Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 98, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800944

RESUMO

BACKGROUND: Chromosomal variations have been revealed in both E. sibiricus and E. nutans, but chromosomal structural variations, such as intra-genome translocations and inversions, are still not recognized due to the cytological limitations of previous studies. Furthermore, the syntenic relationship between both species and wheat chromosomes remains unknown. RESULTS: Fifty-nine single-gene fluorescence in situ hybridization (FISH) probes, including 22 single-gene probes previously mapped on wheat chromosomes and other newly developed probes from the cDNA of Elymus species, were used to characterize the chromosome homoeologous relationship and collinearity of both E. sibiricus and E. nutans with those of wheat. Eight species-specific chromosomal rearrangements (CRs) were exclusively identified in E. sibiricus, including five pericentric inversions in 1H, 2H, 3H, 6H and 2St; one possible pericentric inversion in 5St; one paracentric inversion in 4St; and one reciprocal 4H/6H translocation. Five species-specific CRs were identified in E. nutans, including one possible pericentric inversion in 2Y, three possible pericentric multiple-inversions in 1H, 2H and 4Y, and one reciprocal 4Y/5Y translocation. Polymorphic CRs were detected in three of the six materials in E. sibiricus, which were mainly represented by inter-genomic translocations. More polymorphic CRs were identified in E. nutans, including duplication and insertion, deletion, pericentric inversion, paracentric inversion, and intra- or inter-genomic translocation in different chromosomes. CONCLUSIONS: The study first identified the cross-species homoeology and the syntenic relationship between E. sibiricus, E. nutans and wheat chromosomes. There are distinct different species-specific CRs between E. sibiricus and E. nutans, which may be due to their different polyploidy processes. The frequencies of intra-species polymorphic CRs in E. nutans were higher than that in E. sibiricus. To conclude, the results provide new insights into genome structure and evolution and will facilitate the utilization of germplasm diversity in both E. sibiricus and E. nutans.


Assuntos
Elymus , Elymus/genética , Hibridização in Situ Fluorescente/métodos , Aberrações Cromossômicas , Mapeamento Cromossômico , Translocação Genética
2.
Cytogenet Genome Res ; 161(3-4): 213-222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34233333

RESUMO

The genera of the tribe Triticeae (family Poaceae), constituting many economically important plants with abundant genetic resources, carry genomes such as St, H, P, and Y. The genome symbol of Roegneria C. Koch (Triticeae) is StY. The St and Y genomes are crucial in Triticeae, and tetraploid StY species participate extensively in polyploid speciation. Characterization of St and Y nonhomologous chromosomes in StY-genome species could help understand variation in the chromosome structure and differentiation of StY-containing species. However, the high genetic affinity between St and Y genome and the deficiency of a complete set of StY nonhomologous probes limit the identification of St and Y genomes and variation of chromosome structures among Roegneria species. We aimed to identify St- and Y-enhanced repeat clusters and to study whether homoeologous chromosomes between St and Y genomes could be accurately identified due to high affinity. We employed comparative genome analyses to identify St- and Y-enhanced repeat clusters and generated a FISH-based karyotype of R. grandis (Keng), one of the taxonomically controversial StY species, for the first time. We explored 4 novel repeat clusters (StY_34, StY_107, StY_90, and StY_93), which could specifically identify individual St and Y nonhomologous chromosomes. The clusters StY_107 and StY_90 could identify St and Y addition/substitution chromosomes against common wheat genetic backgrounds. The chromosomes V_St, VII_St, I_Y, V_Y, and VII_Y displayed similar probe distribution patterns in the proximal region, indicating that the high affinity between St and Y genome might result from chromosome rearrangements or transposable element insertion among V_St/Y, VII_St/Y, and I_Y chromosomes during allopolyploidization. Our results can be used to employ FISH further to uncover the precise karyotype based on colinearity of Triticeae species by using the wheat karyotype as reference, to analyze diverse populations of the same species to understand the intraspecific structural changes, and to generate the karyotype of different StY-containing species to understand the interspecific chromosome variation.


Assuntos
Cromossomos de Plantas/genética , Elymus/genética , Genoma de Planta/genética , Hibridização in Situ Fluorescente/métodos , Evolução Molecular , Marcadores Genéticos/genética , Cariótipo , Região Organizadora do Nucléolo/genética , Poliploidia , Sequências Repetitivas de Ácido Nucleico/genética , Tetraploidia , Triticum/genética
3.
BMC Plant Biol ; 19(1): 235, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159732

RESUMO

BACKGROUND: Elymus L. is the largest genus in the tribe Triticeae Dumort., encompassing approximately 150 polyploid perennial species widely distributed in the temperate regions of the world. It is considered to be an important gene pool for improving cereal crops. However, a shortage of molecular marker limits the efficiency and accuracy of genetic breeding for Elymus species. High-throughput transcriptome sequencing data is essential for gene discovery and molecular marker development. RESULTS: We obtained the transcriptome dataset of E. sibiricus, the type species of the genus Elymus, and identified a total of 8871 putative EST-SSRs from 6685 unigenes. Trinucleotides were the dominant repeat motif (4760, 53.66%), followed by dinucleotides (1993, 22.47%) and mononucleotides (1876, 21.15%). The most dominant trinucleotide repeat motif was CCG/CGG (1119, 23.5%). Sequencing of PCR products showed that the sequenced alleles from different Elymus species were homologous to the original SSR locus from which the primer was designed. Different types of tri-repeats as abundant SSR motifs were observed in repeat regions. Two hundred EST-SSR primer pairs were designed and selected to amplify ten DNA samples of Elymus species. Eighty-seven pairs of primer (43.5%) generated clear and reproducible bands with expected size, and showed good transferability across different Elymus species. Finally, thirty primer pairs successfully amplified ninety-five accessions of seventeen Elymus species, and detected significant amounts of polymorphism. In general, hexaploid Elymus species with genomes StStHHYY had a relatively higher level of genetic diversity (H = 0.219, I = 0.330, %P = 63.7), while tetraploid Elymus species with genomes StStYY had low level of genetic diversity (H = 0.182, I = 0.272, %P = 50.4) in the study. The cluster analysis showed that all ninety-five accessions were clustered into three major clusters. The accessions were grouped mainly according to their genomic components and origins. CONCLUSIONS: This study demonstrated that transcriptome sequencing is a fast and cost-effective approach to molecular marker development. These EST-SSR markers developed in this study are valuable tools for genetic diversity, evolutionary, and molecular breeding in E. sibiricus, and other Elymus species.


Assuntos
Elymus/classificação , Elymus/genética , Etiquetas de Sequências Expressas , Variação Genética , Repetições de Microssatélites , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Proteínas de Plantas/análise , RNA de Plantas/análise , Alinhamento de Sequência , Análise de Sequência de RNA
4.
Genome ; 60(6): 510-517, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28177827

RESUMO

Multicolor genomic in situ hybridization was used to investigate the genomic constitution and intergenomic translocations in the Elymus dahuricus complex. The genomic constitution of species of the E. dahuricus complex was confirmed as StYH. H/Y and H/St intergenomic translocations were identified in the present study, with 7H and 1Y chromosomes involved in reciprocal translocations for all the accessions investigated in the complex. We propose that the translocations in the E. dahuricus complex are species-specific, associated with allopolyploidy, and may serve as important structural alterations for allopolyploid stability. Furthermore, they may help to restore fertility and nucleocytoplasmic compatibility in a newly formed polyploid and facilitate the successful establishment of E. dahuricus as a stable species. It was found that more chromosomes were involved in translocations and more types of intergenomic translocations were observed in the high altitude (4150 m) population Y 2228 than in populations from relatively lower altitudes (2600-3800 m). We speculate that more complicated genomic changes were associated with escalating altitudes in the Tibetan Plateau. These genomic changes contribute to promote the genetic variability and enable the newly formed allopolyploids to adapt to more changeable and harsher environments during the evolution of a polyploid species, thus facilitating their rapid and successful establishment in nature.


Assuntos
Elymus/genética , Genoma de Planta/genética , Translocação Genética/genética , Cromossomos de Plantas/genética , Genômica/métodos , Filogenia , Poliploidia , Especificidade da Espécie
5.
PLoS One ; 11(12): e0167795, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936163

RESUMO

Origin and evolution of tetraploid Elymus fibrosus (Schrenk) Tzvelev were characterized using low-copy nuclear gene Rpb2 (the second largest subunit of RNA polymerase II), and chloroplast region trnL-trnF (spacer between the tRNA Leu (UAA) gene and the tRNA-Phe (GAA) gene). Ten accessions of E. fibrosus along with 19 Elymus species with StH genomic constitution and diploid species in the tribe Triticeae were analyzed. Chloroplast trnL-trnF sequence data suggested that Pseudoroegneria (St genome) was the maternal donor of E. fibrosus. Rpb2 data confirmed the presence of StH genomes in E. fibrosus, and suggested that St and H genomes in E. fibrosus each is more likely originated from single gene pool. Single origin of E. fibrosus might be one of the reasons causing genetic diversity in E. fibrosus lower than those in E. caninus and E. trachycaulus, which have similar ecological preferences and breeding systems with E. fibrosus, and each was originated from multiple sources. Convergent evolution of St and H copy Rpb2 sequences in some accessions of E. fibrosus might have occurred during the evolutionary history of this allotetraploid.


Assuntos
Cloroplastos/genética , Elymus/genética , Variação Genética , Evolução Biológica , DNA de Cloroplastos/genética , DNA de Plantas/genética , Diploide , Elymus/fisiologia , Evolução Molecular , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Poliploidia , RNA Polimerase II/genética
6.
Mol Genet Genomics ; 291(1): 217-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26264373

RESUMO

The genus Elymus is a repository for a large number of species that have been difficult to classify by traditional techniques due to their remarkable levels of polymorphism. Following the genome analyses of Yen and Yang (Genus Elymus 5:58-362, 2013), we used sequences of the nr5SDNA to investigate diversity within those 24 species having St and H haplomes (Baum et al. Mol Genet Genomics 290:329-42, 2015) and for which the genome status was known. The present work extends this analysis to include eight species for which there was no information on genomic status. Our results show that these eight have nr5SDNA sequences that can be assigned to unit classes of orthologous sequences found in St and H haplomes, suggesting that the presence of St and H haplomes is characteristic of the genus. We then carried out a set of canonical discriminant analyses based on 247 DNA new sequences from these 8 species plus the 1054 sequences previously identified from 24 Elymus species. Sequences were analyzed to answer the following questions: Do the species integrate or are they different? Are the tetraploids different from the higher-ploid species? Are the species united within sections, or the same within regions? How do the species fare when divided according to sections? The main results of the canonical discriminant analyses are that the species are united within the tetraploids and within the hexaploids, within each region and within each section. In addition, a series of classificatory discriminant analyses showed that the identification tests are different, although not sufficiently useful for the discrimination of all the species. We also demonstrate the power of our approach by showing that the voucher for Elymus mobilis is not Elymus at all, but Leymus.


Assuntos
DNA de Plantas/genética , Elymus/genética , Variação Genética/genética , Genoma de Planta/genética , Filogenia , Poliploidia , Análise de Sequência de DNA
7.
Genet Mol Res ; 14(4): 12228-39, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26505371

RESUMO

Elymus L. is often planted in temperate and subtropical regions as forage. Species in the genus have 5 allopolyploid genomes that are found in the grass tribe Triticeae. To determine the phylogenetic relationships in Elymus species from western China, we estimated phylogenetic trees using sequences from the nuclear ribosomal internal transcribed spacer and non-coding chloroplast DNA sequences from 56 accessions (871 samples) of 9 polyploid Elymus species and 42 accessions from GenBank. Tetraploid and hexaploid Elymus species from western China had independent origins, and Elymus species from the same area or neighboring geographic regions were the most closely related. Based on the phylogenetic tree topology, the St- and Y-genomes were not derived from the same donor and Y-genome likely originated from the H-genome of Hordeum species, or they shared the same origin or underwent introgression. The maternal genome of tetraploid and hexaploid Elymus species originated from species of Hordeum or Pseudoroegneria. Additionally, Elymus species in western China began diverging 17-8.5 million years ago, during a period of increased aridification as a consequence of the Messinian salinity crisis. Elymus species adapted to drought and high salinity may have developed based on the environmental conditions during this period. Elymus evolution in western China may have been affected by the uplift of the Qinghai-Tibetan Plateau (5 million years ago), when Elymus seeds were dispersed by gravity or wind into a newly heterogeneous habitat, resulting in isolation.


Assuntos
Elymus/classificação , Elymus/genética , Filogenia , China , Evolução Molecular , Análise de Sequência de DNA
8.
BMC Plant Biol ; 15: 179, 2015 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-26164196

RESUMO

BACKGROUND: Hybridization and polyploidization can be major mechanisms for plant evolution and speciation. Thus, the process of polyploidization and evolutionary history of polyploids is of widespread interest. The species in Elymus L. sensu lato are allopolyploids that share a common St genome from Pseudoroegneria in different combinations with H, Y, P, and W genomes. But how the St genome evolved in the Elymus s. l. during the hybridization and polyploidization events remains unclear. We used nuclear and chloroplast DNA-based phylogenetic analyses to shed some light on this process. RESULTS: The Maximum likelihood (ML) tree based on nuclear ribosomal internal transcribed spacer region (nrITS) data showed that the Pseudoroegneria, Hordeum and Agropyron species served as the St, H and P genome diploid ancestors, respectively, for the Elymus s. l. polyploids. The ML tree for the chloroplast genes (matK and the intergenic region of trnH-psbA) suggests that the Pseudoroegneria served as the maternal donor of the St genome for Elymus s. l. Furthermore, it suggested that Pseudoroegneria species from Central Asia and Europe were more ancient than those from North America. The molecular evolution in the St genome appeared to be non-random following the polyploidy event with a departure from the equilibrium neutral model due to a genetic bottleneck caused by recent polyploidization. CONCLUSION: Our results suggest the ancient common maternal ancestral genome in Elymus s. l. is the St genome from Pseudoroegneria. The evolutionary differentiation of the St genome in Elymus s. l. after rise of this group may have multiple causes, including hybridization and polyploidization. They also suggest that E. tangutorum should be treated as C. dahurica var. tangutorum, and E. breviaristatus should be transferred into Campeiostachys. We hypothesized that the Elymus s. l. species origined in Central Asia and Europe, then spread to North America. Further study of intraspecific variation may help us evaluate our phylogenetic results in greater detail and with more certainty.


Assuntos
Evolução Biológica , DNA de Plantas/genética , Elymus/genética , Proteínas de Plantas/genética , Núcleo Celular/genética , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , DNA de Cloroplastos/genética , DNA de Cloroplastos/metabolismo , DNA de Plantas/metabolismo , Elymus/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
9.
PLoS One ; 10(5): e0125417, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25946188

RESUMO

To study origin and evolutionary dynamics of tetraploid Elymus trachycaulus that has been cytologically defined as containing StH genomes, thirteen accessions of E. trachycaulus were analyzed using two low-copy nuclear gene Pepc (phosphoenolpyruvate carboxylase) and Rpb2 (the second largest subunit of RNA polymerase II), and one chloroplast region trnL-trnF (spacer between the tRNA Leu (UAA) gene and the tRNA-Phe (GAA) gene). Our chloroplast data indicated that Pseudoroegneria (St genome) was the maternal donor of E. trachycaulus. Rpb2 data indicated that the St genome in E. trachycaulus was originated from either P. strigosa, P. stipifolia, P. spicata or P. geniculate. The Hordeum (H genome)-like sequences of E. trachycaulus are polyphyletic in the Pepc tree, suggesting that the H genome in E. trachycaulus was contributed by multiple sources, whether due to multiple origins or introgression resulting from subsequent hybridization. Failure to recovering St copy of Pepc sequence in most accessions of E. trachycaulus might be caused by genome convergent evolution in allopolyploids. Multiple copies of H-like Pepc sequence from each accession with relative large deletions and insertions might be caused by either instability of Pepc sequence in H- genome or incomplete concerted evolution. Our results highlighted complex evolutionary history of E. trachycaulus.


Assuntos
Cloroplastos/genética , Elymus/genética , Hordeum/genética , Proteínas Serina-Treonina Quinases/genética , RNA Polimerase II/genética , Agropyron/genética , Sequência de Bases , Evolução Biológica , DNA de Cloroplastos/genética , DNA Intergênico/genética , Evolução Molecular , Variação Genética/genética , Genoma de Planta , Análise de Sequência de DNA
10.
Mol Phylogenet Evol ; 85: 141-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711414

RESUMO

Cytogenetic data has indicated the presence of St and Y genome in Elymus longearistatus (Boiss.) Tzvelev. However, a random amplified polymorphic DNA (RAPD) based sequence tagged site (STS) study suggested one accession of Pseudoroegneria spicata (Pursh) Á Löve (St genome) as a potential Y genome donor candidate in tetraploid E. longearistatus. To examine the origin of Y genome in and the phylogeny of tetraploid E. longearistatus, sequences of cpDNA (RPS16 and TrnD/T intergenic spacer) and single copy nuclear genes (EF-G and HTL) from eight accessions of E. longearistatus, six StY genomic Elymus species and 62 accessions of diploid in Triticeae were analyzed. The cpDNA data suggested that P. stipifolia (St) is the most likely maternal donor of these six Iranian accessions of E. longearistatus, although P. strigosa could not be excluded. Two nuclear gene data convincingly showed that tetraploid E. longearistatus contains two distinct genomes, St and Y genome. The phylogenetic analyses from both the EF-G and HTL rejected the previous suggestion that accession PI232134 of Pseudoroegneria spicata (Pursh) Á Löve (St genome) was potential Y genome donor to E. longearistatus. Phylogenetic analyses revealed a separation of the Y genome sequences in Iranian accessions of E. longearistatus from the sequences in the Pakistan accession, indicating that geographic isolation might influence the evolution of the Y genome in E. longearistatus.


Assuntos
Elymus/classificação , Evolução Molecular , Genoma de Planta , Filogenia , Teorema de Bayes , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Elymus/genética , Irã (Geográfico) , Funções Verossimilhança , Modelos Genéticos , Paquistão , Fator G para Elongação de Peptídeos/genética , Poaceae/classificação , Poaceae/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Análise de Sequência de DNA
11.
Mol Genet Genomics ; 290(1): 329-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25248636

RESUMO

The genus Elymus ("Ryegrass") is a repository for a range of species with a variety of haplome contents; hence the pejorative name "dustbin" genus. We have analyzed 1,059 sequences from 128 accessions representing 24 species to investigate the relationships among the StH haplomes-containing species described by Yen and Yang (Genus Elymus Beijing 5:58-362, 2013). Sequences were assigned to "unit classes" of orthologous sequences and subjected to a suite of analyses including BLAST (Basic Local Alignment Search Tool) searches, phylogenetic analysis and population genetic analysis to estimate species diversity. Our results support the genome analyses in Yen and Yang (Genus Elymus Beijing 5:58-362, 2013), i.e., genomic constitution StStHH including variants restricted to Elymus. Population genetic analysis of the 5S nrDNA sequence data revealed that the within-species variance component is roughly ±89 %; thus, we were unable to identify molecular markers capable to separate the 24 species analyzed. Separate phylogenetic analyses of the two unit classes and of all the data exhibit a trend only of the species to cluster on the phylograms. Finally, the analysis provides evidence for the multiple origins of American and Eurasian species.


Assuntos
DNA Ribossômico/genética , Elymus/genética , Variação Genética , Haplótipos/genética , Poliploidia , Sequência de Bases , Teorema de Bayes , Genética Populacional , Modelos Genéticos , Filogenia , Análise de Componente Principal , Especificidade da Espécie
12.
Genome ; 57(2): 97-109, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24702067

RESUMO

Evidence accumulated over the last decade has shown that allopolyploid genomes may undergo complex reticulate evolution. In this study, 13 accessions of tetraploid Elymus pendulinus were analyzed using two low-copy nuclear genes (RPB2 and PepC) and two regions of chloroplast genome (Rps16 and trnD-trnT). Previous studies suggested that Pseudoroegneria (St) and an unknown diploid (Y) were genome donors to E. pendulinus, and that Pseudoroegneria was the maternal donor. Our results revealed an extreme reticulate pattern, with at least four distinct gene lineages coexisting within this species that might be acquired through a possible combination of allotetraploidization and introgression from both within and outside the tribe Hordeeae. Chloroplast DNA data identified two potential maternal genome donors (Pseudoroegneria and an unknown species outside Hordeeae) to E. pendulinus. Nuclear gene data indicated that both Pseudoroegneria and an unknown Y diploid have contributed to the nuclear genome of E. pendulinus, in agreement with cytogenetic data. However, unexpected contributions from Hordeum and unknown aliens from within or outside Hordeeae to E. pendulinus without genome duplication were observed. Elymus pendulinus provides a remarkable instance of the previously unsuspected chimerical nature of some plant genomes and the resulting phylogenetic complexity produced by multiple historical reticulation events.


Assuntos
Núcleo Celular/genética , Cloroplastos/genética , DNA de Cloroplastos/genética , Elymus/genética , Sequência de Bases , Evolução Biológica , Evolução Molecular , Genoma de Cloroplastos , Genoma de Planta , Hordeum/genética , Poliploidia , RNA Polimerase II/genética , Proteínas Ribossômicas/genética , Análise de Sequência de DNA , Serina Endopeptidases/genética
13.
Gene ; 529(1): 57-64, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23911302

RESUMO

To estimate the phylogeny and molecular evolution of a single-copy gene encoding plastid acetyl-CoA carboxylase (Acc1) within the StH genome species, two Acc1 homoeologous sequences were isolated from nearly all the sampled StH genome species and were analyzed with those from 35 diploid taxa representing 19 basic genomes in Triticeae. Sequence diversity patterns and genealogical analysis suggested that (1) the StH genome species from the same areas or neighboring geographic regions are closely related to each other; (2) the Acc1 gene sequences of the StH genome species from North America and Eurasia are evolutionarily distinct; (3) Dasypyrum has contributed to the nuclear genome of Elymus repens and Elymus mutabilis; (4) the StH genome polyploids have higher levels of sequence diversity in the H genome homoeolog than the St genome homoeolog; and (5) the Acc1 sequence may evolve faster in the polyploid species than in the diploids. Our result provides some insight on evolutionary dynamics of duplicate Acc1 gene, the polyploidy speciation and phylogeny of the StH genome species.


Assuntos
Acetil-CoA Carboxilase/genética , Evolução Molecular , Genoma de Planta , Filogenia , Poaceae/genética , Acetil-CoA Carboxilase/metabolismo , Núcleo Celular/genética , Clonagem Molecular , DNA de Plantas/genética , Diploide , Elymus/classificação , Elymus/genética , América do Norte , Conformação de Ácido Nucleico , Plastídeos/genética , Plastídeos/metabolismo , Poaceae/classificação , Polimorfismo Genético , Poliploidia , Análise de Sequência de DNA
14.
Mol Phylogenet Evol ; 69(3): 805-13, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23831560

RESUMO

Increasing evidence has shown the complex and dynamic nature of polyploids. Two single copy nuclear genes were used to explore genome evolutionary dynamics and the origin of tetraploid E. ciliaris: the phosphoglycerate kinase (PGK1) and the second largest subunit of RNA polymerase II (RPB2) together with a chloroplast gene encoding ribosomal protein S16 (RPS16). RPS16 data confirmed that the maternal origin of E. ciliaris is the St genome species. Both RPB2 and PGK1 data supported that E. ciliairs has multiple origins, and originated from the Pseudorogneria (St) and unknown donor (Y) diploids. The St genome in E. ciliaris species has a complex evolutionary history. Both RPB2 and PGK1 data suggested the absence of St genome in accession PI 377532 of E. ciliaris. However, cpDNA RPS16 clearly indicated that its maternal origin is the same as other E. ciliaris accessions, and is St genomic diploid species. Results suggest that there are two lineages of St genome present in E. ciliaris species; one is grouped with Pseudoroegneria diploid species, the other is grouped with Hordeum (H) species (named St?). The Japanese accession PI 377532 might have introgression either from HordeumH genome species or from ElymusStH genome species with replacement of at least some nuclear St-loci by H-loci. The correlation between genome differentiation and geographical distribution is also discussed.


Assuntos
Evolução Biológica , Elymus/classificação , Genoma de Planta , Filogenia , Poliploidia , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , Elymus/genética , Fosfoglicerato Quinase/genética , RNA Polimerase II/genética , Análise de Sequência de DNA
15.
Mol Phylogenet Evol ; 69(3): 919-28, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23816902

RESUMO

To estimate the origin and genomic relationships of the polyploid species within Elymus L. sensu lato, two unlinked single-copy nuclear gene (Acc1 and Pgk1) sequences of eighteen tetraploids (StH and StY genomes) and fourteen hexaploids (StStH, StYP, StYH, and StYW genomes) were analyzed with those of 35 diploid taxa representing 18 basic genomes in Triticeae. Sequence and phylogenetic analysis suggested that: (1) the St, H, W, and P genomes were donated by Pseudoroegneria, Hordeum, Australopyrum, and Agropyron, respectively, while the Y genome is closely related to the Xp genome in Peridictyon sanctum; (2) different hexaploid Elymus s.l. species may derived their StY genome from different StY genome tetraploid species via independent origins; (3) due to incomplete lineage sorting and/or hybridization events, the genealogical conflict between the two gene trees suggest introgression involving some Elymus s.l. species, Pseudoroegneria, Agropyron and Aegilops/Triticum; (4) it is reasonable to recognize the StH genome species as Elymus sensu stricto, the StY genome species as Roegneria, the StYW genome species as Anthosachne, the StYH genome species as Campeiostachys, and the StYP genome species as Kengyilia. The occurrence of multiple origin and introgression could account for the rich diversity and ecological adaptation of Elymus s.l. species.


Assuntos
Elymus/classificação , Evolução Molecular , Genoma de Planta , Filogenia , Teorema de Bayes , Núcleo Celular/genética , DNA de Plantas/genética , Elymus/genética , Funções Verossimilhança , Poliploidia , Alinhamento de Sequência , Análise de Sequência de DNA
16.
PLoS One ; 7(12): e50369, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251367

RESUMO

Numerous hybrid and polypoid species are found within the Triticeae. It has been suggested that the H subgenome of allopolyploid Elymus (wheatgrass) species originated from diploid Hordeum (barley) species, but the role of hybridization between polyploid Elymus and Hordeum has not been studied. It is not clear whether gene flow across polyploid Hordeum and Elymus species has occurred following polyploid speciation. Answering these questions will provide new insights into the formation of these polyploid species, and the potential role of gene flow among polyploid species during polyploid evolution. In order to address these questions, disrupted meiotic cDNA1 (DMC1) data from the allopolyploid StH Elymus are analyzed together with diploid and polyploid Hordeum species. Phylogenetic analysis revealed that the H copies of DMC1 sequence in some Elymus are very close to the H copies of DMC1 sequence in some polyploid Hordeum species, indicating either that the H genome in theses Elymus and polyploid Hordeum species originated from same diploid donor or that gene flow has occurred among them. Our analysis also suggested that the H genomes in Elymus species originated from limited gene pool, while H genomes in Hordeum polyploids have originated from broad gene pools. Nucleotide diversity (π) of the DMC1 sequences on H genome from polyploid species (π = 0.02083 in Elymus, π = 0.01680 in polyploid Hordeum) is higher than that in diploid Hordeum (π = 0.01488). The estimates of Tajima's D were significantly departure from the equilibrium neutral model at this locus in diploid Hordeum species (P<0.05), suggesting an excess of rare variants in diploid species which may not contribute to the origination of polyploids. Nucleotide diversity (π) of the DMC1 sequences in Elymus polyploid species (π = 0.02083) is higher than that in polyploid Hordeum (π = 0.01680), suggesting that the degree of relationships between two parents of a polyploid might be a factor affecting nucleotide diversity in allopolyploids.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Elymus/genética , Genoma de Planta , Hordeum/genética , Proteínas de Plantas/genética , Evolução Biológica , DNA de Plantas/genética , Elymus/classificação , Hordeum/classificação , Nucleotídeos/genética , Análise de Sequência de DNA
17.
Mol Phylogenet Evol ; 64(3): 441-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22617317

RESUMO

We examined evolutionary mechanisms in the tetraploid Elymus caninus by comparing the phylogenetic relationships of 21 accessions suggested by sequence data from two single copy nuclear genes, the largest subunit of RNA polymerase II (RPB2) and phosphoenolpyruvate carboxylase (pepC), and one non-coding chloroplast region, TrnD/T. Elymus caninus is known combining two different genomes, an St genome and an H genome. Data from two single copy nuclear genes showed that there are two versions of the St genome in the species, St1 and St2. Most accessions combined one of these versions with an H genome version but two accessions had both versions of the St sequence for RPB2. This suggests that the RPB2gene may have been duplicated without chromosome doubling, possibly induced by transposable element. Our data also indicate that the H genome sequences in E. caninus have multiple origins, and a close phylogenetic relationship between Hordeum bogdanii and H sequences in some accessions of E. caninus. Thus, it is more likely that H. bogdanii is one of the major donors of the H copy in E. caninus. The maternal origin of E. caninus is the St genome species. There was no correlation between the geographic origin of the accessions and their sequence divergence.


Assuntos
Elymus/genética , Genoma de Planta , Filogenia , Poliploidia , DNA de Plantas/genética , Elymus/classificação , Duplicação Gênica , Variação Genética , Hordeum/genética , Fosfoenolpiruvato Carboxilase/genética , RNA Polimerase II/genética , Análise de Sequência de DNA
18.
PLoS One ; 6(10): e26853, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22046383

RESUMO

BACKGROUND: Previous cytological and single copy nuclear genes data suggested the St and Y genome in the StY-genomic Elymus species originated from different donors: the St from a diploid species in Pseudoroegneria and the Y from an unknown diploid species, which are now extinct or undiscovered. However, ITS data suggested that the Y and St genome shared the same progenitor although rather few St genome species were studied. In a recent analysis of many samples of St genome species Pseudoroegneria spicata (Pursh) À. Löve suggested that one accession of P. spicata species was the most likely donor of the Y genome. The present study tested whether intraspecific variation during sampling could affect the outcome of analyses to determining the origin of Y genome in allotetraploid StY species. We also explored the evolutionary dynamics of these species. METHODOLOGY/PRINCIPAL FINDINGS: Two single copy nuclear genes, the second largest subunit of RNA polymerase II (RPB2) and the translation elongation factor G (EF-G) sequences from 58 accessions of Pseudoroegneria and Elymus species, together with those from Hordeum (H), Agropyron (P), Australopyrum (W), Lophopyrum (E(e)), Thinopyrum (E(a)), Thinopyrum (E(b)), and Dasypyrum (V) were analyzed using maximum parsimony, maximum likelihood and Bayesian methods. Sequence comparisons among all these genomes revealed that the St and Y genomes are relatively dissimilar. Extensive sequence variations have been detected not only between the sequences from St and Y genome, but also among the sequences from diploid St genome species. Phylogenetic analyses separated the Y sequences from the St sequences. CONCLUSIONS/SIGNIFICANCE: Our results confirmed that St and Y genome in Elymus species have originated from different donors, and demonstrated that intraspecific variation does not affect the identification of genome origin in polyploids. Moreover, sequence data showed evidence to support the suggestion of the genome convergent evolution in allopolyploid StY genome species.


Assuntos
Elymus/genética , Genoma de Planta/genética , Genes de Plantas , Fator G para Elongação de Peptídeos/genética , RNA Polimerase II/genética , Especificidade da Espécie
19.
Genome ; 54(10): 819-28, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21942400

RESUMO

Elymus L. is the largest and most complex genus in the Triticeae tribe of grasses with approximately 150 polyploid perennial species occurring worldwide. We report here the first genetic linkage map for Elymus. Backcross mapping populations were created by crossing caespitose Elymus wawawaiensis (EW) (Snake River wheatgrass) and rhizomatous Elymus lanceolatus (EL) (thickspike wheatgrass) to produce F(1) interspecific hybrids that were then backcrossed to the same EL male to generate progeny with segregating phenotypes. EW and EL are both allotetraploid species (n = 14) containing the St (Pseudoroegneria) and H (Hordeum) genomes. A total of 387 backcross progeny from four populations were genotyped using 399 AFLP and 116 EST-based SSR and STS markers. The resulting consensus map was 2574 cM in length apportioned among the expected number of 14 linkage groups. EST-based SSR and STS markers with homology to rice genome sequences were used to identify Elymus linkage groups homoeologous to chromosomes 1-7 of wheat. The frequency of St-derived genome markers on each linkage group was used to assign genome designations to all linkage groups, resulting in the identification of the seven St and seven H linkage groups of Elymus. This map also confirms the alloploidy and disomic chromosome pairing and segregation of Elymus and will be useful in identifying QTLs controlling perennial grass traits in this genus.


Assuntos
Elymus/genética , Ligação Genética , Genoma de Planta , Mapeamento Cromossômico , Cruzamentos Genéticos , Bases de Dados Genéticas , Elymus/classificação , Etiquetas de Sequências Expressas , Marcadores Genéticos , Genótipo , Filogenia
20.
Genome ; 54(8): 655-62, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21848405

RESUMO

Previous studies have suggested that the H haplome in Elymus could originate from different diploid Hordeum species, however, which diploid species best represent the parental species remains unanswered. The focus of this study seeks to pinpoint the origin of the H genome in Elymus. Allopolyploid Elymus species that contain the StH genome were analyzed together with diploid Hordeum species and a broad sample of diploid genera in the tribe Triticeae using DMC1 sequences. Both parsimony and maximum likelihood analyses well separated the American Hordeum species, except Hordeum brachyantherum subsp. californicum, from the H genome of polyploid Elymus species. The Elymus H-genomic sequences were formed into different groups. Our data suggested that the American Horedeum species, except H. brachyantherum subsp. californicum, are not the H-genomic donor to the Elymus species. Hordeum brevisubulatum subsp. violaceum was the progenitor species to Elymus virescens, Elymus confusus, Elymus lanceolatus, Elymus wawawaiensis, and Elymus caninus. Furthermore, North American H. brachyantherum subsp. californicum was a progenitor of the H genome to Elymus hystrix and Elymus cordilleranus. The H genomes in Elymus canadensis, Elymus sibiricus, and Elymus multisetus were highly differentiated from the H genome in Hordeum and other Elymus species. The H genome in both North American and Eurasian Elymus species was contributed by different Hordeum species.


Assuntos
DNA de Plantas/genética , Elymus/genética , Genoma de Planta , Genômica , Hordeum/genética , Proteínas Nucleares/genética , Proteínas de Plantas/genética , China , Bases de Dados Genéticas , Elymus/classificação , Europa (Continente) , Dosagem de Genes , Hordeum/classificação , América do Norte , Proteínas Nucleares/classificação , Filogenia , Filogeografia , Proteínas de Plantas/classificação , Ploidias , Análise de Sequência de DNA , América do Sul , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA