Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 584
Filtrar
1.
Life Sci Space Res (Amst) ; 41: 202-209, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670648

RESUMO

Explorations of the Moon and Mars are planned as future manned space missions, during which humans will be exposed to both radiation and microgravity. We do not, however, know the health effects for such combined exposures. In a ground-based experiment, we evaluated the combined effects of radiation and simulated microgravity on tumorigenesis by performing X-irradiation and tail suspension in C3B6F1 ApcMin/+ mice, a well-established model for intestinal tumorigenesis. Mice were irradiated at 2 weeks of age and underwent tail suspension for 3 or 11 weeks using a special device that avoids damage to the tail. The tail suspension treatment significantly reduced the thymus weight after 3 weeks but not 11 weeks, suggesting a transient stress response. The combination of irradiation and tail suspension significantly increased the number of small intestinal tumors less than 2 mm in diameter as compared with either treatment alone. The combined treatment also increased the fraction of malignant tumors among all small intestinal tumors as compared with the radiation-only treatment. Thus, the C3B6F1 ApcMin/+ mouse is a useful model for assessing cancer risk in a simulated space environment, in which simulated microgravity accelerates tumor progression when combined with radiation exposure.


Assuntos
Neoplasias Intestinais , Simulação de Ausência de Peso , Animais , Camundongos , Neoplasias Intestinais/patologia , Neoplasias Intestinais/etiologia , Carcinogênese/efeitos da radiação , Camundongos Endogâmicos C57BL , Elevação dos Membros Posteriores , Masculino , Raios X , Modelos Animais de Doenças , Feminino , Intestino Delgado/efeitos da radiação , Intestino Delgado/patologia , Timo/efeitos da radiação , Timo/patologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Induzidas por Radiação/etiologia
2.
Life Sci Space Res (Amst) ; 41: 80-85, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670656

RESUMO

The disuse of skeletal limb muscles occurs in a variety of conditions, yet our comprehension of the molecular mechanisms involved in adaptation to disuse remains incomplete. We studied the mechanical characteristics of actin-myosin interaction using an in vitro motility assay and isoform composition of myosin heavy and light chains by dint of SDS-PAGE in soleus muscle of both control and hindlimb-unloaded rats. 14 days of hindlimb unloading led to the increased maximum sliding velocity of actin, reconstituted, and native thin filaments over rat soleus muscle myosin by 24 %, 19 %, and 20 %, respectively. The calcium sensitivity of the "pCa-velocity" relationship decreased. There was a 26 % increase in fast myosin heavy chain IIa (MHC IIa), a 22 % increase in fast myosin light chain 2 (MLC 2f), and a 13 % increase in fast MLC 1f content. The content of MLC 1s/v, typical for slow skeletal muscles and cardiac ventricles did not change. At the same time, MLC 1s, typical only for slow skeletal muscles, disappeared. The maximum velocity of soleus muscle native thin filaments was 24 % higher compared to control ones sliding over the same rabbit myosin. Therefore, both myosin and native thin filament kinetics could influence the mechanical characteristics of the soleus muscle. Additionally, the MLC 1s and MLC 1s/v ratio may contribute to the mechanical characteristics of slow skeletal muscle, along with MHC, MLC 2, and MLC 1 slow/fast isoforms ratio.


Assuntos
Elevação dos Membros Posteriores , Músculo Esquelético , Ratos Wistar , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Ratos , Masculino , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/metabolismo , Coelhos , Miosinas/metabolismo , Cálcio/metabolismo , Citoesqueleto de Actina/metabolismo , Isoformas de Proteínas
3.
Physiol Rep ; 12(5): e15969, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453353

RESUMO

Fast-twitch muscles are less susceptible to disuse atrophy, activate the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, and increase protein synthesis under prolonged muscle disuse conditions. However, the mechanism underlying prolonged muscle disuse-induced mTORC1 signaling activation remains unclear. The mevalonate pathway activates the mTORC1 signaling pathway via the prenylation and activation of Ras homolog enriched in brain (Rheb). Therefore, we investigated the effects of hindlimb unloading (HU) for 14 days on the mevalonate and mTORC1 signaling pathways in the plantaris muscle, a fast-twitch muscle, in adult male rats. Rats were divided into HU and control groups. The plantaris muscles of both groups were harvested after the treatment period, and the expression and phosphorylation levels of metabolic and intracellular signaling proteins were analyzed using Western blotting. We found that HU increased the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme of the mevalonate pathway, and activated the mTORC1 signaling pathway without activating AKT, an upstream activator of mTORC1. Furthermore, HU increased prenylated Rheb. Collectively, these findings suggest that the activated mevalonate pathway may be involved in the activation of the Rheb/mTORC1 signaling pathway without AKT activation in fast-twitch muscles under prolonged disuse conditions.


Assuntos
Ácido Mevalônico , Proteínas Proto-Oncogênicas c-akt , Ratos , Masculino , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ácido Mevalônico/metabolismo , Ácido Mevalônico/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Elevação dos Membros Posteriores/fisiologia , Transdução de Sinais/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo
4.
Cardiovasc Res ; 120(5): 548-559, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38271270

RESUMO

AIMS: Elucidating the impacts of long-term spaceflight on cardiovascular health is urgently needed in face of the rapid development of human space exploration. Recent reports including the NASA Twins Study on vascular deconditioning and aging of astronauts in spaceflight are controversial. The aims of this study were to elucidate whether long-term microgravity promotes vascular aging and the underlying mechanisms. METHODS AND RESULTS: Hindlimb unloading (HU) by tail suspension was used to simulate microgravity in rats and mice. The dynamic changes of carotid stiffness in rats during 8 weeks of HU were determined. Simulated microgravity led to carotid artery aging-like changes as evidenced by increased stiffness, thickness, fibrosis, and elevated senescence biomarkers in the HU rats. Specific deletion of the mechanotransducer Piezo1 in vascular smooth muscles significantly blunted these aging-like changes in mice. Mechanistically, mechanical stretch-induced activation of Piezo1 elevated microRNA-582-5p in vascular smooth muscle cells, with resultant enhanced synthetic cell phenotype and increased collagen deposition via PTEN/PI3K/Akt signalling. Importantly, inhibition of miRNA-582-5p alleviated carotid fibrosis and stiffness not only in HU rats but also in aged rats. CONCLUSIONS: Long-term simulated microgravity induces carotid aging-like changes via the mechanotransducer Piezo1-initiated and miRNA-mediated mechanism.


Assuntos
Artérias Carótidas , Canais Iônicos , Mecanotransdução Celular , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , Rigidez Vascular , Simulação de Ausência de Peso , Animais , Envelhecimento/metabolismo , Envelhecimento/patologia , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Artérias Carótidas/fisiopatologia , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Elevação dos Membros Posteriores , Canais Iônicos/metabolismo , Canais Iônicos/genética , Mecanotransdução Celular/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , MicroRNAs/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , PTEN Fosfo-Hidrolase/genética , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo , Remodelação Vascular
5.
Am J Physiol Endocrinol Metab ; 326(1): E50-E60, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019084

RESUMO

The 5' adenosine monophosphate-activated protein kinase (AMPK) is an important skeletal muscle regulator implicated as a possible therapeutic target to ameliorate the local undesired deconditioning of disuse atrophy. However, the muscle-specific role of AMPK in regulating muscle function, fibrosis, and transcriptional reprogramming during physical disuse is unknown. The purpose of this study was to determine how the absence of both catalytic subunits of AMPK in skeletal muscle influences muscle force production, collagen deposition, and the transcriptional landscape. We generated skeletal muscle-specific tamoxifen-inducible AMPKα1/α2 knockout (AMPKα-/-) mice that underwent 14 days of hindlimb unloading (HU) or remained ambulatory for 14 days (AMB). We found that AMPKα-/- during ambulatory conditions altered body weight and myofiber size, decreased muscle function, depleted glycogen stores and TBC1 domain family member 1 (TBC1D1) phosphorylation, increased collagen deposition, and altered transcriptional pathways. Primarily, pathways related to cellular senescence and mitochondrial biogenesis and function were influenced by the absence of AMPKα. The effects of AMPKα-/- persisted, but were not worsened, following hindlimb unloading. Together, we report that AMPKα is necessary to maintain skeletal muscle quality.NEW & NOTEWORTHY We determined that skeletal muscle-specific AMPKα knockout (KO) mice display functional, fibrotic, and transcriptional alterations before and during muscle disuse atrophy. We also observed that AMPKα KO drives muscle fibrosis and pathways related to cellular senescence that continues during the hindlimb unloading period.


Assuntos
Proteínas Quinases Ativadas por AMP , Transtornos Musculares Atróficos , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Colágeno/metabolismo , Fibrose , Glicogênio/metabolismo , Elevação dos Membros Posteriores/fisiologia , Camundongos Knockout , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Transtornos Musculares Atróficos/genética , Transtornos Musculares Atróficos/metabolismo
6.
J Acoust Soc Am ; 154(3): 1427-1438, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672304

RESUMO

Microgravity leads to muscle loss, usually accompanied by cognitive impairment. Muscle reduction was associated with the decline of cognitive ability. Our previous studies showed that low-intensity pulsed ultrasound (LIPUS) promoted muscle hypertrophy and prevented muscle atrophy. This study aims to verify whether LIPUS can improve cognitive impairment by preventing muscle atrophy in hindlimb unloaded mice. In this study, mice were randomly divided into normal control (NC), hindlimb unloading (HU), hindlimb unloading + LIPUS (HU+LIPUS) groups. The mice in the HU+LIPUS group received a 30 mW/cm2 LIPUS irradiation on gastrocnemius for 20 min/d. After 21 days, LIPUS significantly prevented the decrease in muscle mass and strength caused by tail suspension. The HU+LIPUS mice showed an enhanced desire to explore unfamiliar environments and their spatial learning and memory abilities, enabling them to quickly identify differences between different objects, as well as their social discrimination abilities. MSTN is a negative regulator of muscle growth and also plays a role in regulating cognition. LIPUS significantly inhibited MSTN expression in skeletal muscle and serum and its receptor ActRIIB expression in brain, upregulated AKT and BDNF expression in brain. Taken together, LIPUS may improve the cognitive dysfunction in hindlimb unloaded rats by inhibiting muscle atrophy through MSTN/AKT/BDNF pathway.


Assuntos
Disfunção Cognitiva , Elevação dos Membros Posteriores , Camundongos , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo , Proteínas Proto-Oncogênicas c-akt , Atrofia Muscular , Músculo Esquelético , Ondas Ultrassônicas , Membro Posterior
7.
Brain Res ; 1821: 148583, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37717889

RESUMO

Prolonged microgravity exposure causes cognitive impairment. Evidence shows that oxidative stress and neuroinflammation are involved in the causation. Here, we explore the effectiveness of transcranial near-infrared photobiomodulation (PBM) on cognitive deficits in a mouse model of simulated microgravity. 24 adult male C57BL/6 mice were assigned into three groups (8 in each); control, hindlimb unloading (HU), and HU + PBM groups. After surgery to fit the suspension fixing, the animals were housed either in HU cages or in their normal cage for 14 days. The mice in the HU + PBM group received PBM (810 nm laser, 10 Hz, 8 J/cm2) once per day for 14 days. Spatial learning and memory were assessed in the Lashley III maze and hippocampus tissue samples were collected to assess oxidative stress markers and protein expression of brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), Sirtuin 1 (Sirt1), and Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Behavioral testing showed that the PBM-treated animals had a shorter latency time to find the target and fewer errors than the HU group. PBM decreased hippocampal lipid peroxidation while increasing antioxidant defense systems (glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to HU mice. PBM increased protein expression of Sirt1, Nrf2, and BDNF while decreasing NF-κB compared to HU mice. Our findings suggested that the protective effect of PBM against HU-induced cognitive impairment involved the activation of the Sirt1/Nrf2 signaling pathway, up-regulation of BDNF, and reduction of neuroinflammation and oxidative stress in the hippocampus.


Assuntos
Antioxidantes , Ausência de Peso , Camundongos , Masculino , Animais , Antioxidantes/farmacologia , Elevação dos Membros Posteriores , Fator Neurotrófico Derivado do Encéfalo/metabolismo , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sirtuína 1/metabolismo , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Transtornos da Memória/metabolismo , Aprendizagem em Labirinto , Transdução de Sinais , Hipocampo/metabolismo
8.
Muscle Nerve ; 68(6): 886-893, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37772693

RESUMO

INTRODUCTION/AIMS: Effective strategies for rapid recovery after surgery are needed. Therefore, we investigated the effects of exercise prehabilitation (EP) and hindlimb unloading (HU) on muscle loss and contractility. METHODS: Twenty-two Sprague-Dawley rats (12 wk old) were divided into normal control (NCON, n = 5), hindlimb unloading control (HCON, n = 10), and exercise prehabilitation followed by hindlimb unloading (Ex-preH, n = 7) groups. Ex-PreH performed exercise training for 14 days before hindlimb unloading for 14 days. Body composition was evaluated, along with muscle strength and function. The soleus (SOL) and extensor digitorum longus (EDL) muscle contractile properties were analyzed at the whole-muscle level. The titin concentration and myosin heavy chain (MHC) type composition were analyzed. RESULTS: There were no effects of Ex-preH on total mass, lean mass, or muscle weight. Physical function was significantly higher in the Ex-preH group than in the HCON group (39.5° vs. 35.7°). The SOL twitch force (19.6 vs. 7.1 mN/m2 ) and specific force (107.3 vs. 61.2 mN/m2 ) were greater in Ex-preH group than in HCON group. EDL shortening velocity was higher in Ex-preH group than in HCON group (13.2 vs. 5.0 FL/s). The SOL full-length titin level was higher in Ex-preH group than in HCON group. DISCUSSION: Exercise prehabilitation did not prevent muscle mass loss followed by muscle wasting, although it minimized the reduction of physical function. Therefore, exercise prehabilitation should be considered for rapid functional recovery after disuse due to surgery and injuries.


Assuntos
Elevação dos Membros Posteriores , Exercício Pré-Operatório , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Conectina , Elevação dos Membros Posteriores/efeitos adversos , Elevação dos Membros Posteriores/fisiologia , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Atrofia Muscular/patologia , Músculo Esquelético , Membro Posterior
9.
Life Sci Space Res (Amst) ; 38: 8-18, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37481312

RESUMO

Under the initial stage of muscle mechanical unloading, the skeletal muscle undergo accumulation of high-energy phosphates followed by AMP-dependent proteinkinase (AMPK) inactivation. Since AMPK is known to activate mitochondrial biogenesis, it cannot be excluded that AMPK inactivation results in oxidative potential decrease at the later stages of muscle unloading. We decided to test the role of the accumulation of high-energy phosphates in skeletal muscle fibers in the inactivation of mitochondrial biogenesis regulators at an early stage of muscle unloading. To reduce the ATP/ADP ratio, we used beta-guanidine propionic acid, and the obtained data indicating that already during the first day of simulated microgravity, the accumulation of high-energy phosphates can reduce the expression level of mRNA of the key regulator of mitochondrial biogenesis PGC-1α, the transcription factor TFAM, as well as the mitochondrial fusion regulator - mitofusin-1. A number of other parameters of mitochondrial signaling were not subject to changes at this time-point. Thus, we demonstrated the role of the ATP/ADP ratio in the inactivation of several regulators of mitochondrial biogenesis in the postural soleus muscle at an early stage of functional unloading.


Assuntos
Proteínas Quinases Ativadas por AMP , Elevação dos Membros Posteriores , Ratos , Animais , Proteínas Quinases Ativadas por AMP/metabolismo , Elevação dos Membros Posteriores/fisiologia , Biogênese de Organelas , Músculo Esquelético/metabolismo , Miosinas/metabolismo , Fosfatos/metabolismo , Trifosfato de Adenosina/metabolismo
10.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239936

RESUMO

Rodent hindlimb unloading (HU) model was developed to elucidate responses/mechanisms of adverse consequences of space weightlessness. Multipotent mesenchymal stromal cells (MMSCs) were isolated from rat femur and tibia bone marrows and examined ex vivo after 2 weeks of HU and subsequent 2 weeks of restoration of load (HU + RL). In both bones, decrease of fibroblast colony forming units (CFU-f) after HU with restoration after HU + RL detected. In CFU-f and MMSCs, levels of spontaneous/induced osteocommitment were similar. MMSCs from tibia initially had greater spontaneous mineralization of extracellular matrix but were less sensitive to osteoinduction. There was no recovery of initial levels of mineralization in MMSCs from both bones during HU + RL. After HU, most bone-related genes were downregulated in tibia or femur MMSCs. After HU + RL, the initial level of transcription was restored in femur, while downregulation persisted in tibia MMSCs. Therefore, HU provoked a decrease of osteogenic activity of BM stromal precursors at transcriptomic and functional levels. Despite unidirectionality of changes, the negative effects of HU were more pronounced in stromal precursors from distal limb-tibia. These observations appear to be on demand for elucidation of mechanisms of skeletal disorders in astronauts in prospect of long-term space missions.


Assuntos
Elevação dos Membros Posteriores , Roedores , Ratos , Animais , Elevação dos Membros Posteriores/fisiologia , Tíbia/fisiologia , Medula Óssea , Fêmur/fisiologia
11.
Physiol Rep ; 11(10): e15695, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37226378

RESUMO

This study investigated the impact of long-term physical inactivity on hepatic cytoprotective- and inflammatory-related protein expressions in young rats and the subsequent apoptotic response during microgravity stress simulated by tail suspension. Four-week-old male Wistar rats were randomly assigned to the control (CT) and physical inactivity (IN) groups. The floor space of the cages provided to the IN group was reduced to half of that provided to the CT group. After 8 weeks, rats in both groups (n = 6-7) underwent tail suspension. Their livers were harvested immediately before (0 day) or 1, 3, and 7 days after tail suspension. Levels of hepatic heat shock protein 72 (HSP72), an anti-apoptotic protein, reduced over 7 days of tail suspension in the IN group than in the CT group (p < 0.01). Fragmented nucleosomes in the cytoplasmic fraction of the liver, an apoptotic index, were drastically increased by physical inactivity and tail suspension, and this change was significantly greater after 7 days of tail suspension in the IN group than in the CT group (p < 0.01). The apoptotic response was accompanied by the upregulation of pro-apoptotic proteins (cleaved caspase-3 and -7). Moreover, the levels of other pro-apoptotic proteins (tumor necrosis factor-1α and histone deacetylase 5) were also significantly higher in the IN than in the CT group (p < 0.05). Our results indicated that 8 weeks of physical inactivity decreased hepatic HSP72 levels and promoted hepatic apoptosis during the subsequent 7 days of tail suspension.


Assuntos
Apoptose , Elevação dos Membros Posteriores , Masculino , Ratos , Animais , Elevação dos Membros Posteriores/efeitos adversos , Ratos Wistar , Fígado , Proteínas de Choque Térmico HSP72 , Fator de Necrose Tumoral alfa
12.
J Physiol ; 601(10): 1851-1867, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36999349

RESUMO

Immobilization leads to muscle wasting and insulin resistance, particularly during ageing. It has been suggested that undercarboxylated osteocalcin (ucOC) improves muscle mass and glucose metabolism. Bisphosphonates, an anti-osteoporosis treatment, might protect muscle wasting independent of ucOC. We hypothesize that the combination of ucOC and ibandronate (IBN) treatments has superior protective effects against immobilization-induced muscle wasting and insulin resistance than either treatment alone. C57BL/6J mice were hindlimb-immobilized for two weeks, with injections of vehicle, ucOC (90 ng/g daily) and/or IBN (2 µg/g weekly). Insulin/oral glucose tolerance tests (ITT/OGTT) were performed. Immediately after immobilization, muscles (extensor digitorum longus (EDL), soleus, tibialis anterior, gastrocnemius and quadriceps) were isolated and measured for muscle mass. Insulin-stimulated glucose uptake (EDL and soleus) was examined. Phosphorylation/expression of proteins in anabolic/catabolic pathways were examined in quadriceps. Primary human myotubes derived from older adult muscle biopsies were treated with ucOC and/or IBN, then signalling proteins were analysed. Combined treatment, but not individual treatments, significantly increased the muscle weight/body weight ratio in immobilized soleus (31.7%; P = 0.013) and quadriceps (20.0%; P = 0.0008) muscles, concomitant with elevated p-Akt (S473)/Akt ratio (P = 0.0047). Combined treatment also enhanced whole-body glucose tolerance (16.6%; P = 0.0011). In human myotubes, combined treatment stimulated greater activation of ERK1/2 (P = 0.0067 and 0.0072) and mTOR (P = 0.036), and led to a lesser expression of Fbx32 (P = 0.049) and MuRF1 (P = 0.048) than individual treatments. These findings suggest a potential therapeutic role for the ucOC and bisphosphonates combination in protecting against muscle wasting induced by immobilization and ageing. KEY POINTS: It has been suggested that undercarboxylated osteocalcin (ucOC) improves muscle mass and glucose metabolism. Bisphosphonates, an anti-osteoporosis treatment, might protect against muscle wasting independent of ucOC. The combination treatment of ucOC and ibandronate was shown to exert a greater therapeutic effect against immobilization-induced muscle wasting, and led to greater activation of anabolic pathway and less expression of catabolic signalling proteins in myotubes derived from older adults, compared with individual treatments. The combination treatment was found to improve whole-body glucose tolerance. Our findings suggest a potential therapeutic role for the ucOC and bisphosphonates combination in protecting against muscle wasting induced by immobilization and ageing.


Assuntos
Resistência à Insulina , Animais , Camundongos , Humanos , Idoso , Osteocalcina/metabolismo , Osteocalcina/farmacologia , Ácido Ibandrônico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Elevação dos Membros Posteriores , Camundongos Endogâmicos C57BL , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/prevenção & controle , Músculo Esquelético/metabolismo , Insulina/metabolismo , Glucose/metabolismo
13.
J Comp Physiol B ; 193(3): 329-350, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36988658

RESUMO

Loss of bone mass can occur in mammals after prolonged disuse but the situation for hibernators that are in a state of torpor for many months of the year is not yet fully understood. The present study assesses the bone remodeling mechanisms present in Daurian ground squirrels (Spermophilus dauricus) during hibernation as compared with a model of hindlimb disuse. Differences in microstructure, mechanical properties, bone remodeling-related proteins (Runx2, OCN, ALP, RANKL, CTK and MMP-9) and key proteins of Wnt/ß-catenin signaling pathway (GSK-3ß and phospho-ß-catenin) were evaluated in ground squirrels under 3 conditions: summer active (SA) vs. hibernation (HIB) vs. hindlimb unloaded (HLU). The results indicated that the body weight in HLU ground squirrels was lower than the SA group, and the middle tibia diameter in the HLU group was lower than that in SA and HIB groups. The thickness of cortical and trabecular bone in femurs from HLU ground squirrels was lower than in SA and HIB groups. Most parameters of the tibia in the HLU group were lower than those in SA and HIB groups, which indicated cortical bone loss in ground squirrels. Moreover, our data showed that the changes in microscopic parameters in the femur were more obvious than those in the tibia in HLU and HIB ground squirrels. The levels of Runx2 and ALP were lower in HLU ground squirrels than SA and HIB groups. The protein levels of OCN were unchanged in the three groups, but the protein levels of ALP were lower in the HLU group than in SA and HIB groups. RANKL, CTK and MMP-9 protein levels were significantly decreased in tibia of HLU ground squirrels as compared with SA and HIB groups. In addition, the protein expression levels of RANKL, CTK and MMP-9 showed no statistical difference between SA and HIB ground squirrels. Thus, the mechanisms involved in the balance between bone formation and resorption in hibernating and hindlimb unloading ground squirrels may be different. The present study showed that in femur, the Wnt signaling pathway was inhibited, the protein level of GSK-3ß was increased, and the protein expression of phospho-ß-catenin was decreased in the HIB group as compared with the SA group, which indicates that the Wnt signaling pathway has a great influence on the femur of the HIB group. In conclusion, the natural anti-osteoporosis properties of Daurian ground squirrels are seasonal. The squirrels do not experience bone loss when they are inactive for a long time during hibernation, but the mechanisms of anti-osteoporosis did not work in HLU summer active squirrels.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core , Hibernação , Animais , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , beta Catenina/metabolismo , Sciuridae/fisiologia , Elevação dos Membros Posteriores , Remodelação Óssea , Membro Posterior/fisiologia , Hibernação/fisiologia
14.
Neurosci Lett ; 801: 137092, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36690060

RESUMO

Depression underlies a common psychiatric disorder that has been rising in the diagnosis of long-term disabilities worldwide. Natural products have been studied as an antidepressant and anxiolytic agents aiming to make available new options for the daily basis treatment of those psychological disorders. SteLL is a lectin extracted from Schinus terebinthifolia leaf that has been revealed as an antimicrobial, immunomodulatory, antitumor, and antinociceptive agent. Nonetheless, the efficacy of SteLL in the treatment of depression has not yet been explored. In view of this, the aim of this study was to investigate the effect of SteLL in an acute protocol for symptoms of depression using the tail suspension test (TST) to assess despair. Administration of SteLL (1, 2 e 4 mg/kg) significantly diminished the immobility time of animals in the TST and this anti-immobility action was dependent on the carbohydrate-recognizing domain (CRD) since the prior incubation with casein (an inhibitor of SteLL carbohydrate-binding property) blocked the effect. SteLL effect was also reversed by pre-treatment with pharmacological antagonists of α2-adrenoceptor, 5-HT2A/2C serotonin receptor, and D1 dopamine receptor as well as by a selective inhibitor of iNOS (aminoguanidine). l-arginine, a precursor of NO, potentiated SteLL anti-immobility effect. In a subacute evaluation, the anti-immobility effect of SteLL persisted after seven days of treatment. Our findings suggest a role of SteLL in the modulation of depression mostly through monoaminergic and nitric oxide signaling.


Assuntos
Lectinas , Óxido Nítrico , Camundongos , Animais , Schinus , Elevação dos Membros Posteriores , Folhas de Planta , Carboidratos , Depressão/tratamento farmacológico , Natação
15.
J Appl Physiol (1985) ; 133(5): 1149-1163, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36227165

RESUMO

Current study tested a hypothesis that during skeletal muscle unloading, calcium-dependent signaling pathways, markers of protein synthesis, and expression of E3 ubiquitin ligases can be regulated by metformin. Thirty-two male Wistar rats were randomly assigned into one of four groups: nontreated control (3C), control rats treated with metformin (3CM), 3 days of unloading/hindlimb suspension with placebo (3HS), and 3 days of unloading treated with metformin (3HSM). In soleus muscle of HS group level of phospho-AMP-activated protein kinase (p-AMPK) was decreased by 46% while ATP content was increased by 49% when compared with the control group. There was an increase of the level of phospho-CaMK II (483%) and an upregulation of Calcineurin (CaN), SERCA2a, and Calpain-1 mRNA expression (87%, 41%, and 62%, respectively, P < 0.05) in the HS group relative to the control. HS group also had increased mRNA expression of MuRF1, MAFbx, and ubiquitin (167%, 146%, and 191%, respectively, P < 0.05) when compared with the control soleus muscle. Metformin treatment impeded unloading-induced changes in soleus muscle. In conclusion, metformin treatment during 3 days of soleus muscle unloading: 1) prevented the decrease of p-AMPK and increase of ATP content; 2) affected regulation of calcium-dependent signaling pathways via level of CaMK II phosphorylation or CaMK II, CaN, SERCA2a, and Calpain-1 mRNA expression; 3) attenuated an increase in the expression of critical markers of ubiquitin-proteasome pathways MuRF1, MAFbx, and ubiquitin while not affecting the unloading-induced increase of ULK-1 marker of autophagic/lysosomal pathway.NEW & NOTEWORTHY Current study for the first time tested the hypothesis that during 3 days of soleus muscle unloading, calcium-dependent signaling pathways, markers of protein synthesis, and the expression of E3 ubiquitin ligases can be regulated by metformin. Treatment with metformin during unloading: prevented the decrease of p-AMPK and increase of ATP content, affected regulation of calcium-dependent signaling pathways, and attenuated an increase of critical markers of ubiquitin-proteasome pathways. Nevertheless, metformin treatment has not prevented soleus muscle atrophy.


Assuntos
Metformina , Ubiquitina , Masculino , Ratos , Animais , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Cálcio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Calpaína/metabolismo , Ratos Wistar , Elevação dos Membros Posteriores/fisiologia , Atrofia Muscular/metabolismo , Músculo Esquelético/fisiologia , Calcineurina/metabolismo , RNA Mensageiro/metabolismo , Trifosfato de Adenosina/metabolismo
16.
J Appl Physiol (1985) ; 133(4): 919-931, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36049060

RESUMO

Poor recovery of muscle size and strength with aging coincides with a dysregulated macrophage response during the early stages of regrowth. Immunomodulation in the form of ex vivo cytokine (macrophage-colony stimulating factor) or polarized macrophage delivery has been demonstrated to improve skeletal muscle regeneration. However, it is unclear if these macrophage-promoting approaches would be effective to improve skeletal muscle recovery following disuse in aged animals. Here, we isolated bone marrow-derived macrophages from donor mice of different ages under various experimental conditions and polarized them into proinflammatory macrophages. Macrophages were delivered intramuscularly into young adult or aged recipient mice during the early recovery period following a period of hindlimb unloading (HU). Delivery of proinflammatory macrophages from donor young adults or aged mice was sufficient to increase muscle function of aged mice during the recovery period. Moreover, proinflammatory macrophages derived from aged donor mice collected during recovery were similarly able to increase muscle function of aged mice following disuse. In addition to the delivery of macrophages, we showed that the intramuscular injection of the cytokine, macrophage-colony stimulating factor, to the muscle of aged mice following HU was able to increase muscle macrophage content and muscle force production during recovery. Together, these results suggest that macrophage immunomodulation approaches in the form of ex vivo proinflammatory macrophage or macrophage-colony stimulating factor delivery during the early recovery phase following disuse atrophy were sufficient to restore the loss of aged skeletal muscle function.NEW & NOTEWORTHY A single intramuscular administration of polarized macrophages into muscles of aged mice following a bout of disuse atrophy was sufficient to improve functional recover similarly to young adults after disuse atrophy regardless of the age or experimental condition of the donor mice. Additionally, intramuscular delivery of macrophage-colony stimulating factor into aged mice was similarly effective. Targeting macrophage function early during the regrowth phase may be a novel tool to bolster muscle recovery in aging.


Assuntos
Atrofia Muscular , Transtornos Musculares Atróficos , Animais , Citocinas , Elevação dos Membros Posteriores/fisiologia , Imunomodulação , Macrófagos/patologia , Camundongos , Músculo Esquelético/fisiologia , Transtornos Musculares Atróficos/patologia
17.
Muscle Nerve ; 65(3): 350-360, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34957570

RESUMO

INTRODUCTION/AIMS: Skeletal muscle capillaries regress with disuse; however, information on time-dependent changes in the expression of pro- and anti-angiogenic factors in disused muscle is limited. This study aimed to clarify time-dependent changes in skeletal muscle capillarization, pro-angiogenic vascular endothelial growth factor-A (VEGF-A), and anti-angiogenic thrombospondin-1 (TSP-1) in the soleus muscle of hindlimb unloaded rat. METHODS: Eight-week-old male Sprague Dawley rats were randomly divided into four groups corresponding to different hindlimb unloading (HU) duration at 0, 1, 2, and 3 wk. RESULTS: Muscle atrophy and capillary regression worsened in the soleus muscle with longer periods of HU. The VEGF-A protein expression level was lower at week 1 than at week 0. In addition, the value at week 3 was also lower than those at weeks 0, 1, and 2. The TSP-1 protein expression level was higher at week 1 than that at week 0 but was similar at weeks 2 and 3. Moreover, reactive oxygen species, assessed by dihydroethidium fluorescence intensity on cryosection, were higher at weeks 2 and 3 than that at week 0. DISCUSSION: Depending on the HU period, VEGF-A and TSP-1 showed different expression patterns. In the early HU phase, TSP-1 may play an important role in capillary regression. However, when HU extends for a longer period, decreased VEGF-A, and/or increased oxidative stress may be more involved in capillary regression.


Assuntos
Capilares , Elevação dos Membros Posteriores , Trombospondina 1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Capilares/patologia , Membro Posterior , Elevação dos Membros Posteriores/fisiologia , Masculino , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Ratos , Ratos Sprague-Dawley
18.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829990

RESUMO

Low-intensity pulsed ultrasound (LIPUS) has been proved to promote the proliferation of myoblast C2C12. However, whether LIPUS can effectively prevent muscle atrophy has not been clarified, and if so, what is the possible mechanism. The aim of this study is to evaluate the effects of LIPUS on muscle atrophy in hindlimb unloading rats, and explore the mechanisms. The rats were randomly divided into four groups: normal control group (NC), hindlimb unloading group (UL), hindlimb unloading plus 30 mW/cm2 LIPUS irradiation group (UL + 30 mW/cm2), hindlimb unloading plus 80 mW/cm2 LIPUS irradiation group (UL + 80 mW/cm2). The tails of rats in hindlimb unloading group were suspended for 28 days. The rats in the LIPUS treated group were simultaneously irradiated with LIPUS on gastrocnemius muscle in both lower legs at the sound intensity of 30 mW/cm2 or 80 mW/cm2 for 20 min/d for 28 days. C2C12 cells were exposed to LIPUS at 30 or 80 mW/cm2 for 5 days. The results showed that LIPUS significantly promoted the proliferation and differentiation of myoblast C2C12, and prevented the decrease of cross-sectional area of muscle fiber and gastrocnemius mass in hindlimb unloading rats. LIPUS also significantly down regulated the expression of MSTN and its receptors ActRIIB, and up-regulated the expression of Akt and mTOR in gastrocnemius muscle of hindlimb unloading rats. In addition, three metabolic pathways (phenylalanine, tyrosine and tryptophan biosynthesis; alanine, aspartate and glutamate metabolism; glycine, serine and threonine metabolism) were selected as important metabolic pathways for hindlimb unloading effect. However, LIPUS promoted the stability of alanine, aspartate and glutamate metabolism pathway. These results suggest that the key mechanism of LIPUS in preventing muscle atrophy induced by hindlimb unloading may be related to promoting protein synthesis through MSTN/Akt/mTOR signaling pathway and stabilizing alanine, aspartate and glutamate metabolism.


Assuntos
Diferenciação Celular/efeitos da radiação , Atrofia Muscular/terapia , Ondas Ultrassônicas , Receptores de Activinas Tipo II/genética , Animais , Proliferação de Células/genética , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos da radiação , Membro Posterior/patologia , Membro Posterior/efeitos da radiação , Elevação dos Membros Posteriores/métodos , Humanos , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/efeitos da radiação , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Músculo Esquelético/efeitos da radiação , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mioblastos/efeitos da radiação , Miostatina/genética , Ratos , Terapia por Ultrassom/métodos
19.
Neuropeptides ; 90: 102199, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34610544

RESUMO

Disuse syndrome indicates psychosomatic hypofunction caused by excess rest and motionless and muscle atrophy is termed disuse muscle atrophy. Disuse muscle atrophy-induced muscle weakness and hypoactivity further induces muscle atrophy, leading to a vicious cycle, and this is considered a factor causing secondary sarcopenia and subsequently frailty. Since frailty finally leads to a bedridden state requiring nursing, in facing a super-aging society, intervention for a risk factor of frailty, disuse muscle atrophy, is important. However, the main treatment of disuse muscle atrophy is physical therapy and there are fewer effective preventive and therapeutic drugs. The objective of this study was to search for Kampo medicine with a disuse muscle atrophy-improving effect. Ninjin'yoeito is classified as a qi-blood sohozai (dual supplement) in Chinese herbal medicine, and it has an action supplementing the spleen related to muscle. In addition, improvement of muscle mass and muscle weakness by ninjin'yoeito in a clinical study has been reported. In this study, the effect of ninjin'yoeito on disuse muscle atrophy was investigated. A disuse muscle atrophy model was prepared using male ICR mice. After surgery applying a ring for tail suspension, a 1-week recovery period was set. Ninjin'yoeito was administered by mixing it in the diet for 1 week after the recovery period, followed by tail suspension for 14 days. Ninjin'yoeito administration was continued until autopsy including the hindlimb suspension period. The mice were euthanized and autopsied immediately after completion of tail suspension, and the hindlimb muscles were collected. The food and water intakes during the hindlimb unloaded period, wet weight of the collected muscle, and muscle synthesis and muscle degradation-related factors in blood and muscle were evaluated. Ingestion of ninjin'yoeito inhibited tail suspension-induced reduction of the soleus muscle wet weight. In addition, an increase in the blood level of a muscle synthesis-related factor, IGF-1, and promotion of phosphorylation of mTOR and 4E-BP1 in the soleus muscle were observed. It was suggested that ninjin'yoeito has a disuse muscle atrophy-improving action. Promotion of the muscle synthesis pathway was considered the action mechanism of this.


Assuntos
Medicamentos de Ervas Chinesas/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Transtornos Musculares Atróficos/tratamento farmacológico , Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Dieta , Membro Posterior/patologia , Elevação dos Membros Posteriores , Masculino , Medicina Kampo , Camundongos , Camundongos Endogâmicos ICR , Debilidade Muscular/tratamento farmacológico , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Transtornos Musculares Atróficos/patologia , Tamanho do Órgão , Serina-Treonina Quinases TOR/biossíntese , Serina-Treonina Quinases TOR/genética
20.
Neurotox Res ; 39(6): 1920-1936, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34613588

RESUMO

Nicotine-withdrawal after daily exposure manifests somatic and affective symptom including a range of cognitive deficits. Earlier studies suggested participation of L-type calcium channels (LTCCs) in development of nicotine dependence and expression of withdrawal signs. An upsurge in Ca2+-induced oxidative stress in brain underlies the biochemical events and behavioral signs of nicotine-withdrawal. The present study is aimed to explore the effects of lacidipine (LTCC antagonist) against nicotine-withdrawal. Swiss albino mice were administered ( -)-nicotine hydrogen tartrate (3.35 mg/kg, t.i.d.) from days 1 to 7 and alongside lacidipine (0.3, 1, and 3 mg/kg, i.p.) given from days 1 to 14. Somatic withdrawal signs were noted 48 h after last dose of nicotine. Bay-K8644 (LTCC agonist) was administered in mice subjected to nicotine-withdrawal and lacidipine (3 mg/kg) treatments. Behavioral tests of memory, anxiety, and depression were conducted on days 13 and 14 to assess the effects of lacidipine on affective symptoms of nicotine-withdrawal. Biomarkers of oxido-nitrosative were quantified in the whole brain. Nicotine-withdrawal significantly enhanced somatic signs and symptoms of anxiety, depression, and memory impairment in mice. Lacidipine (1 and 3 mg/kg) attenuated nicotine-withdrawal induced somatic symptoms and also ameliorated behavioral abnormalities. Nicotine-withdrawal triggered an upsurge in brain lipid peroxidation, total nitrite content, and decline in antioxidants, and these effects were attenuated by lacidipine. Bay-K8644 significantly abolished improvement in somatic and affective symptoms, and antioxidant effects by lacidipine in mice subjected to nicotine-withdrawal. Lacidipine mitigated nicotine-withdrawal triggered somatic and affective symptoms owing to decrease in brain oxido-nitrosative stress.


Assuntos
Bloqueadores dos Canais de Cálcio/uso terapêutico , Canais de Cálcio Tipo L/efeitos dos fármacos , Di-Hidropiridinas/uso terapêutico , Nicotina/efeitos adversos , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catalase/metabolismo , Teste de Labirinto em Cruz Elevado , Feminino , Glutationa/metabolismo , Elevação dos Membros Posteriores , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA