrid Orbitrap, were successfully used to separate and detect various nucleotide standards, as well as ATP, ADP, AMP, and adenosine in plasma and BALF obtained from naïve Brown Norway rats. The findings demonstrate that this approach can rapidly and directly detect ATP and its related nucleotide analogues, while also highlighting the need to preserve these molecules in biofluids with chelators like EDTA. In addition, we demonstrate that this µCZE-MS method is also suitable for detecting a variety of metabolites, revealing additional potential future applications. SIGNIFICANCE: This innovative µCZE-MS approach provides a robust new tool to directly measure ATP and other nucleotide analogues in biofluids. This can enable the study of eATP in human disease and potentially contribute to the creation of ATP-targeting therapies for airway illnesses.


Assuntos
Microfluídica , Nucleotídeos , Polifosfatos , Ratos , Animais , Humanos , Trifosfato de Adenosina/metabolismo , Espectrometria de Massas/métodos , Adenosina , Eletroforese Capilar/métodos
4.
Anal Methods ; 16(14): 2025-2032, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38516858

RESUMO

Residues of glyphosate (GlyP) and its major degradation product, aminomethylphosphonic acid (AMPA), widely exist in the water system and plant products and thus are also present in the bodies of animals and humans. Although no solid evidence has been obtained, the concern about the cancer risk of GlyP is persistent. The measurement of GlyP and AMPA in trace levels is often needed but lacks readily available analytical approaches with detection sensitivity, accuracy and speed. This study aims to develop a simple and robust technique for the sensitive detection of GlyP and AMPA residues in a surface water system with flow-gated capillary electrophoresis (CE). Experimentally, water samples were first fluorogenically derivatized with 4-fluoro-7-nitrobenzofurazan (NBD-F) in a low-conductivity buffer at room temperature, and the mixture was injected and concentrated in the capillary based on field-amplified sample injection (FASI) coupled with electrokinetic supercharging (EKS). This scheme included a step of sample buffer injection upon electroosmotic pumping, where negatively charged analytes were electrophoretically rejected, followed by automatic voltage reversal for FASI-EKS. The detection sensitivity was improved by 296, 444, and 861 times for glufosinate (GluF), AMPA, and GlyP, respectively. The proposed method was validated in terms of accuracy, precision, limits of detection (LODs), and linearity. The LODs were estimated to be 50.0 pM, 5.0 pM, and 10.0 pM for GluF, AMPA, and GlyP, respectively. Its application was demonstrated by measuring GluF and AMPA in water samples collected from a local water system. This study provides an effective approach for the online preconcentration of negatively charged analytes, thus enabling the sensitive detection of herbicide residues in water samples. The method can also be applied to analyze other samples, including biological fluids and plant products, upon appropriate sample preparation such as solid phase extraction of analytes.


Assuntos
Herbicidas , Organofosfonatos , Humanos , Herbicidas/análise , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Glifosato , Eletroforese Capilar/métodos , Água/química
5.
Anal Chim Acta ; 1300: 342461, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38521571

RESUMO

BACKGROUND: A new design of a flow-through coaxial electromembrane extraction (EME) probe that can be on-line coupled with CE instrument is described and tested. The supporting base of the probe is a PDMS microchip with T-shaped channels into which two coaxially arranged capillaries for inlet and outlet solutions are inserted. The extraction part of the probe is a porous polypropylene hollow fiber, sealed at one end and modified with nitrophenyloctyl ether (NPOE) extraction fluid. The internal volume of the extraction probe is 1.1 µL. RESULTS: The EME probe was tested on laboratory samples and methadone was extracted into 3.0 M AcOH as acceptor. The concentration dependence was linear in the range of 0.1-1.0 µg mL-1 at EME 300 s/150 V and in the range of 0.5-10.0 µg mL-1 at EME 100 s/150 V. The enrichment factor was greater than 30 and the LOD was 0.21 µg mL-1. The EME of methadone in clinical samples showed a linear concentration dependence in human urine and a nonlinear concentration dependence in serum. The distribution of methadone in each phase of the extraction system and the effect of extraction membrane thickness on the enrichment factor were studied. The EME probe can be applied repeatedly. SIGNIFICANCE: The supporting base of EME probe and flow gating interface (FGI) are realized by a microfluidic PDMS microchips cast in the laboratory without the use of lithography. A supporting PDMS chip with coaxially arranged capillaries and extraction membrane forms a compact analytical instrument. The entire EME/CE analysis process is performed on a laboratory-made instrument and automated by LabView.


Assuntos
Eletroforese Capilar , Metadona , Humanos , Eletroforese Capilar/métodos , Membranas Artificiais
6.
Anal Sci ; 40(4): 731-739, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38319561

RESUMO

One of the challenges in liquid biopsy for early cancer detection is ascribed to the fact that mutation DNA often represents an extremely small ratio of less than 1% compared to wild-type genes in blood. However, in conventional fragment analysis with capillary electrophoresis (CE), the detectable allele frequency could be about 5%. In this work, we developed an original reagent-based fragment analysis with single base extension (SBE) reactions for cancer-associated mutation assay using a commercially available CE device, and investigated on a possibility of improvement of limit of detection (LOD) for genetic mutation. First, after adjustment of reagent conditions for the SBE reactions, the linear relationship between gene template concentration and fluorescence intensity was obtained from 1 to 100 fmol of target genes. Next, from the results of an experiment to detect mutation EGFR L858R at abundance ratios of mutant type to wild type (100-fmol template) of 0, 1, 5, and 10%, it was shown that the target gene can be detected with LOD of 0.33%. This high sensitivity was realized in part by separating fluorescently labeled substrates into an individual tube for an each-colored SBE reaction. Moreover, mutations EGFR L858R and KRAS G12V were simultaneously detected at sensitivities equivalent to LODs of 0.57 and 0.47%, respectively. These results indicate that < 1% of mutations in multiplex gene mutations can be simultaneously detected, and that possibility suggests that the developed method can be used in clinical practice for detecting cancers.


Assuntos
Eletroforese Capilar , Neoplasias , Humanos , Limite de Detecção , Mutação , Eletroforese Capilar/métodos , Receptores ErbB/genética
7.
Cancer Sci ; 115(5): 1695-1705, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38417449

RESUMO

Identifying novel biomarkers for early detection of lung cancer is crucial. Non-invasively available saliva is an ideal biofluid for biomarker exploration; however, the rationale underlying biomarker detection from organs distal to the oral cavity in saliva requires clarification. Therefore, we analyzed metabolomic profiles of cancer tissues compared with those of adjacent non-cancerous tissues, as well as plasma and saliva samples collected from patients with lung cancer (n = 109 pairs). Additionally, we analyzed plasma and saliva samples collected from control participants (n = 83 and 71, respectively). Capillary electrophoresis-mass spectrometry and liquid chromatography-mass spectrometry were performed to comprehensively quantify hydrophilic metabolites. Paired tissues were compared, revealing 53 significantly different metabolites. Plasma and saliva showed 44 and 40 significantly different metabolites, respectively, between patients and controls. Of these, 12 metabolites exhibited significant differences in all three comparisons and primarily belonged to the polyamine and amino acid pathways; N1-acetylspermidine exhibited the highest discrimination ability. A combination of 12 salivary metabolites was evaluated using a machine learning method to differentiate patients with lung cancer from controls. Salivary data were randomly split into training and validation datasets. Areas under the receiver operating characteristic curve were 0.744 for cross-validation using training data and 0.792 for validation data. This model exhibited a higher discrimination ability for N1-acetylspermidine than that for other metabolites. The probability of lung cancer calculated using this model was independent of most patient characteristics. These results suggest that consistently different salivary biomarkers in both plasma and lung tissues might facilitate non-invasive lung cancer screening.


Assuntos
Biomarcadores Tumorais , Neoplasias Pulmonares , Metabolômica , Saliva , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/diagnóstico , Saliva/metabolismo , Saliva/química , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Masculino , Feminino , Pessoa de Meia-Idade , Metabolômica/métodos , Idoso , Detecção Precoce de Câncer/métodos , Cromatografia Líquida/métodos , Curva ROC , Metaboloma , Estudos de Casos e Controles , Espectrometria de Massas/métodos , Adulto , Eletroforese Capilar/métodos
8.
Methods Mol Biol ; 2763: 171-185, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38347410

RESUMO

To reveal O-glycan structures in mucins, it is necessary to release covalently bound O-glycans from the polypeptide backbone and derivatize to a form suitable for structural analysis. Various derivatization methods can now be applied in the analysis of O-glycans following the development of O-glycan release methods. Among the many derivatization methods available, we prefer to use fluorescent labeling with 2-aminobenzoic acid (anthranilic acid, 2AA). 2AA-labeled O-glycans can be detected with high sensitivity using liquid chromatography fluorescence detection (LC-FD) analysis because of the strong fluorescence. In addition, as 2AA has a carboxyl group that carries a negative charge, 2AA-labeled O-glycans can be analyzed with high sensitivity in negative ion mode mass spectrometry. Furthermore, because the negative charge of 2AA provides a driving force for electrophoresis, 2AA-labeled O-glycans can be analyzed using capillary electrophoresis (CE) and capillary affinity electrophoresis. High detection sensitivity and versatility are key advantages of the 2AA-labeling method. Here we present our preferred LC-FD and CE analytical methods for 2AA-labeled O-glycans.


Assuntos
Eletroforese Capilar , Polissacarídeos , Polissacarídeos/química , Espectrometria de Massas/métodos , Eletroforese Capilar/métodos , Cromatografia Líquida , Mucinas
9.
Anal Chim Acta ; 1288: 342162, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220294

RESUMO

BACKGROUND: In "shotgun" approaches involving high-performance liquid chromatography or capillary zone electrophoresis (CZE), matrix removal prior to sample analysis is considered as an indispensable tool. Despite the fact that CZE offers a high tolerance towards salts, most publications reported on the use of desalting. There seems to be no clear consensus on the utilization of desalting in the CZE-MS community, most probably due to the absence of works addressing the comparison of desalted and non-desalted digests. Our aim was to fill this research gap using protein samples of varying complexity in different sample matrices. RESULTS: First, standard protein digests were analyzed to build the knowledge on the effect of sample clean-up by solid-phase extraction (SPE) pipette tips and the possible stacking phenomena induced by different sample matrices. Desalting led to a somewhat altered peptide profile, the procedure affected mostly the hydrophilic peptides (although not to a devastating extent). Nevertheless, desalting samples allowed remarkable stacking efficiency owing to their low-conductivity sample background, enabling a so-called field-amplified sample stacking phenomenon. Non-desalted samples also produced a stacking event, the mechanism of which is based on transient-isotachophoresis due to the presence of high-mobility ions in the digestion buffer itself. Adding either extra ammonium ions or acetonitrile into the non-desalted digests enhanced the stacking efficiency. A complex sample (yeast cell lysate) was also analyzed with the optimal conditions, which yielded similar tendencies. SIGNIFICANCE: Based on these results, we propose that sample clean-up in the bottom-up sample preparation process prior to CZE-MS analysis can be omitted. The preclusion of desalting can even enhance detection sensitivity, separation efficiency or sequence coverage.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Mapeamento de Peptídeos , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Eletroforese Capilar/métodos , Peptídeos/química , Íons
10.
J Chromatogr A ; 1715: 464609, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38163398

RESUMO

In this research, the analytical method was developed and evaluated for determining phenol and its nine derivatives belong to the US EPA priority pollutant list in water samples by using dual-channeled capillary electrophoresis (CE) coupled with two types of optical detectors, namely LED-induced fluorescence (LEDIF) and ultraviolet (UV) detectors. The optimal background electrolytes for the first and second CE channels were 20 mM borate (pH 9.80) with 400 µM fluorescein and 55 mM borate (pH 11.75), respectively. The two-step liquid-liquid extraction (LLE) was used for sample preparation and enrichment, in which phenol and its derivatives were extracted from the aqueous phase using 10 mL of n-hexane/1-octanol (60/40, v/v) and then were back extracted into a 0.1 M NaOH as a final acceptor phase. Under the optimal CE and two-step LLE conditions, the enrichment factors of 10 phenols were 184 - 1120-fold, and the method detection limits were lowered to 0.02-0.60 µg/L. The obtained intra-day and inter-day precisions in terms of relative standard deviations (RSD) were between 4.0 and 7.3 % and 6.7 and 14 %, respectively. This approach was used to determine phenols in water samples, with recoveries ranging from 82.0 to 108.9 %. In combination with sample enrichment by two-step LLE extraction, this is the first CE study conducted to determine phenols in the EPA list using two detector approaches, specifically CE-LEDIF/CE-UV.


Assuntos
Fenóis , Poluentes Químicos da Água , Fenóis/análise , Fenol/análise , Boratos/análise , Limite de Detecção , Poluentes Químicos da Água/análise , Extração Líquido-Líquido , Eletroforese Capilar/métodos , Água/análise
11.
Talanta ; 270: 125602, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199121

RESUMO

Human papillomavirus (HPV) interacts, in vitro, with laminin 332 (LN332), a key component of the extracellular matrix. In this study, we performed bio-layer interferometry (BLI) and affinity capillary electrophoresis (ACE) to investigate the binding properties of this interaction. Virus-like particles (VLPs), composed of the HPV16 L1 major capsid protein, were used as HPV model and LN332 as the VLPs binding partner. Using BLI, we quantitatively determined the kinetics of the interaction, via the measurement of VLP binding and release from LN332 immobilized onto the surface of aminopropylsilane biosensors. We found an averaged kon of 1.74 x 104 M-1s-1 and an averaged koff of 1.50 x 10-4 s-1. Furthermore, an ACE method was developed to study the interaction under physiological conditions, where the interactants are moving freely in solution, without any fluorescence labeling. Specifically, a constant amount of HPV16-VLPs was preincubated with increasing LN332 concentrations and then the samples were injected in the capillary electrophoresis instrument. A shift in the migration time of the HPV16-VLP/LN332 complexes, carrying an increasing number of LN332 molecules bound per VLP, was observed. The mobility of the complexes was found to decrease with increasing LN332 concentrations in the sample. It was used to quantify stability constant. From BLI and ACE approaches, we reported an apparent equilibrium dissociation constant in the nanomolar range (8.89 nM and 17.7 nM, respectively) for the complex between HPV16-VLPs and LN332.


Assuntos
Papillomavirus Humano , Infecções por Papillomavirus , Humanos , Calinina , Papillomavirus Humano 16 , Eletroforese Capilar/métodos , Interferometria
12.
Electrophoresis ; 45(1-2): 8-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37603373

RESUMO

This work presents a revision of the main applications of capillary electromigration (CE) methods in food analysis and Foodomics. Papers that were published during the period March 2021 to March 2023 are included. The work shows the multiple CE methods that have been developed and applied to analyze different types of molecules in foods and beverages. Namely, CE methods have been applied to analyze amino acids, biogenic amines, heterocyclic amines, peptides, proteins, phenols, polyphenols, pigments, lipids, carbohydrates, vitamins, DNAs, contaminants, toxins, pesticides, additives, residues, small organic and inorganic compounds, and other minor compounds. In addition, new CE procedures to perform chiral separation and for evaluating the effects of food processing as well as the last developments of microchip CE and new applications in Foodomics will be also discussed. The new procedures of CE to investigate food quality and safety, nutritional value, storage, and bioactivity are also included in the present review work.


Assuntos
Eletroforese Capilar , Análise de Alimentos , Análise de Alimentos/métodos , Eletroforese Capilar/métodos , Qualidade dos Alimentos , Polifenóis , Vitaminas/análise , Aminas
13.
Electrophoresis ; 45(5-6): 411-419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084469

RESUMO

We developed a method of sensitive capillary electrophoresis using UV detection for the determination of certain free aminothiols (reduced cysteinylglycine (rCysGly), cysteine (rCys), glutathione (rGln), and cystine (CysS) in human blood plasma. The reduced thiols were derivatized with N-ethylmaleimide. The plasma was purified from proteins via ultrafiltration. Electrophoretic separation was performed using 115 mM Na phosphate with 7.5% (v/v) polyethylene glycol 600, pH 2.3. The in-capillary concentration of the analytes was achieved with a pH gradient created via the preinjection of triethanolamine and postinjection of phosphoric acid. The separation was carried out using a silica capillary (50 µm i.d.; total/effective separation length 42/35 cm) at a 25 kV voltage. The total analysis/regeneration time was 18 min. The quantification limits varied from 1.3 µM (rCysGly) to 5.4 µM (CysS). The accuracy was 95%-99%, and the repeatability and reproducibility were approximately 1.8%-3.8% and 1.9%-5.0%, respectively. An analysis of plasma samples from healthy volunteers (N = 41) showed that the mean levels of rCysGly, rCys, rGln, and CysS were 1.64, 10.6, 2.58, and 46.2 µM, respectively.


Assuntos
Cistina , Compostos de Sulfidrila , Humanos , Reprodutibilidade dos Testes , Eletroforese Capilar/métodos , Aminas , Plasma , Concentração de Íons de Hidrogênio
14.
Electrophoresis ; 45(1-2): 165-198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670208

RESUMO

This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.


Assuntos
Eletroforese Capilar , Peptídeos , Eletroforese Capilar/métodos , Peptídeos/análise , Proteínas/análise , Aminoácidos , Cromatografia
15.
Electrophoresis ; 45(1-2): 120-164, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705480

RESUMO

Therapeutic peptides are a growing class of innovative drugs with high efficiency and a low risk of adverse effects. These biomolecules fall within the molecular mass range between that of small molecules and proteins. However, their inherent instability and potential for degradation underscore the importance of reliable and effective analytical methods for pharmaceutical quality control, therapeutic drug monitoring, and compliance testing. Liquid chromatography-mass spectrometry (LC-MS) has long time been the "gold standard" conventional method for peptide analysis, but capillary electrophoresis (CE) is increasingly being recognized as a complementary and, in some cases, superior, highly efficient, green, and cost-effective alternative technique. CE can separate peptides composed of different amino acids owing to differences in their net charge and size, determining their migration behavior in an electric field. This review provides a comprehensive overview of therapeutic peptides that have been used in the clinical environment for the last 25 years. It describes the properties, classification, current trends in development, and clinical use of therapeutic peptides. From the analytical point of view, it discusses the challenges associated with the analysis of therapeutic peptides in pharmaceutical and biological matrices, as well as the evaluation of CE as a whole and the comparison with LC methods. The article also highlights the use of microchip electrophoresis, nonaqueous CE, and nonconventional hydrodynamically closed CE systems and their applications. Overall, the article emphasizes the importance of developing new CE-based analytical methods to ensure the high quality, safety, and efficacy of therapeutic peptides in clinical practice.


Assuntos
Peptídeos , Proteínas , Peptídeos/análise , Proteínas/análise , Eletroforese Capilar/métodos , Aminoácidos , Preparações Farmacêuticas
16.
J Pharm Sci ; 113(4): 1088-1093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135054

RESUMO

Liposomal doxorubicin hydrochloride is an antineoplastic agent widely used against human cancers. The data from in vitro drug release test (IVRT) is essential for quality and/or bioequivalence evaluation in drug approval and post-approval regulation of liposomal drug products. However, most of the currently available IVRT methods for liposomal doxorubicin hydrochloride have experimental deficiencies associated with liposomal rupture during the separation process which is needed for selective quantification of released drug from liposomal-bound drug. In addition, many of the methods are time consuming, requiring bulk quantities of liposomal drug product, and lack of automation. We have developed a selective, sensitive, and automated capillary electrophoresis (CE)-based IVRT method, measuring released doxorubicin without additional sampling and separation steps. This method requires a small volume of sample compared to currently available methods. The IVRT release study with liposomal doxorubicin was conducted at different temperatures and pH conditions. It was observed that the release profiles obtained for five formulations including the reference listed drug were similar at pH 6.50 and 47.0 °C. The drug release increased with the increase of media pH and temperature. Complete doxorubicin release (100 %) was obtained in 7 h at pH 6.50 and 47.0 °C, and in less than 3 h at pH 6.50 and 52.0 °C. This CE-based method can be extended for determination of the IVRT profiling of other liposomal drug products.


Assuntos
Antibióticos Antineoplásicos , Doxorrubicina/análogos & derivados , Humanos , Liberação Controlada de Fármacos , Polietilenoglicóis , Lipossomos , Eletroforese Capilar/métodos
17.
Anal Biochem ; 687: 115452, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38158105

RESUMO

Low-molecular drug discovery using DNA-encoded chemical library (DEL) is a powerful technology, although improving the partitioning efficiency of affinity ligands from DEL remains a challenge. Here, we assessed the usefulness of microbead-assisted capillary electrophoresis (MACE) for partitioning peptide-oligonucleotide conjugates (POCs), in which high selection pressure is applied because of different mobility of target-modified beads and POCs during CE. Despite their different charge characteristics, all POCs were well separated from the beads. When bead extraction was performed, the tagged DNA amplification was observed only in the couple of a ligand/target, suggesting proficiently specific partitioning of peptide ligands was accomplished using MACE.


Assuntos
Oligonucleotídeos , Peptídeos , Microesferas , Peptídeos/química , Oligonucleotídeos/química , Eletroforese Capilar/métodos , DNA/química , DNA de Cadeia Simples
18.
Anal Chim Acta ; 1279: 341781, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827633

RESUMO

A water-soluble negative sulfonic propyl ether ß-CD polymer (SPE-ß-CDP) to be used as chiral selector in capillary electrophoresis (CE) was polymerized. The sulfonic substitution degree of each ß-CD in SPE-ß-CDP was statistically homogenized. The only one negative peak in electrophoretogram with indirect ultraviolate method proved its uniformity of electrophoretic behavior. There were 7.12 sulfonic substitution in ß-CD unit and 164 µmole ß-CD units in each gram of SPE-ß-CDP, which corresponded a molecular weight of 7000 or more. Compared with monomer, SPE-ß-CDP was lower effect on electrical current of CE, indicating a high concentration of SPE-ß-CDP could be added. Its separation ability was verified by 12 chiral drugs. SPE-ß-CDP also showed advantages of good water solubility, easy preparation and recovery to reduce the overall cost. However, five of 12 chiral drugs were hardly to be fully separated which was normal for any kind of chiral selector. A newly adjustable gravity mediated capillary electrophoresis (AGM-CE) technology was proposed and combined with SPE-ß-CDP to enhance the chiral separation efficiencies of propranolol, salbutamol, omeprazole, ofloxacin and phenoxybenzamine which were markedly improved to 3.02, 1.17, 7.63, 4.14, and 2.81, respectively. Furthermore, its gradient mode (AGMg-CE) was also used to improve resolution through utilizing the zero mobility point, at which the effective apparent mobility of one racemate was zero. Resolutions of five chiral drugs were significantly improved, especially resolution of carvedilol changed from 0.43 to 1.0. These indicated SPE-ß-CDP as chiral selector, AGM-CE and AGMg-CE as new CE technologies had a great potential in chiral separation.


Assuntos
Eletroforese Capilar , Éteres , Estereoisomerismo , Eletroforese Capilar/métodos , Água , Concentração de Íons de Hidrogênio
19.
Anal Bioanal Chem ; 415(28): 6961-6973, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37581707

RESUMO

Capillary electrophoresis mass spectrometry (CE-MS) is an emerging analytical tool for microscale biological sample analysis that offers high separation resolution, low detection limit, and low sample consumption. We recently developed a novel microsampling device, "spray-capillary," for quantitative low-volume sample extraction (as low as 15 pL/s) and online CE-MS analysis. This platform can efficiently analyze picoliter samples (e.g., single cells) with minimal sample loss and no additional offline sample-handling steps. However, our original spray-capillary-based experiments required manual manipulation of the sample inlet for sample collection and separation, which is time consuming and requires proficiency in device handling. To optimize the performance of spray-capillary CE-MS analysis, we developed an automated platform for robust, high-throughput analysis of picoliter samples using a commercially available CE autosampler. Our results demonstrated high reproducibility among 50 continuous runs using the standard peptide angiotensin II (Ang II), with an RSD of 14.70% and 0.62% with respect to intensity and elution time, respectively. We also analyzed Ang II using varying injection times to evaluate the capability of the spray-capillary to perform quantitative sampling and found high linearity for peptide intensity with respect to injection time (R2 > 0.99). These results demonstrate the capability of the spray-capillary sampling platform for high-throughput quantitative analysis of low-volume, low-complexity samples using pressure elution (e.g., direct injection). To further evaluate and optimize the automated spray-capillary platform to analyze complex biological samples, we performed online CE-MS analysis on Escherichia coli lysate digest spiked with Ang II using varying injection times. We maintained high linearity of intensity with respect to injection time for Ang II and E. coli peptides (R2 > 0.97 in all cases). Furthermore, we observed good CE separation and high reproducibility between automated runs. Overall, we demonstrated that the automated spray-capillary CE-MS platform can efficiently and reproducibly sample picoliter and nanoliter biological samples for high-throughput proteomics analysis.


Assuntos
Eletroforese Capilar , Escherichia coli , Reprodutibilidade dos Testes , Espectrometria de Massas/métodos , Eletroforese Capilar/métodos , Peptídeos
20.
BMC Res Notes ; 16(1): 167, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568187

RESUMO

OBJECTIVE: Tumors are heterogeneous three-dimensional masses populated by numerous cell types, including distinct sub-clones of cancerous cells. Various sub-clones within the same tumor mass may respond differently to cancer treatment, and intra-tumor heterogeneity contributes to acquired therapeutic resistance. Thus, one tissue biopsy will in most cases not be representative of the entire genetic landscape of a tumor mass. In this study, we aimed to establish an easily accessible, low cost method to address intra-tumor heterogeneity in three dimensions, for a limited number of DNA alterations. RESULTS: This study includes analyses of the three-dimensional (3D) distribution of DNA mutations in human colon cancer and mouse mammary gland tumor tissue samples. We used laser capture microdissection for the unbiased collection of tissue in several XY-planes throughout the tumor masses. Cycling temperature capillary electrophoresis was used to determine mutant allele frequency. High-resolution distribution maps of KRAS and Trp53 mutations were generated for each XY-plane in human and mouse tumor samples, respectively. To provide a holistic interpretation of the mutation distribution, we generated interactive 3D heatmaps giving an easily interpretable understanding of the spatial distribution of the analyzed mutations. The method described herein provides an accessible way of describing intra-tumor heterogeneity for a limited number of mutations.


Assuntos
Neoplasias do Colo , Humanos , Animais , Camundongos , Temperatura , Análise Mutacional de DNA/métodos , Mutação , Eletroforese Capilar/métodos , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA