Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Nature ; 628(8007): 408-415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480883

RESUMO

During development, inflammation or tissue injury, macrophages may successively engulf and process multiple apoptotic corpses via efferocytosis to achieve tissue homeostasis1. How macrophages may rapidly adapt their transcription to achieve continuous corpse uptake is incompletely understood. Transcriptional pause/release is an evolutionarily conserved mechanism, in which RNA polymerase (Pol) II initiates transcription for 20-60 nucleotides, is paused for minutes to hours and is then released to make full-length mRNA2. Here we show that macrophages, within minutes of corpse encounter, use transcriptional pause/release to unleash a rapid transcriptional response. For human and mouse macrophages, the Pol II pause/release was required for continuous efferocytosis in vitro and in vivo. Interestingly, blocking Pol II pause/release did not impede Fc receptor-mediated phagocytosis, yeast uptake or bacterial phagocytosis. Integration of data from three genomic approaches-precision nuclear run-on sequencing, RNA sequencing, and assay for transposase-accessible chromatin using sequencing (ATAC-seq)-on efferocytic macrophages at different time points revealed that Pol II pause/release controls expression of select transcription factors and downstream target genes. Mechanistic studies on transcription factor EGR3, prominently regulated by pause/release, uncovered EGR3-related reprogramming of other macrophage genes involved in cytoskeleton and corpse processing. Using lysosomal probes and a new genetic fluorescent reporter, we identify a role for pause/release in phagosome acidification during efferocytosis. Furthermore, microglia from egr3-deficient zebrafish embryos displayed reduced phagocytosis of apoptotic neurons and fewer maturing phagosomes, supporting defective corpse processing. Collectively, these data indicate that macrophages use Pol II pause/release as a mechanism to rapidly alter their transcriptional programs for efficient processing of the ingested apoptotic corpses and for successive efferocytosis.


Assuntos
Eferocitose , Macrófagos , RNA Polimerase II , Elongação da Transcrição Genética , Animais , Humanos , Masculino , Camundongos , Apoptose , Citoesqueleto/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/deficiência , Proteína 3 de Resposta de Crescimento Precoce/genética , Eferocitose/genética , Concentração de Íons de Hidrogênio , Macrófagos/imunologia , Macrófagos/metabolismo , Neurônios/metabolismo , Fagossomos/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Fatores de Tempo
2.
Cell ; 187(3): 642-658.e19, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218188

RESUMO

Despite advances in defining diverse somatic mutations that cause myeloid malignancies, a significant heritable component for these cancers remains largely unexplained. Here, we perform rare variant association studies in a large population cohort to identify inherited predisposition genes for these blood cancers. CTR9, which encodes a key component of the PAF1 transcription elongation complex, is among the significant genes identified. The risk variants found in the cases cause loss of function and result in a ∼10-fold increased odds of acquiring a myeloid malignancy. Partial CTR9 loss of function expands human hematopoietic stem cells (HSCs) by increased super elongation complex-mediated transcriptional activity, which thereby increases the expression of key regulators of HSC self-renewal. By following up on insights from a human genetic study examining inherited predisposition to the myeloid malignancies, we define a previously unknown antagonistic interaction between the PAF1 and super elongation complexes. These insights could enable targeted approaches for blood cancer prevention.


Assuntos
Neoplasias Hematológicas , Fosfoproteínas , Elongação da Transcrição Genética , Fatores de Transcrição , Humanos , Neoplasias Hematológicas/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fosfoproteínas/genética
3.
Nucleic Acids Res ; 49(22): 12769-12784, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34878142

RESUMO

Uncoordinated clashes between replication forks and transcription cause replication stress and genome instability, which are hallmarks of cancer and neurodegeneration. Here, we investigate the outcomes of head-on replication-transcription collisions, using as a model system budding yeast mutants for the helicase Sen1, the ortholog of human Senataxin. We found that RNA Polymerase II accumulates together with RNA:DNA hybrids at sites of head-on collisions. The replication fork and RNA Polymerase II are both arrested during the clash, leading to DNA damage and, in the long run, the inhibition of gene expression. The inactivation of RNA Polymerase II elongation factors, such as the HMG-like protein Spt2 and the DISF and PAF complexes, but not alterations in chromatin structure, allows replication fork progression through transcribed regions. Attenuation of RNA Polymerase II elongation rescues RNA:DNA hybrid accumulation and DNA damage sensitivity caused by the absence of Sen1, but not of RNase H proteins, suggesting that such enzymes counteract toxic RNA:DNA hybrids at different stages of the cell cycle with Sen1 mainly acting in replication. We suggest that the main obstacle to replication fork progression is the elongating RNA Polymerase II engaged in an R-loop, rather than RNA:DNA hybrids per se or hybrid-associated chromatin modifications.


Assuntos
Replicação do DNA , RNA Polimerase II/metabolismo , Transcrição Gênica , Proteínas Cromossômicas não Histona/genética , DNA/química , Dano ao DNA , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Estruturas R-Loop , RNA/química , RNA Helicases/genética , Ribonuclease H/genética , Proteínas de Saccharomyces cerevisiae/genética , Supressão Genética , Elongação da Transcrição Genética
4.
Science ; 374(6571): 1113-1121, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34822292

RESUMO

During eukaryotic transcription elongation, RNA polymerase II (RNAP2) is regulated by a chorus of factors. Here, we identified a common binary interaction module consisting of TFIIS N-terminal domains (TNDs) and natively unstructured TND-interacting motifs (TIMs). This module was conserved among the elongation machinery and linked complexes including transcription factor TFIIS, Mediator, super elongation complex, elongin, IWS1, SPT6, PP1-PNUTS phosphatase, H3K36me3 readers, and other factors. Using nuclear magnetic resonance, live-cell microscopy, and mass spectrometry, we revealed the structural basis for these interactions and found that TND-TIM sequences were necessary and sufficient to induce strong and specific colocalization in the crowded nuclear environment. Disruption of a single TIM in IWS1 induced robust changes in gene expression and RNAP2 elongation dynamics, which underscores the functional importance of TND-TIM surfaces for transcription elongation.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/química , Elongação da Transcrição Genética , Fatores de Transcrição/química , Fatores de Elongação da Transcrição/química , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas/genética , Mapas de Interação de Proteínas , RNA Polimerase II/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo
5.
Mol Cell ; 81(19): 4041-4058.e15, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34624217

RESUMO

Deregulation of oncogenic signals in cancer triggers replication stress. Immediate early genes (IEGs) are rapidly and transiently expressed following stressful signals, contributing to an integrated response. Here, we find that the orphan nuclear receptor NR4A1 localizes across the gene body and 3' UTR of IEGs, where it inhibits transcriptional elongation by RNA Pol II, generating R-loops and accessible chromatin domains. Acute replication stress causes immediate dissociation of NR4A1 and a burst of transcriptionally poised IEG expression. Ectopic expression of NR4A1 enhances tumorigenesis by breast cancer cells, while its deletion leads to massive chromosomal instability and proliferative failure, driven by deregulated expression of its IEG target, FOS. Approximately half of breast and other primary cancers exhibit accessible chromatin domains at IEG gene bodies, consistent with this stress-regulatory pathway. Cancers that have retained this mechanism in adapting to oncogenic replication stress may be dependent on NR4A1 for their proliferation.


Assuntos
Neoplasias da Mama/metabolismo , Proliferação de Células , Proteínas Imediatamente Precoces/metabolismo , Mitose , Células Neoplásicas Circulantes/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Regiões 3' não Traduzidas , Animais , Antineoplásicos/farmacologia , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Montagem e Desmontagem da Cromatina , Feminino , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Células HEK293 , Humanos , Proteínas Imediatamente Precoces/genética , Indóis/farmacologia , Células MCF-7 , Camundongos Endogâmicos NOD , Camundongos SCID , Mitose/efeitos dos fármacos , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/patologia , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/antagonistas & inibidores , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Fenilacetatos/farmacologia , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estruturas R-Loop , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais , Elongação da Transcrição Genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nucleic Acids Res ; 49(13): 7618-7627, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34197619

RESUMO

Transcription induced CAG repeat instability is associated with fatal neurological disorders. Genetic approaches found transcription-coupled nucleotide excision repair (TC-NER) factor CSB protein and TFIIS play critical roles in modulating the repeat stability. Here, we took advantage of an in vitro reconstituted yeast transcription system to investigate the underlying mechanism of RNA polymerase II (Pol II) transcriptional pausing/stalling by CAG slip-out structures and the functions of TFIIS and Rad26, the yeast ortholog of CSB, in modulating transcriptional arrest. We identified length-dependent and strand-specific mechanisms that account for CAG slip-out induced transcriptional arrest. We found substantial R-loop formation for the distal transcriptional pausing induced by template strand (TS) slip-out, but not non-template strand (NTS) slip-out. In contrast, Pol II backtracking was observed at the proximal transcriptional pausing sites induced by both NTS and TS slip-out blockage. Strikingly, we revealed that Rad26 and TFIIS can stimulate bypass of NTS CAG slip-out, but not TS slip-out induced distal pausing. Our biochemical results provide new insights into understanding the mechanism of CAG slip-out induced transcriptional pausing and functions of transcription factors in modulating transcription-coupled CAG repeat instability, which may pave the way for developing potential strategies for the treatment of repeat sequence associated human diseases.


Assuntos
Adenosina Trifosfatases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Elongação da Transcrição Genética , Fatores de Elongação da Transcrição/metabolismo , Repetições de Trinucleotídeos , Estruturas R-Loop
7.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34187895

RESUMO

DOT1L, the only H3K79 methyltransferase in human cells and a homolog of the yeast Dot1, normally forms a complex with AF10, AF17, and ENL or AF9, is dysregulated in most cases of mixed-lineage leukemia (MLLr), and has been believed to regulate transcriptional elongation on the basis of its colocalization with RNA polymerase II (Pol II), the sharing of subunits (AF9 and ENL) between the DOT1L and super elongation complexes, and the distribution of H3K79 methylation on both promoters and transcribed regions of active genes. Here we show that DOT1L depletion in erythroleukemic cells reduces its global occupancy without affecting the traveling ratio or the elongation rate (assessed by 4sUDRB-seq) of Pol II, suggesting that DOT1L does not play a major role in elongation in these cells. In contrast, analyses of transcription initiation factor binding reveal that DOT1L and ENL depletions each result in reduced TATA binding protein (TBP) occupancies on thousands of genes. More importantly, DOT1L and ENL depletions concomitantly reduce TBP and Pol II occupancies on a significant fraction of direct (DOT1L-bound) target genes, indicating a role for the DOT1L complex in transcription initiation. Mechanistically, proteomic and biochemical studies suggest that the DOT1L complex may regulate transcriptional initiation by facilitating the recruitment or stabilization of transcription factor IID, likely in a monoubiquitinated H2B (H2Bub1)-enhanced manner. Additional studies show that DOT1L enhances H2Bub1 levels by limiting recruitment of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex. These results advance our understanding of roles of the DOT1L complex in transcriptional regulation and have important implications for MLLr leukemias.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Leucemia Eritroblástica Aguda/genética , Iniciação da Transcrição Genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Regulação Leucêmica da Expressão Gênica , Histonas/metabolismo , Humanos , Ligação Proteica , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Fator de Transcrição TFIID/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Ubiquitinação
8.
Elife ; 102021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34137374

RESUMO

Human bromodomain and extra-terminal domain (BET) family members are promising targets for therapy of cancer and immunoinflammatory diseases, but their mechanisms of action and functional redundancies are poorly understood. Bdf1/2, yeast homologues of the human BET factors, were previously proposed to target transcription factor TFIID to acetylated histone H4, analogous to bromodomains that are present within the largest subunit of metazoan TFIID. We investigated the genome-wide roles of Bdf1/2 and found that their important contributions to transcription extend beyond TFIID function as transcription of many genes is more sensitive to Bdf1/2 than to TFIID depletion. Bdf1/2 co-occupy the majority of yeast promoters and affect preinitiation complex formation through recruitment of TFIID, Mediator, and basal transcription factors to chromatin. Surprisingly, we discovered that hypersensitivity of genes to Bdf1/2 depletion results from combined defects in transcription initiation and early elongation, a striking functional similarity to human BET proteins, most notably Brd4. Our results establish Bdf1/2 as critical for yeast transcription and provide important mechanistic insights into the function of BET proteins in all eukaryotes.


When a healthy cell creates new proteins, it activates a standard two-step biological manufacturing process. Firstly, DNA is transcribed from a specific gene to generate a strand of messenger RNA, or mRNA. Next, this mRNA molecule is translated to create the final protein product. This process of converting DNA into mRNA is supported by a series of helper proteins, including proteins from the bromodomain and extra-terminal domain (BET) family. Cancer cells can become 'addicted' to the process of converting DNA into RNA, leading to the overproduction of mRNA molecules, uncontrolled cell growth and tumor formation. Knocking out BET helper proteins could potentially bring cancer cells under control by halting transcription and preventing tumor growth. However, the precise ways in which BET helper proteins regulate transcription are currently poorly understood, and therefore developing rational ways to target them is a challenge. Building on their previous work, Donczew and Hahn have investigated how two BET helper proteins, Bdf1 and Bdf2, help to regulate transcription in budding yeast. Using a range of genomic techniques, Donczew and Hahn found that Bdf1 and Bdf2 had important roles for initiating transcription and elongating mRNA molecules. Both BET proteins were also involved in recruiting other protein factors to help with the transcription process, including TFIID and Mediator. Based on these findings, it is likely that cooperation between BET proteins, TFIID and Mediator represents a common pathway through which gene expression is regulated across all eukaryotic organisms. Both Bdf1 and Bdf2 were also found to provide the same functions in yeast as similar BET proteins in humans. Using this robust yeast model system to perform further detailed studies of BET factors could therefore provide highly relevant information to expand our understanding of human biology and disease. Ultimately, this research provides important insights into how two members of the BET family of helper proteins contribute to the control of transcription in yeast. This information could be used to guide the design of new drugs for cancer therapy that target not only BET proteins themselves but also other proteins they recruit, including TFIID and Mediator. Such targeted drugs would be expected to be more harmful for cancer cells than for healthy cells, which could reduce unwanted side effects.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Elongação da Transcrição Genética , Fatores de Transcrição , Iniciação da Transcrição Genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Genoma Fúngico/genética , Humanos , Regiões Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Nat Cell Biol ; 23(6): 595-607, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34108663

RESUMO

Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4CSA ubiquitin ligase. How CRL4CSA is specifically directed towards K1268 is unknown. Here, we identify ELOF1 as the missing link that facilitates RNAPII ubiquitylation, a key signal for the assembly of downstream repair factors. This function requires its constitutive interaction with RNAPII close to K1268, revealing ELOF1 as a specificity factor that binds and positions CRL4CSA for optimal RNAPII ubiquitylation. Drug-genetic interaction screening also revealed a CSB-independent pathway in which ELOF1 prevents R-loops in active genes and protects cells against DNA replication stress. Our study offers key insights into the molecular mechanisms of TCR and provides a genetic framework of the interplay between transcriptional stress responses and DNA replication.


Assuntos
Dano ao DNA , Reparo do DNA , Fator 1 de Elongação de Peptídeos/metabolismo , RNA Polimerase II/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , DNA Helicases/genética , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Humanos , Fator 1 de Elongação de Peptídeos/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase II/genética , Elongação da Transcrição Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética
10.
Bull Cancer ; 108(4): 385-398, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33685627

RESUMO

Numerous epigenetic alterations are observed in cancer cells, and dysregulation of mono-ubiquitination of histone H2B (H2Bub1) has often been linked to tumorigenesis. H2Bub1 is a dynamic post-translational histone modification associated with transcriptional elongation and DNA damage response. Histone H2B monoubiquitination occurs in the site of lysine 120, written predominantly by E3 ubiquitin ligases RNF20/RNF40 and deubiquitinated by ubiquitin specific peptidase 22 (USP22). RNF20/40 is often altered in the primary tumors including colorectal cancer, breast cancer, ovarian cancer, prostate cancer, and lung cancer, and the loss of H2Bub1 is usually associated with poor prognosis in tumor patients. The purpose of this review is to summarize the current knowledge of H2Bub1 in transcription, DNA damage response and primary tumors. This review also provides novel options for exploiting the potential therapeutic target H2Bub1 in personalized cancer therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Histonas/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Ubiquitinadas/fisiologia , Carcinoma/etiologia , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/terapia , Dano ao DNA , Reparo do DNA , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Progressão da Doença , Humanos , Proteínas de Neoplasias/genética , Neoplasias/etiologia , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , Elongação da Transcrição Genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
11.
Nat Commun ; 12(1): 784, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33542242

RESUMO

In adult tissue, stem and progenitor cells must tightly regulate the balance between proliferation and differentiation to sustain homeostasis. How this exquisite balance is achieved is an area of active investigation. Here, we show that epidermal genes, including ~30% of induced differentiation genes already contain stalled Pol II at the promoters in epidermal stem and progenitor cells which is then released into productive transcription elongation upon differentiation. Central to this process are SPT6 and PAF1 which are necessary for the elongation of these differentiation genes. Upon SPT6 or PAF1 depletion there is a loss of human skin differentiation and stratification. Unexpectedly, loss of SPT6 also causes the spontaneous transdifferentiation of epidermal cells into an intestinal-like phenotype due to the stalled transcription of the master regulator of epidermal fate P63. Our findings suggest that control of transcription elongation through SPT6 plays a prominent role in adult somatic tissue differentiation and the inhibition of alternative cell fate choices.


Assuntos
Diferenciação Celular/genética , Epiderme/fisiologia , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Células-Tronco Adultas/fisiologia , Transdiferenciação Celular/genética , Células Cultivadas , Sequenciamento de Cromatina por Imunoprecipitação , Técnicas de Silenciamento de Genes , Humanos , Recém-Nascido , Queratinócitos , Masculino , Cultura Primária de Células , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Interferente Pequeno/metabolismo , RNA-Seq , Técnicas de Cultura de Tecidos , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Mol Cell ; 81(5): 998-1012.e7, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33440169

RESUMO

Pre-mRNA processing steps are tightly coordinated with transcription in many organisms. To determine how co-transcriptional splicing is integrated with transcription elongation and 3' end formation in mammalian cells, we performed long-read sequencing of individual nascent RNAs and precision run-on sequencing (PRO-seq) during mouse erythropoiesis. Splicing was not accompanied by transcriptional pausing and was detected when RNA polymerase II (Pol II) was within 75-300 nucleotides of 3' splice sites (3'SSs), often during transcription of the downstream exon. Interestingly, several hundred introns displayed abundant splicing intermediates, suggesting that splicing delays can take place between the two catalytic steps. Overall, splicing efficiencies were correlated among introns within the same transcript, and intron retention was associated with inefficient 3' end cleavage. Remarkably, a thalassemia patient-derived mutation introducing a cryptic 3'SS improved both splicing and 3' end cleavage of individual ß-globin transcripts, demonstrating functional coupling between the two co-transcriptional processes as a determinant of productive gene output.


Assuntos
Células Eritroides/metabolismo , Eritropoese/genética , RNA Polimerase II/genética , Splicing de RNA , Elongação da Transcrição Genética , Globinas beta/genética , Animais , Sequência de Bases , Diferenciação Celular , Linhagem Celular Tumoral , Células Eritroides/citologia , Éxons , Humanos , Íntrons , Leucócitos/citologia , Leucócitos/metabolismo , Camundongos , Mutação , Clivagem do RNA , RNA Polimerase II/metabolismo , Sítios de Splice de RNA , Spliceossomos/genética , Spliceossomos/metabolismo , Globinas beta/deficiência , Talassemia beta/genética , Talassemia beta/metabolismo , Talassemia beta/patologia
13.
Cancer Res ; 81(7): 1719-1731, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33472893

RESUMO

Chromosomal instability (CIN) is a driver of clonal diversification and intratumor heterogeneity, providing genetic diversity that contributes to tumor progression. It is estimated that approximately 80% of solid cancers, including non-small cell lung cancer (NSCLC), exhibit features of CIN, which affects tumor growth and response to therapy. However, the molecular mechanisms connecting CIN to tumor progression are still poorly understood. Through an RNAi screen performed on genes involved in CIN and overexpressed in human lung adenocarcinoma samples, we identified the cytoskeleton-associated protein 2-like (CKAP2L) as a potential oncogene that promotes lung cancer proliferation and growth in vitro and in vivo. Mechanistically, CKAP2L directly interacted with RNA Pol II and regulated transcription elongation of key genes involved in spindle assembly checkpoint, chromosome segregation, cell cycle, and E2F signaling. Furthermore, depletion of CKAP2L increased the sensitivity of NSCLC cells to alvocidib, a pan-CDK inhibitor, leading to a significant reduction of cell proliferation and an increase in cell death. Altogether, these findings shed light on the molecular mechanisms through which CKAP2L, a protein involved in CIN, promotes cancer progression and suggest that its inhibition represents a novel therapeutic strategy in NSCLC. SIGNIFICANCE: These findings demonstrate the oncogenic function of CKAP2L through regulation of transcription elongation and suggest that targeting CKAP2L could enhance therapeutic response in patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas do Citoesqueleto/fisiologia , Neoplasias Pulmonares/patologia , Elongação da Transcrição Genética , Células A549 , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Elongação da Transcrição Genética/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Mol Cell ; 81(4): 830-844.e13, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33453168

RESUMO

The MYC oncoprotein globally affects the function of RNA polymerase II (RNAPII). The ability of MYC to promote transcription elongation depends on its ubiquitylation. Here, we show that MYC and PAF1c (polymerase II-associated factor 1 complex) interact directly and mutually enhance each other's association with active promoters. PAF1c is rapidly transferred from MYC onto RNAPII. This transfer is driven by the HUWE1 ubiquitin ligase and is required for MYC-dependent transcription elongation. MYC and HUWE1 promote histone H2B ubiquitylation, which alters chromatin structure both for transcription elongation and double-strand break repair. Consistently, MYC suppresses double-strand break accumulation in active genes in a strictly PAF1c-dependent manner. Depletion of PAF1c causes transcription-dependent accumulation of double-strand breaks, despite widespread repair-associated DNA synthesis. Our data show that the transfer of PAF1c from MYC onto RNAPII efficiently couples transcription elongation with double-strand break repair to maintain the genomic integrity of MYC-driven tumor cells.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Elongação da Transcrição Genética , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Linhagem Celular Tumoral , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogênicas c-myc/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
15.
Immunol Med ; 44(1): 23-29, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32649853

RESUMO

Recently, great advancements have been made towards understanding the mechanisms underlying dermatomyositis (DM). Many novel autoantibodies, such as anti-MDA5, anti-TIF1γ, anti-NXP2, and anti-SAE, have been reported to be involved in DM. DM is now classified based on these myositis-specific autoantibodies. Anti-TIF1γ antibodies are closely associated with juvenile DM and adult cancer-associated DM. Anti-TIF1γ antibody-positive DM tends to present severe cutaneous manifestations, mild myositis, and dysphagia. TIF1γ (also known as TRIM33) plays a role in transcriptional elongation, DNA repair, differentiation of cells, embryonic development, and mitosis. Moreover, TIF1γ has been shown to suppress various tumors via the TGF-ß/Smad and the Wnt/ß-Catenin signaling pathways. In this review, we explore the relationship between TIF1γ, cancer, and DM. We also discuss the pathogenesis of anti-TIF1γ antibody-positive DM.


Assuntos
Autoanticorpos , Dermatomiosite/imunologia , Proteínas Nucleares/imunologia , Fatores de Transcrição/imunologia , Reparo do DNA/imunologia , Desenvolvimento Embrionário/imunologia , Humanos , Mitose/imunologia , Elongação da Transcrição Genética/imunologia , Fatores de Transcrição/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Via de Sinalização Wnt/imunologia
16.
Science ; 371(6524)2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33243850

RESUMO

Factor-dependent transcription termination mechanisms are poorly understood. We determined a series of cryo-electron microscopy structures portraying the hexameric adenosine triphosphatase (ATPase) ρ on a pathway to terminating NusA/NusG-modified elongation complexes. An open ρ ring contacts NusA, NusG, and multiple regions of RNA polymerase, trapping and locally unwinding proximal upstream DNA. NusA wedges into the ρ ring, initially sequestering RNA. Upon deflection of distal upstream DNA over the RNA polymerase zinc-binding domain, NusA rotates underneath one capping ρ subunit, which subsequently captures RNA. After detachment of NusG and clamp opening, RNA polymerase loses its grip on the RNA:DNA hybrid and is inactivated. Our structural and functional analyses suggest that ρ, and other termination factors across life, may use analogous strategies to allosterically trap transcription complexes in a moribund state.


Assuntos
Adenosina Trifosfatases/química , RNA Polimerases Dirigidas por DNA/química , Escherichia coli/genética , Fator Rho/química , Elongação da Transcrição Genética , Microscopia Crioeletrônica , Proteínas de Escherichia coli/química , Complexos Multiproteicos/química , Fatores de Alongamento de Peptídeos/química , Conformação Proteica , Transporte Proteico , Fatores de Transcrição/química , Fatores de Elongação da Transcrição/química , Dedos de Zinco
17.
J Biol Chem ; 296: 100170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33298525

RESUMO

Elongin is an RNA polymerase II (RNAPII)-associated factor that has been shown to stimulate transcriptional elongation in vitro. The Elongin complex is thought to be required for transcriptional induction in response to cellular stimuli and to ubiquitinate RNAPII in response to DNA damage. Yet, the impact of the Elongin complex on transcription in vivo has not been well studied. Here, we performed comprehensive studies of the role of Elongin A, the largest subunit of the Elongin complex, on RNAPII transcription genome-wide. Our results suggest that Elongin A localizes to actively transcribed regions and potential enhancers, and the level of recruitment correlated with transcription levels. We also identified a large group of factors involved in transcription as Elongin A-associated factors. In addition, we found that loss of Elongin A leads to dramatically reduced levels of serine2-phosphorylated, but not total, RNAPII, and cells depleted of Elongin A show stronger promoter RNAPII pausing, suggesting that Elongin A may be involved in the release of paused RNAPII. Our RNA-seq studies suggest that loss of Elongin A did not alter global transcription, and unlike prior in vitro studies, we did not observe a dramatic impact on RNAPII elongation rates in our cell-based nascent RNA-seq experiments upon Elongin A depletion. Taken together, our studies provide the first comprehensive analysis of the role of Elongin A in regulating transcription in vivo. Our studies also revealed that unlike prior in vitro findings, depletion of Elongin A has little impact on global transcription profiles and transcription elongation in vivo.


Assuntos
Cromatina/metabolismo , Elonguina/genética , RNA Polimerase II/genética , RNA Mensageiro/genética , Elongação da Transcrição Genética , Linhagem Celular Tumoral , Cromatina/química , Biologia Computacional/métodos , Elonguina/antagonistas & inibidores , Elonguina/metabolismo , Elementos Facilitadores Genéticos , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Fosforilação , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Análise de Sequência de RNA , Serina/metabolismo , Transdução de Sinais
18.
Nucleic Acids Res ; 49(1): 479-490, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33330934

RESUMO

The mammalian Ate1 gene encodes an arginyl transferase enzyme with tumor suppressor function that depends on the inclusion of one of the two mutually exclusive exons (MXE), exons 7a and 7b. We report that the molecular mechanism underlying MXE splicing in Ate1 involves five conserved regulatory intronic elements R1-R5, of which R1 and R4 compete for base pairing with R3, while R2 and R5 form an ultra-long-range RNA structure spanning 30 Kb. In minigenes, single and double mutations that disrupt base pairings in R1R3 and R3R4 lead to the loss of MXE splicing, while compensatory triple mutations that restore RNA structure revert splicing to that of the wild type. In the endogenous Ate1 pre-mRNA, blocking the competing base pairings by LNA/DNA mixmers complementary to R3 leads to the loss of MXE splicing, while the disruption of R2R5 interaction changes the ratio of MXE. That is, Ate1 splicing is controlled by two independent, dynamically interacting, and functionally distinct RNA structure modules. Exon 7a becomes more included in response to RNA Pol II slowdown, however it fails to do so when the ultra-long-range R2R5 interaction is disrupted, indicating that exon 7a/7b ratio depends on co-transcriptional RNA folding. In sum, these results demonstrate that splicing is coordinated both in time and in space over very long distances, and that the interaction of these components is mediated by RNA structure.


Assuntos
Processamento Alternativo/genética , Aminoaciltransferases/genética , Conformação de Ácido Nucleico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos/farmacologia , Dobramento de RNA , Precursores de RNA/genética , RNA Mensageiro/genética , Células A549 , Sequência de Bases , Linhagem Celular Tumoral , Sequência Conservada , Éxons/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Íntrons/genética , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/genética , Oligonucleotídeos/genética , Oligonucleotídeos Antissenso/genética , Especificidade de Órgãos , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Elongação da Transcrição Genética
19.
Life Sci Alliance ; 4(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33376128

RESUMO

The RNA polymerase II (RNAPII) associated factor 1 complex (Paf1C) plays critical roles in modulating the release of paused RNAPII into productive elongation. However, regulation of Paf1C-mediated promoter-proximal pausing is complex and context dependent. In fact, in cancer cell lines, opposing models of Paf1Cs' role in RNAPII pause-release control have been proposed. Here, we show that the Paf1C positively regulates enhancer activity in mouse embryonic stem cells. In particular, our analyses reveal extensive Paf1C occupancy and function at super enhancers. Importantly, Paf1C occupancy correlates with the strength of enhancer activity, improving the predictive power to classify enhancers in genomic sequences. Depletion of Paf1C attenuates the expression of genes regulated by targeted enhancers and affects RNAPII Ser2 phosphorylation at the binding sites, suggesting that Paf1C-mediated positive regulation of pluripotency enhancers is crucial to maintain mouse embryonic stem cell self-renewal.


Assuntos
Proteínas de Transporte/metabolismo , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Células-Tronco Embrionárias Murinas/metabolismo , RNA Polimerase II/metabolismo , Animais , Proteínas de Transporte/genética , Autorrenovação Celular/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , Células NIH 3T3 , Fosforilação/genética , Regiões Promotoras Genéticas , Elongação da Transcrição Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
20.
Genes Dev ; 35(1-2): 147-156, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33303640

RESUMO

Transcriptionally silent genes must be activated throughout development. This requires nucleosomes be removed from promoters and enhancers to allow transcription factor (TF) binding and recruitment of coactivators and RNA polymerase II (Pol II). Specialized pioneer TFs bind nucleosome-wrapped DNA to perform this chromatin opening by mechanisms that remain incompletely understood. Here, we show that GAGA factor (GAF), a Drosophila pioneer-like factor, functions with both SWI/SNF and ISWI family chromatin remodelers to allow recruitment of Pol II and entry to a promoter-proximal paused state, and also to promote Pol II's transition to productive elongation. We found that GAF interacts with PBAP (SWI/SNF) to open chromatin and allow Pol II to be recruited. Importantly, this activity is not dependent on NURF as previously proposed; however, GAF also synergizes with NURF downstream from this process to ensure efficient Pol II pause release and transition to productive elongation, apparently through its role in precisely positioning the +1 nucleosome. These results demonstrate how a single sequence-specific pioneer TF can synergize with remodelers to activate sets of genes. Furthermore, this behavior of remodelers is consistent with findings in yeast and mice, and likely represents general, conserved mechanisms found throughout eukarya.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Montagem e Desmontagem da Cromatina/genética , Ligação Proteica , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA