RESUMO
Microsporidia are a group of obligate intracellular parasites which lack mitochondria and have highly reduced genomes. Therefore, they are unable to produce ATP via the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. Instead, they have evolved strategies to obtain and manipulate host metabolism to acquire nutrients. However, little is known about how microsporidia modulate host energy metabolisms. Here, we present the first targeted metabolomics study to investigate changes in host energy metabolism as a result of infection by a microsporidian. Metabolites of silkworm embryo cell (BmE) were measured 48 h post infection by Nosema bombycis. Thirty metabolites were detected, nine of which were upregulated and mainly involved in glycolysis (glucose 6-phosphate, fructose 1,6-bisphosphate) and the TCA cycle (succinate, α-ketoglutarate, cis-aconitate, isocitrate, citrate, fumarate). Pathway enrichment analysis suggested that the upregulated metabolites could promote the synthesization of nucleotides, fatty acids, and amino acids by the host. ATP concentration in host cells, however, was not significantly changed by the infection. This ATP homeostasis was also found in Encephalitozoon hellem infected mouse macrophage RAW264.7, human monocytic leukemia THP-1, human embryonic kidney 293, and human foreskin fibroblast cells. These findings suggest that microsporidia have evolved strategies to maintain levels of ATP in the host while stimulating metabolic pathways to provide additional nutrients for the parasite.
Assuntos
Trifosfato de Adenosina/metabolismo , Bombyx/metabolismo , Metabolismo Energético , Homeostase , Animais , Bombyx/embriologia , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Regulação para CimaRESUMO
Controllably activating the bio-reactivity of metal complexes in living systems is challenging but highly desirable because it can minimize off-target bindings and improve spatiotemporal specificity. Herein, we report a new bioorthogonal activation approach by employing Pd(II)-triggered transmetallation reactions to conditionally activate the bio-reactivity of NHC-Au(I)-phenylacetylide complexes (1 a) inâ vitro and inâ vivo. A combination of 1 Hâ NMR, LC-MS, DFT calculation and fluorescence screening assays reveals that 1 a displays a reasonable stability against biological thiols, but its phenylacetylide ligand can be efficiently transferred to Pd(II), leading to inâ situ formation of labile NHC-Au(I) species that is catalytically active inside living cells and zebrafish, and can meanwhile effectively suppress the activity of thioredoxin reductase, potently inhibit the proliferation of cancer cells and efficiently suppress angiogenesis in zebrafish models.
Assuntos
Complexos de Coordenação/química , Ouro/química , Alcinos/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Teoria da Densidade Funcional , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Humanos , Metano/análogos & derivados , Metano/química , Imagem Óptica , Paládio/química , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismoRESUMO
Studies conducted on Zebrafish embryos in our laboratory have allowed for the identification of precise moments of organogenesis in which a lot of genes are switched on and off, a sign that the genome is undergoing substantial changes in gene expression. Stem cell growth and differentiation stage-factors present in different moments of organogenesis have proven to have different specific functions in gene regulation. The substances present in the first stages of cell differentiation in Zebrafish embryos have demonstrated an ability to counteract the senescence of stem cells, reducing the expression of the beta-galactosidase marker, enhancing the genes Oct-4, Sox-2, c-Myc, TERT, and the transcription of Bmi-1, which act as key telomerase-independent repressors of cell aging. The molecules present in the intermediate to late stages of cell differentiation have proven to be able to reprogram pathological human cells, such as cancer cells and those of the basal layer of the epidermis in psoriasis, which present a higher multiplication rate than normal cells. The factors present in all the stages of cell differentiation are able to counteract neurodegeneration, and to regenerate tissues: It has been possible to regenerate hair follicles in many patients with androgenetic alopecia through transdermal administration of stem cell differentiation stage factors (SCDSFs) by means of cryopass-laser.
Assuntos
Reprogramação Celular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Organogênese/genética , Células-Tronco/metabolismo , Proteínas de Peixe-Zebra/fisiologia , Tecido Adiposo/citologia , Administração Cutânea , Alopecia/tratamento farmacológico , Alopecia/patologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Pulmonar de Lewis/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Técnicas de Reprogramação Celular , Embrião não Mamífero/química , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/isolamento & purificação , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Camundongos Endogâmicos C57BL , Ensaios Clínicos Controlados Aleatórios como Assunto , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Resultado do Tratamento , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/isolamento & purificação , Proteínas de Peixe-Zebra/farmacologiaRESUMO
Cadmium (Cd) is a toxic element widely distributed in the aquatic environment and producing a wide variety of harmful effects. In this study, the acute toxicity (96 h LC50) of Cd to rainbow trout Oncorhynchus mykiss embryos and larvae was determined. The obtained results showed that hatched larvae were the most sensitive to Cd exposure. After 4 days of exposure, embryos were found to have accumulated greater concentrations of Cd than larvae. Exposure to Cd at sublethal concentrations produced deleterious, exposure duration-related effects on biological parameters (mortality, heart rate and gill ventilation frequency) of larvae. Cd induced a significant elevation of all the studied geno- and cytotoxicity endpoints in larval erythroblasts.
Assuntos
Cádmio/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Oncorhynchus mykiss/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Cádmio/análise , Embrião não Mamífero/química , Brânquias/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Larva/química , Dose Letal Mediana , Oncorhynchus mykiss/crescimento & desenvolvimento , Poluentes Químicos da Água/análiseRESUMO
Stem cells undergo senescence both in vivo, contributing to the progressive decline in self-healing mechanisms, and in vitro during prolonged expansion. Here, we show that an early developmental zebrafish embryo extract (ZF1) could act as a modulator of senescence in human mesenchymal stem cells (hMSCs) isolated from both adult tissues, including adipose tissue (hASCs), bone marrow (hBM-MSCs), dental pulp (hDP-MSCs), and a perinatal tissue such as the Wharton's Jelly (hWJ-MSCs). In all the investigated hMSCs, ZF1 decreased senescence-associated ß-galactosidase (SA ß-gal) activity and enhanced the transcription of TERT, encoding the catalytic telomerase core. In addition, it was associated, only in hASCs, with a transcriptional induction of BMI1, a pleiotropic repressor of senescence. In hBM-MSCs, hDP-MSCs, and hWJ-MSCs, TERT over-expression was concomitant with a down-regulation of two repressors of TERT, TP53 (p53), and CDKN1A (p21). Furthermore, ZF1 increased the natural ability of hASCs to perform adipogenesis. These results indicate the chance of using ZF1 to modulate stem cell senescence in a source-related manner, to be potentially used as a tool to affect stem cell senescence in vitro. In addition, its anti-senescence action could also set the basis for future in vivo approaches promoting tissue rejuvenation bypassing stem cell transplantation.
Assuntos
Senescência Celular , Embrião não Mamífero/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Extratos de Tecidos/farmacologia , Animais , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Telomerase/genética , Telomerase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-ZebraRESUMO
Some yet unidentified factors released by both oocyte and embryonic microenvironments demonstrated to be non-permissive for tumor development and display the remarkable ability to foster cell/tissue reprogramming, thus ultimately reversing the malignant phenotype. In the present study we observed how molecular factors extracted from Zebrafish embryos during specific developmental phases (20 somites) significantly antagonize proliferation of breast cancer cells, while reversing a number of prominent aspects of malignancy. Embryo extracts reduce cell proliferation, enhance apoptosis, and dramatically inhibit both invasiveness and migrating capabilities of cancer cells. Counteracting the invasive phenotype is a relevant issue in controlling tumor spreading and metastasis. Moreover, such effect is not limited to cancerous cells as embryo extracts were also effective in inhibiting migration and invasiveness displayed by normal breast cells undergoing epithelial-mesenchymal transition upon TGF-ß1 stimulation. The reversion program involves the modulation of E-cadherin/ß-catenin pathway, cytoskeleton remodeling with dramatic reduction in vinculin, as well as downregulation of TCTP and the concomitant increase in p53 levels. Our findings highlight that-contrary to the prevailing current "dogma", which posits that neoplastic cells are irreversibly "committed"-the malignant phenotype can ultimately be "reversed", at least partially, in response to environmental morphogenetic influences.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Embrião não Mamífero/química , Extratos de Tecidos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação para Baixo , Humanos , Fenótipo , Proteína Tumoral 1 Controlada por Tradução , Peixe-Zebra , beta Catenina/metabolismoRESUMO
Human adult stem cells hold promise for regenerative medicine. They are usually expanded for multiple passages in vitro to increase cell yield prior to transplantation. Unfortunately, prolonged culture leads to cell senescence, a major drawback from successful outcomes in cell therapy approaches. Here, we show that an extract from early Zebrafish embryo (ZF1) counteracted senescence progression in human adipose-derived stem cells (hASCs) along multiple culture passages (from the 5th to the 20th). Exposure to ZF1 strongly reduced the expression of senescence marker beta-galactosidase. Both stemness (NANOG, OCT4, and MYC) and anti-senescence (BMI1, and telomerase reverse transcriptase - TERT) related genes were overexpressed at specific experimental points, without recruitment of the cyclin-dependent kinase Inhibitor 2A (CDKN2A, ali-as p16). Increased telomerase activity was associatt-ed with TERT overexpression. Both osteogenic and adipogenic abilities were enhanced. In conclusion, hASCs exposure to ZF1 is a feasible tool to counteract and reverse human stem cell senescence in long-term culturing conditions.
Assuntos
Extratos Celulares/química , Senescência Celular , Embrião não Mamífero/química , Células-Tronco/citologia , Peixe-Zebra/embriologia , Adipócitos/citologia , Adipogenia , Adulto , Animais , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Humanos , Osteogênese , Transplante de Células-Tronco , Telomerase/genética , beta-Galactosidase/metabolismoRESUMO
De novo sequencing offers an alternative to database search methods for peptide identification from mass spectra. Since it does not rely on a predetermined database of expected or potential sequences in the sample, de novo sequencing is particularly appropriate for samples lacking a well-defined or comprehensive reference database. However, the low accuracy of many de novo sequence predictions has prevented the widespread use of the variety of sequencing tools currently available. Here, we present a new open-source tool, Postnovo, that postprocesses de novo sequence predictions to find high-accuracy results. Postnovo uses a predictive model to rescore and rerank candidate sequences in a manner akin to database search postprocessing tools such as Percolator. Postnovo leverages the output from multiple de novo sequencing tools in its own analyses, producing many times the length of amino acid sequence information (including both full- and partial-length peptide sequences) at an equivalent false discovery rate (FDR) compared to any individual tool. We present a methodology to reliably screen the sequence predictions to a desired FDR given the Postnovo sequence score. We validate Postnovo with multiple data sets and demonstrate its ability to identify proteins that are missed by database search even in samples with paired reference databases.
Assuntos
Algoritmos , Peptídeos/isolamento & purificação , Proteínas/química , Análise de Sequência de Proteína/estatística & dados numéricos , Software , Animais , Bacillus subtilis/química , Abelhas/química , Desulfovibrio vulgaris/química , Drosophila melanogaster/química , Embrião não Mamífero/química , Escherichia coli K12/química , Humanos , Solanum lycopersicum/química , Methanosarcina/química , Camundongos , Peptídeos/química , Peptídeos/classificação , Proteólise , Rodopseudomonas/química , Synechococcus/químicaRESUMO
Intracellular Ca2+ signaling regulates cellular activities during embryogenesis and in adult organisms. We generated stable Tg[ßactin2:GCaMP6s]stl351 and Tg[ubi:GCaMP6s]stl352 transgenic lines that combine the ubiquitously-expressed Ca2+ indicator GCaMP6s with the transparent characteristics of zebrafish embryos to achieve superior in vivo Ca2+ imaging. Using the Tg[ßactin2:GCaMP6s]stl351 line featuring strong GCaMP6s expression from cleavage through gastrula stages, we detected higher frequency of Ca2+ transients in the superficial blastomeres during the blastula stages preceding the midblastula transition. Additionally, GCaMP6s also revealed that dorsal-biased Ca2+ signaling that follows the midblastula transition persisted longer during gastrulation, compared with earlier studies. We observed that dorsal-biased Ca2+ signaling is diminished in ventralized ichabod/ß-catenin2 mutant embryos and ectopically induced in embryos dorsalized by excess ß-catenin. During gastrulation, we directly visualized Ca2+ signaling in the dorsal forerunner cells, which form in a Nodal signaling dependent manner and later give rise to the laterality organ. We found that excess Nodal increases the number and the duration of Ca2+ transients specifically in the dorsal forerunner cells. The GCaMP6s transgenic lines described here enable unprecedented visualization of dynamic Ca2+ events from embryogenesis through adulthood, augmenting the zebrafish toolbox.
Assuntos
Blastômeros/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/análise , Proteínas Recombinantes de Fusão/análise , Peixe-Zebra/embriologia , Actinas/genética , Animais , Animais Geneticamente Modificados , Blastômeros/química , Blastômeros/ultraestrutura , Blástula/química , Blástula/ultraestrutura , Padronização Corporal , Calmodulina/genética , Embrião não Mamífero/química , Embrião não Mamífero/metabolismo , Embrião não Mamífero/ultraestrutura , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Fragmentos de Peptídeos/genética , Peptídeos/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ubiquitina/genéticaRESUMO
A fundamental question in cell biology is how cell and organelle sizes are regulated. It has long been recognized that the size of the nucleus generally scales with the size of the cell, notably during embryogenesis when dramatic reductions in both cell and nuclear sizes occur. Mechanisms of nuclear size regulation are largely unknown and may be relevant to cancer where altered nuclear size is a key diagnostic and prognostic parameter. In vivo approaches to identifying nuclear size regulators are complicated by the essential and complex nature of nuclear function. The in vitro approach described here to study nuclear size control takes advantage of the normal reductions in nuclear size that occur during Xenopus laevis development. First, nuclei are assembled in X. laevis egg extract. Then, these nuclei are isolated and resuspended in cytoplasm from late stage embryos. After a 30 - 90 min incubation period, nuclear surface area decreases by 20 - 60%, providing a useful assay to identify cytoplasmic components present in late stage embryos that contribute to developmental nuclear size scaling. A major advantage of this approach is the relative facility with which the egg and embryo extracts can be biochemically manipulated, allowing for the identification of novel proteins and activities that regulate nuclear size. As with any in vitro approach, validation of results in an in vivo system is important, and microinjection of X. laevis embryos is particularly appropriate for these studies.
Assuntos
Forma do Núcleo Celular/fisiologia , Núcleo Celular/fisiologia , Sistema Livre de Células , Animais , Citoplasma/fisiologia , Embrião não Mamífero/química , Embrião não Mamífero/citologia , Feminino , Masculino , Extratos de Tecidos , Xenopus laevis/embriologiaRESUMO
This study investigated the accumulation Co, Cu, Fe, Mn, Ni, Se, and Zn in Atlantic horseshoe crab (Limulus polyphemus) early life stages (egg, embryo and larvae) and compared the concentrations to the concentration of each element in sediment, pore water and overlying water for 5 sites across Long Island, NY. For the majority of the sites, all essential trace elements accumulated in the embryos and larvae. However, many of the embryos and larvae at specific sites presented different concentration patterns which had no apparent relationship with the local habitat sediment and water values. Generally, Cu, Fe, and Se sequentially increased from egg stage through larval stages for the majority of sites, while Co, Mn, and Ni only did for a few sites. Zinc also showed an increase across sites from embryo to larval stage, however was the only one to show a decrease in concentration from egg to embryo stage at all sites. Interestingly, Mn at Manhasset Bay presented embryo and larval stages to be 50 fold greater than all other sites while the egg stage showed similar values to other sites; this high degree of uptake could be due to a high concentration in the overlying water. All essential trace elements can be accumulated from the environment but greater concentrations may be influenced by abiotic factors and the predominant uptake route (aqueous versus diet) at each life stage. Future laboratory experiments are required to investigate factors that influence essential trace element accumulation and loss in horseshoe crab early life stages.
Assuntos
Exposição Ambiental/análise , Caranguejos Ferradura/efeitos dos fármacos , Metais/análise , Poluentes Químicos da Água/análise , Animais , Ecossistema , Ecotoxicologia/métodos , Embrião não Mamífero/química , Embrião não Mamífero/efeitos dos fármacos , Feminino , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Caranguejos Ferradura/embriologia , Caranguejos Ferradura/crescimento & desenvolvimento , Larva , New YorkRESUMO
Transition metals such as zinc, copper, and iron play key roles in cellular proliferation, cell differentiation, growth, and development. Over the past decade, advances in synchrotron X-ray fluorescence instrumentation presented new opportunities for the three-dimensional mapping of trace metal distributions within intact specimens. Taking advantage of microXRF tomography, we visualized the 3D distribution of zinc and iron in a zebrafish embryo at the onset of the hatching period. The reconstructed volumetric data revealed distinct differences in the elemental distributions, with zinc predominantly localized to the yolk and yolk extension, and iron to various regions of the brain as well as the myotome extending along the dorsal side of the embryo. The data set complements an earlier tomographic study of an embryo at the pharyngula stage (24 hpf), thus offering new insights into the trace metal distribution at key stages of embryonic development.
Assuntos
Embrião não Mamífero/química , Ferro/análise , Peixe-Zebra/embriologia , Zinco/análise , Animais , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Fluorescência , Ferro/metabolismo , Tomografia por Raios X , Peixe-Zebra/metabolismo , Zinco/metabolismoRESUMO
Legacy pollutants, including polycyclic aromatic hydrocarbons (PAHs) and metals, can occur in high concentrations in some Antarctic marine environments, particularly near scientific research stations. Oxidative stress is an important unifying feature underlying the toxicity of many chemical contaminants to aquatic organisms. However, the potential impacts of pollutants on the oxidative physiology of Antarctic marine invertebrates are not well documented. Sterechinus neumayeri is a common animal in the shallow subtidal benthos surrounding Antarctica, and is considered an important keystone species. The aim of the present study was to collect baseline oxidative biomarker data for S. neumayeri and to investigate the impacts of field exposure to chemical contaminants on gamete health and parent-to-offspring transfer of oxidative stress resilience. We analysed antioxidant enzyme activities, levels of the molecular antioxidant glutathione, protein carbonylation, lipid peroxidation and levels of 8-OHdG as oxidative stress biomarkers in S. neumayeri from a contaminant-impacted site near McMurdo Station and a relatively pristine site at Cape Evans. Biomarkers were analysed in adult gamete tissue and in early stage embryos exposed to AN8 fuel oil. PAHs were quantified as a proxy for contamination and were found to be elevated in urchins from the contaminated site (up to 231.67ng/g DW). These contaminant-experienced adult urchins produced eggs with greater levels of a broad suite of antioxidants, particularly superoxide dismutase, catalase and glyoxalase-I, than those from Cape Evans. In addition, embryos that were derived from contaminant-experienced mothers were endowed with higher baseline levels of antioxidants, which conferred an enhanced capacity to minimize oxidative damage to lipids, proteins and DNA when exposed to AN8 fuel. This pattern was strongest following exposure to 900ppm AN8, where lipid and protein damage was 5-7 times greater than baseline levels in contaminant-naïve female embryos in comparison to 3-4 times greater in contaminant-experienced female embryos. Despite this inherited resilience against oxidative stress, abnormal development was as high in these embryos when exposed to AN8 as in those derived from contaminant-naïve mothers (up to 80% abnormality), implying the conferred advantage may not translate to a fitness or survival gain, at least up to the blastulae stage. Our findings document the first evidence for parent-to-offspring transfer of oxidative stress resilience in an Antarctic marine invertebrate.
Assuntos
Ouriços-do-Mar/efeitos dos fármacos , Ouriços-do-Mar/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Regiões Antárticas , Antioxidantes , Catalase/metabolismo , Embrião não Mamífero/química , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/enzimologia , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Ouriços-do-Mar/química , Ouriços-do-Mar/enzimologia , Superóxido Dismutase/metabolismoRESUMO
Pacific herring embryos (Clupea pallasi) spawned three months following the Cosco Busan bunker oil spill in San Francisco Bay showed high rates of late embryonic mortality in the intertidal zone at oiled sites. Dead embryos developed to the hatching stage (e.g. fully pigmented eyes) before suffering extensive tissue deterioration. In contrast, embryos incubated subtidally at oiled sites showed evidence of sublethal oil exposure (petroleum-induced cardiac toxicity) with very low rates of mortality. These field findings suggested an enhancement of oil toxicity through an interaction between oil and another environmental stressor in the intertidal zone, such as higher levels of sunlight-derived ultraviolet (UV) radiation. We tested this hypothesis by exposing herring embryos to both trace levels of weathered Cosco Busan bunker oil and sunlight, with and without protection from UV radiation. Cosco Busan oil and UV co-exposure were both necessary and sufficient to induce an acutely lethal necrotic syndrome in hatching stage embryos that closely mimicked the condition of dead embryos sampled from oiled sites. Tissue levels of known phototoxic polycyclic aromatic compounds were too low to explain the observed degree of phototoxicity, indicating the presence of other unidentified or unmeasured phototoxic compounds derived from bunker oil. These findings provide a parsimonious explanation for the unexpectedly high losses of intertidal herring spawn following the Cosco Busan spill. The chemical composition and associated toxicity of bunker oils should be more thoroughly evaluated to better understand and anticipate the ecological impacts of vessel-derived spills associated with an expanding global transportation network.
Assuntos
Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/efeitos da radiação , Peixes/embriologia , Petróleo/toxicidade , Luz Solar/efeitos adversos , Poluentes Químicos da Água/toxicidade , Animais , Relação Dose-Resposta a Droga , Embrião não Mamífero/química , Embrião não Mamífero/patologia , Necrose/induzido quimicamente , Poluição por Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Fatores de TempoRESUMO
Previous studies in mammals have shown that organoselenium depletes the cellular antioxidant, glutathione (GSH) due to activation of organoselenides to organoselenoxides by flavin-containing monooxygenases (FMO). Since FMO tends to be induced in euryhaline fish exposed to hypersaline conditions, the developmental toxicity of salinity and organoselenium was examined in the euryhaline fish Japanese medaka (Oryzias latipes). FMO activity, GSH, and selenium concentrations in Japanese medaka embryos were measured following a 24-h exposure to 0.05 mM L-selenomethionine (SeMet) under different saline conditions: freshwater (<0.5 dS/m), 4.2, 6.7, and 16.8 dS/m. Concentrations of GSH and the hatch-out ratio of the SeMet-treated embryos decreased in a salinity dependent manner. While SeMet treatment led to accumulation within embryos, selenium concentrations were unaltered by salinity treatment. Compared to freshwater-exposed embryos, microsomes from embryos at 6.7 and 16.8 dS/m had enhanced oxidation of SeMet to the selenoxide (10- and 14.3-fold, respectively), which correlated with GSH depletion. The results show that increased SeMet oxidation by hypersaline conditions with subsequent GSH depletion may play an important role in the developmental toxicity of selenomethionine.
Assuntos
Oryzias/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Salinidade , Selenometionina/metabolismo , Selenometionina/toxicidade , Animais , Biotransformação , Embrião não Mamífero/química , Embrião não Mamífero/efeitos dos fármacos , Feminino , Glutationa/análise , Glutationa/metabolismo , Oryzias/metabolismo , Selenometionina/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidadeRESUMO
Adherens junctions (AJs) in epithelial cells are constantly turning over to modulate adhesion properties under various physiological and developmental contexts, but how such AJ dynamics are regulated during the apical-basal polarization of primary epithelia remains unclear. Here, we used new and genetically validated GFP markers of Drosophila E-cadherin (DE-cadherin, hereafter referred to as DE-Cad) and ß-catenin (Armadillo, Arm) to quantitatively assay the in vivo dynamics of biosynthetic turnover and membrane redistribution by fluorescence recovery after photobleaching (FRAP) assays. Our data showed that membrane DE-Cad and Arm in AJs of polarizing epithelial cells had much faster biosynthetic turnover than in polarized cells. Fast biosynthetic turnover of membrane DE-Cad is independent of actin- and dynamin-based trafficking, but is microtubule-dependent. Furthermore, Arm in AJs of polarizing cells showed a faster and diffusion-based membrane redistribution that was both quantitatively and qualitatively different from the slower and exchange-based DE-Cad membrane distribution, indicating that the association of Arm with DE-Cad is more dynamic in polarizing cells, and only becomes stable in polarized epithelial cells. Consistently, biochemical assays showed that the binding of Arm to DE-Cad is weaker in polarizing cells than in polarized cells. Our data revealed that the molecular interaction between DE-Cad and Arm is modulated during apical-basal polarization, suggesting a new mechanism that might be crucial for establishing apical-basal polarity through regulating the AJ dynamics.
Assuntos
Junções Aderentes/fisiologia , Proteínas do Domínio Armadillo/química , Caderinas/química , Polaridade Celular , Proteínas de Drosophila/química , Células Epiteliais/fisiologia , Fatores de Transcrição/química , Junções Aderentes/química , Animais , Drosophila/química , Drosophila/genética , Embrião não Mamífero/química , Embrião não Mamífero/fisiologia , Células Epiteliais/química , Células Epiteliais/citologia , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/química , Imunoprecipitação , Membranas/química , Membranas/fisiologia , Complexos Multiproteicos/química , Ligação Proteica , Estabilidade Proteica , Transporte ProteicoRESUMO
In zebrafish, ovulated oocytes are loaded with maternal estrogen receptor 2a (esr2a) mRNA which is spread as granular and filamentous structures throughout the central ooplasm and is promptly relocated inside the blastodisc area at the 1-cell stage (0.2h post-fertilization, hpf), as shown by in situ hybridization. This transcript is available for translation until its sharp decline from 4 to 8 hpf, being replaced by low levels of zygotic esr2a mRNA mainly localized in the head region and around the yolk sac from 24 hpf until hatching at 48 hpf. To test the functional role of the maternal esr2a mRNA, 1- or 2-cell embryos were injected with 10.3 ng each of morpholino (MO) to knockdown translation (MO2-esr2a) of both maternal and zygotic esr2a transcripts, with a missplicing MO (MO3-esr2a) to effectively block post-transcriptionally the zygotic transcript alone, and with a non-specific MO-control. Treatment with MO2-esr2a increased apoptosis in embryos, especially in the brain, and caused severe malformations in 63% of 1-5 dpf larvae, as compared to 10-11% in those treated with MO3-esr2a and MO-control. Defects included body growth delay with curved shape, persistent yolk sac with reduced sub-intestinal veins and swollen yolk extension, abnormal brain and splanchnocranium development, smaller eyes and otic vesicles, pericardial oedema, uninflated swim bladder and rudimentary caudal fin with aberrant circular swimming. Affected larvae could survive for only 12-14 days. The MO2-esr2a phenotype was rescued with co-injection of 30 pg/embryo of mutated zebrafish esr2a mRNA encoding the full length of Esr2a, but containing eight silent mutations in the region recognised by MO2-esr2a. A lower dosage (15 pg) failed to recover mortality and abnormality. Raising the dosage to 60 and 90 pg increased abnormality, but not mortality, whereas with 120 pg both mortality and abnormality worsened, indicating a strict quantitative requirement of Esr2a. Co-injection of an anti-p53 MO failed to rescue the MO2-esr2a phenotype, eliminating the possibility of off-target effects. Pangenomic microarray analysis revealed that 240 and 219 significantly expressed transcripts were up- and down-regulated, respectively, by maternal Esr2a protein deficiency in 8-hpf MO2-esr2a embryos. Also at 48 hpf, 162 and 120 presumably zygotic transcripts were up- and down-regulated, respectively, but only 18 were in common with each of the 8-hpf sets. In total, the transcripts from 705 genes were affected by Esr2a knockdown. These findings suggest the involvement of maternal esr2a mRNA, presumably transactivated by maternal 17ß-estradiol stored in the oocyte from enveloping granulosa cells, in the epigenetic programming of zebrafish development.
Assuntos
Embrião não Mamífero/química , Larva/crescimento & desenvolvimento , RNA Mensageiro Estocado/genética , RNA Mensageiro/análise , Receptores de Estrogênio/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Cartilagem/embriologia , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Embrião não Mamífero/metabolismo , Epigênese Genética/fisiologia , Receptor beta de Estrogênio , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Larva/genética , Larva/metabolismo , Análise em Microsséries , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro Estocado/antagonistas & inibidores , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Estudos de Validação como Assunto , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismoRESUMO
Levels of juvenile hormone III (JH), FGLamide allatostatin peptides (ASTs), ASTs precursor (preproAST) mRNA and methyl farnesoate epoxidase (CYP15A1) mRNA were measured in embryos of the cockroach Blattella germanica. JH starts to rise just after dorsal closure, reaches maximal levels between 60% and 80% of embryogenesis, and decrease subsequently to undetectable levels. ASTs show low levels during the first two thirds of embryogenesis, increase thereafter and maintain high levels until hatching. PreproAST mRNA shows quite high levels during the two days following oviposition, thus behaving as a maternal transcript, the levels then become very low until mid embryogenesis, and increase afterwards, peaking towards the end of embryo development. CYP15A1 transcripts were detected around 25% embryogenesis and the levels tended to increase through embryogenesis, although differences amongst the days studied were not statistically significant. The opposite patterns of JH and AST towards the end of embryo development, along with the detection of AST immunoreactivity in corpora allata from late embryos, suggest that JH decline is caused by the increase of AST. Moreover, the uncorrelated patterns of JH concentration and CYP15A1 mRNA levels suggest that CYP15A1 expression does not modulate JH production.
Assuntos
Baratas/embriologia , Embrião não Mamífero/metabolismo , Proteínas de Insetos/metabolismo , Neuropeptídeos/metabolismo , Sesquiterpenos/metabolismo , Animais , Baratas/química , Baratas/metabolismo , Embrião não Mamífero/química , Desenvolvimento Embrionário , Imuno-Histoquímica , Proteínas de Insetos/genética , Oxigenases/genética , Oxigenases/metabolismo , RNA Mensageiro/metabolismoRESUMO
The zebrafish embryo has been evaluated as an in vivo model for plasmonic nanobubble (PNB) generation and detection at nanoscale. The embryo is easily observed and manipulated utilizing the same methodology as for application of PNBs in vitro. Injection and irradiation of gold nanoparticles with a short laser pulse resulted in generation of PNBs in zebrafish with similar parameters as for PNBs generated in water and cultured living cells. These PNBs do not result in systemic damage, thus we demonstrated an in vivo model for rapid and precise testing of plasmonic nanotechnologies.
Assuntos
Nanopartículas Metálicas/química , Microbolhas , Peixe-Zebra/metabolismo , Animais , Linhagem Celular Tumoral , Embrião não Mamífero/química , Ouro/química , Ouro/farmacocinética , Ouro/uso terapêutico , Humanos , Luz , Neoplasias Pulmonares/química , Neoplasias Pulmonares/metabolismo , Nanopartículas Metálicas/uso terapêutico , Microscopia , Modelos Animais , Nanotecnologia/métodos , Espalhamento de Radiação , Peixe-Zebra/embriologiaRESUMO
In amphibians, thyroid hormones (THs) are the primary regulators of metamorphosis; however, their physiological role during embryogenesis remains unclear. First, we established complete developmental profiles for TH receptors (tr alpha and tr beta), deiodinases (dio; types 1, 2, 3), estrogen receptors (er alpha and er beta) and androgen receptor (ar) mRNA levels during embryogenesis and early larval stages in Silurana (Xenopus) tropicalis (from Nieuwkoop and Faber (NF) stage 2 until NF 46). Real-time RT-PCR analyses in whole embryos and larvae revealed that all transcripts except tr alpha were detected throughout development; tr alpha only appears after gastrulation. The first significant increase in the expression of tralpha and tr beta was observed before hatching, between NF 21 and NF 27 (2.5- and 11-fold, respectively). In order to test if these genes could be regulated by THs during early larval development, embryos were exposed to triiodothyronine (T3; 0.5, 5.0, 50 nM) from NF 27 to NF 46. T3 exposure caused a dose-dependent increase relative to control in the expression of tr alpha, tr beta, dio (types 2 and 3), ar, and 5 alpha-reductase type 1 in whole larvae. These results indicate that in S. tropicalis, tr and dio can be induced by T3 as early as NF 46, a response that had only been characterized later during frog metamorphosis. In addition, T3 also affected androgen-related gene expression, supporting our hypothesis that THs are involved in male development in frogs.