Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
2.
Viruses ; 16(3)2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38543809

RESUMO

Wild rodents are considered to be one of the most important TBEV-amplifying reservoir hosts; therefore, they may be suitable for foci detection studies. To investigate the effectiveness of viral RNA detection in wild rodents for suspected TBEV foci confirmation, we trapped small rodents (n = 139) in various locations in Lithuania where TBEV was previously detected in questing ticks. Murine neuroblastoma Neuro-2a cells were inoculated with each rodent sample to maximize the chances of detecting viral RNA in rodent samples. TBEV RNA was detected in 74.8% (CI 95% 66.7-81.1) of the brain and/or internal organ mix suspensions, and the prevalence rate increased significantly following sample cultivation in Neuro-2a cells. Moreover, a strong correlation (r = 0.88; p < 0.05) was found between the average monthly air temperature of rodent trapping and the TBEV RNA prevalence rate in cell culture isolates of rodent suspensions, which were PCR-negative before cultivation in cell culture. This study shows that wild rodents are suitable sentinel animals to confirm TBEV foci. In addition, the study results demonstrate that sample cultivation in cell culture is a highly efficient method for increasing TBEV viral load to detectable quantities.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Ixodes , Animais , Camundongos , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/veterinária , Encefalite Transmitida por Carrapatos/diagnóstico , Roedores , Vírus da Encefalite Transmitidos por Carrapatos/genética , Prevalência , Lituânia/epidemiologia , RNA Viral/genética
3.
Viruses ; 16(2)2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38400079

RESUMO

Haemaphysalis longicornis (the longhorned tick), the predominant tick species in China, serves as a vector for a variety of pathogens, and is capable of transmitting the tick-borne encephalitis virus (TBEV), the causative agent of tick-borne encephalitis. However, it is unclear how these ticks transmit TBEV. Langat virus (LGTV), which has a reduced pathogenicity in humans, has been used as a surrogate for TBEV. In this study, we aimed to investigate the vector competence of H. longicornis to transmit LGTV and demonstrate the efficient acquisition and transmission of LGTV between this tick species and mice. LGTV localization was detected in several tick tissues, such as the midgut, salivary glands, and synganglion, using quantitative PCR and immunohistochemical staining with a polyclonal antibody targeting the LGTV envelope protein. We demonstrated the horizontal transmission of LGTV to different developmental stages within the same generation but did not see evidence of vertical transmission. It was interesting to note that we observed mice acting as a bridge, facilitating the transmission of LGTV to neighboring naïve ticks during blood feeding. In conclusion, the virus-vector-host model employed in this study provides valuable insights into the replication and transmission of LGTV throughout its life cycle.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Infecções por Flavivirus , Carrapatos , Humanos , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Proteínas do Envelope Viral
4.
Ticks Tick Borne Dis ; 15(2): 102292, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38134512

RESUMO

Tick Borne Encephalitis (TBE) is endemic to an increasing number of countries and is a common cause of meningoencephalitis in Europe and Asia making any potential complications of the disease increasingly relevant to clinicians. We present, what is to our knowledge, the second reported case of N-methyl-d-aspartate receptor (NMDAR) encephalitis following Tick Borne Encephalitis (TBE) in a 47-year-old Lithuanian man. The case provides further evidence of TBE being a possible trigger of NMDAR encephalitis and highlights the importance of being aware of symptoms of autoimmune encephalitis in patients with infectious encephalitis.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Masculino , Humanos , Pessoa de Meia-Idade , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Europa (Continente)/epidemiologia , Ásia
5.
Vopr Virusol ; 68(6): 536-548, 2023 Dec 26.
Artigo em Russo | MEDLINE | ID: mdl-38156569

RESUMO

INTRODUCTION: Flaviviruses, possessing natural neurotropicity could be used in glioblastoma therapy using attenuated strains or as a delivery system for antitumor agents in an inactivated form. OBJECTIVE: To investigate the sensitivity of glioblastoma and pancreatic carcinoma cell lines to vaccine strains of yellow fever and tick-borne encephalitis viruses. MATERIALS AND METHODS: Cell lines: glioblastoma GL-6, T98G, LN-229, pancreatic carcinoma MIA RaCa-2 and human pancreatic ductal carcinoma PANC-1. Viral strains: 17D yellow fever virus (YF), Sofjin tick-borne encephalitis virus (TBEV). Virus concentration were determined by plaque assay and quantitative PCR. Determination of cell sensitivity to viruses by MTT assay. RESULTS: 17D YF was effective only against pancreatic carcinoma tumor cells MIA Paca-2 and had a limited effect against PANC-1. In glioblastoma cell lines (LN229, GL6, T98G), virus had no oncolytic effect and the viral RNA concentration fell in the culture medium. Sofjin TBEV showed CPE50 against MIA Paca-2 and a very limited cytotoxic effect against PANC-1. However, it had no oncolytic effect against glioblastoma cell lines (LN229, T98G and GL6), although virus reproduction continued in these cultures. For the GL6 glioblastoma cell line, the viral RNA concentration at the level with the infection dose was determined within 13 days, despite medium replacement, while in the case of the LN229 cell line, the virus concentration increased from 1 × 109 to 1 × 1010 copies/ml. CONCLUSION: Tumor behavior in organism is more complex and is determined by different microenvironmental factors and immune status. In the future, it is advisable to continue studying the antitumor oncolytic and immunomodulatory effects of viral strains 17D YF and Sofjin TBEV using in vivo models.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Glioblastoma , Neoplasias Pancreáticas , Vacinas Virais , Febre Amarela , Humanos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Glioblastoma/genética , Glioblastoma/terapia , Linhagem Celular , RNA Viral/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia
6.
Rev Med Virol ; 33(5): e2470, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392370

RESUMO

Tick-borne encephalitis virus (TBEV) is a flavivirus commonly found in at least 27 European and Asian countries. It is an emerging public health problem, with steadily increasing case numbers over recent decades. Tick-borne encephalitis virus affects between 10,000 and 15,000 patients annually. Infection occurs through the bite of an infected tick and, much less commonly, through infected milk consumption or aerosols. The TBEV genome comprises a positive-sense single-stranded RNA molecule of ∼11 kilobases. The open reading frame is > 10,000 bases long, flanked by untranslated regions (UTR), and encodes a polyprotein that is co- and post-transcriptionally processed into three structural and seven non-structural proteins. Tick-borne encephalitis virus infection results in encephalitis, often with a characteristic biphasic disease course. After a short incubation time, the viraemic phase is characterised by non-specific influenza-like symptoms. After an asymptomatic period of 2-7 days, more than half of patients show progression to a neurological phase, usually characterised by central and, rarely, peripheral nervous system symptoms. Mortality is low-around 1% of confirmed cases, depending on the viral subtype. After acute tick-borne encephalitis (TBE), a minority of patients experience long-term neurological deficits. Additionally, 40%-50% of patients develop a post-encephalitic syndrome, which significantly impairs daily activities and quality of life. Although TBEV has been described for several decades, no specific treatment exists. Much remains unknown regarding the objective assessment of long-lasting sequelae. Additional research is needed to better understand, prevent, and treat TBE. In this review, we aim to provide a comprehensive overview of the epidemiology, virology, and clinical picture of TBE.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Humanos , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/prevenção & controle , Qualidade de Vida , Vírus da Encefalite Transmitidos por Carrapatos/genética , RNA , Saúde Pública
7.
Sci Rep ; 13(1): 2872, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36807371

RESUMO

Tick-borne encephalitis virus (TBEV) may cause tick-borne encephalitis (TBE), a potential life-threatening infection of the central nervous system in humans. Phylogenetically, TBEVs can be subdivided into three main subtypes, which differ in endemic region and pathogenic potential. In 2016, TBEV was first detected in the Netherlands. One of two detected strains, referred to as Salland, belonged to the TBEV-Eu subtype, yet diverged ≥ 2% on amino acid level from other members of this subtype. Here, we report the successful rescue of this strain using infectious subgenomic amplicons and its subsequent in vitro characterization by comparison to two well-characterized TBEV-Eu strains; Neudoerfl and Hypr. In the human alveolar epithelial cell line A549, growth kinetics of Salland were comparable to the high pathogenicity TBEV-Eu strain Hypr, and both strains grew considerably faster than the mildly pathogenic strain Neudoerfl. In the human neuroblastoma cell line SK-N-SH, Salland replicated faster and to higher infectious titers than both reference strains. All three TBEV strains infected primary human monocyte-derived dendritic cells to a similar extent and interacted with the type I interferon system in a similar manner. The current study serves as the first in vitro characterization of the novel, divergent TBEV-Eu strain Salland.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Humanos , Países Baixos , Sistema Nervoso Central
8.
J Phys Chem Lett ; 14(7): 1977-1982, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36790164

RESUMO

Flaviviruses are enveloped viruses causing high public concerns. Their maturation spans several cellular compartments having different pH. Thus, complex control mechanisms are in place to avoid premature maturation. Here we report the dynamical behavior at neutral and acidic pH of the precursor of the membrane fusion protein E of tick-borne encephalitis, showing the different stabilizations of the E dimer and the role played by the small fusion-assisting protomer (pr). The comprehension, at atomic resolution, of the fine regulation of viral maturation will be fundamental to the development of efficient strategies against emerging viral threats.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Infecções por Flavivirus , Humanos , Vírus da Encefalite Transmitidos por Carrapatos/química , Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Concentração de Íons de Hidrogênio
11.
J Virol ; 96(18): e0081822, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36098513

RESUMO

Tick-borne encephalitis virus (TBEV) is an important human arthropod-borne virus that causes tick-borne encephalitis (TBE) in humans. TBEV acutely infects the central nervous system (CNS), leading to neurological symptoms of various severity. No therapeutics are currently available for TBEV-associated disease. Virus strains of various pathogenicity have been described, although the basis of their diverse clinical outcome remains undefined. Work with infectious TBEV requires high-level biocontainment, meaning model systems that can recapitulate the virus life cycle are highly sought. Here, we report the generation of a self-replicating, noninfectious TBEV replicon used to study properties of high (Hypr) and low (Vs) pathogenic TBEV isolates. Using a Spinach2 RNA aptamer and luciferase reporter system, we perform the first direct comparison of Hypr and Vs in cell culture. Infectious wild-type (WT) viruses and chimeras of the nonstructural proteins 3 (NS3) and 5 (NS5) were investigated in parallel to validate the replicon data. We show that Hypr replicates to higher levels than Vs in mammalian cells, but not in arthropod cells, and that the basis of these differences map to the NS5 region, encoding the methyltransferase and RNA polymerase. For both Hypr and Vs strains, NS5 and the viral genome localized to intracellular structures typical of positive-strand RNA viruses. Hypr was associated with significant activation of IRF-3, caspase-3, and caspase-8, while Vs activated Akt, affording protection against caspase-mediated apoptosis. Higher activation of stress-granule proteins TIAR and G3BPI were an additional early feature of Vs but not for Hypr. These findings highlight novel host cell responses driven by NS5 that may dictate the differential clinical characteristics of TBEV strains. This highlights the utility of the TBEV replicons for further virological characterization and antiviral drug screening. IMPORTANCE Tick-borne encephalitis virus (TBEV) is an emerging virus of the flavivirus family that is spread by ticks and causes neurological disease of various severity. No specific therapeutic treatments are available for TBE, and control in areas of endemicity is limited to vaccination. The pathology of TBEV ranges from mild to fatal, depending on the virus genotype. Characterization of TBEV isolates is challenging due to the requirement for high-containment facilities. Here, we described the construction of novel TBEV replicons that permit a molecular comparison of TBEV isolates of high and low pathogenicity.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Interações entre Hospedeiro e Microrganismos , Animais , Caspase 3/metabolismo , Caspase 8/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Ativação Enzimática , Fator Regulador 3 de Interferon/genética , Metiltransferases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas não Estruturais Virais/imunologia
12.
Virus Res ; 321: 198914, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36064044

RESUMO

Tick-borne encephalitis virus (TBEV) is a zoonotic virus that causes tick-borne encephalitis (TBE) in humans. Infections of Sapporo-17-Io1 (Sapporo) and Oshima 5-10 (Oshima) TBEV strains showed different pathogenic effects in mice. However, the differences between the two strains are unknown. In this study, we examined neuronal degeneration and death, and activation of glial cells in mice inoculated with each strain to investigate the pathogenesis of TBE. Viral growth was similar between Sapporo and Oshima, but neuronal degeneration and death, and activation of glial cells, was more prominent with Oshima. In human neuroblastoma cells, apoptosis and pyroptosis were not observed after TBEV infection. However, the expression of the necroptosis marker, mixed lineage kinase domain-like (MLKL) protein, was upregulated by TBEV infection, and this upregulation was more pronounced in Oshima than Sapporo infections. As necroptosis is a pro-inflammatory type of cell death, differences in necroptosis induction might be involved in the differences in neuropathogenicity of TBE.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Animais , Encefalite Transmitida por Carrapatos/patologia , Humanos , Camundongos , Necroptose , Neurônios/patologia
13.
PLoS One ; 17(8): e0273565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36018897

RESUMO

Tick-borne encephalitis virus (TBEV) is one of the most dangerous tick-borne viral pathogens for humans. It can cause severe tick-borne encephalitis (TBE), multiple neurological complications, and death. The European subtype (TBEV-Eu), Siberian subtype (TBEV-Sib), and Far-Eastern subtype (TBEV-FE) are three main TBEV subtypes, causing varying clinical manifestations. Though TBEV-FE is the most virulent TBEV subtype, the degree of variation in the amino acid sequence of TBEV polyprotein is not high, leaving an issue without proper explanation. We performed phylogenic analysis on 243 TBEV strains and then took Senzhang strain as a query strain and representative strains of three major TBEV subtypes as reference strains to perform the comparative genomic analysis, including synteny analysis, SNP analysis, InDel analysis, and multiple sequence alignment of their envelope (E) proteins. The results demonstrated that insertions or deletions of large fragments occurred at the 3' end but not at the 5' end or in the CDS region of TBEV Senzhang strain. In addition, SNP sites are mainly located in the CDS region, with few SNP sites in the non-coding region. Our data highlighted the insertions or deletions of large fragments at the 3' end and SNP sites in the CDS region as genomic properties of the TBEV Senzhang strain compared to representative strains with the main subtypes. These features are probably related to the virulence of the TBEV Senzhang strain and could be considered in future vaccine development and drug target screening for TBEV.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Vacinas , Genômica , Humanos , Filogenia , Virulência
14.
Biochem J ; 479(12): 1303-1315, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35670457

RESUMO

The Scribble (Scrib) protein is a conserved cell polarity regulator with anti-tumorigenic properties. Viruses like the Tick-born encephalitis virus (TBEV) target Scribble to establish a cellular environment supporting viral replication, which is ultimately associated with poor prognosis upon infection. The TBEV NS5 protein has been reported to harbour both an internal as well as a C-terminal PDZ binding motif (PBM), however only the internal PBM was shown to be an interactor with Scribble, with the interaction being mediated via the Scribble PDZ4 domain to antagonize host interferon responses. We examined the NS5 PBM motif interactions with all Scribble PDZ domains using isothermal titration calorimetry, which revealed that the proposed internal PBM did not interact with any Scribble PDZ domains. Instead, the C-terminal PBM of NS5 interacted with Scrib PDZ3. We then established the structural basis of these interactions by determining crystal structures of Scrib PDZ3 bound to the NS5 C-terminal PBM. Our findings provide a structural basis for Scribble PDZ domain and TBEV NS5 interactions and provide a platform to dissect the pathogenesis of TBEV and the role of cell polarity signalling using structure guided approaches.


Assuntos
Encefalite Transmitida por Carrapatos , Carrapatos , Animais , Polaridade Celular/genética , Domínios PDZ , Ligação Proteica
15.
Virus Res ; 315: 198778, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35421435

RESUMO

Autophagy is a lysosomal degradative pathway responsible for recycling cytosolic proteins and organelles and also functions as an innate defense mechanism that host cells use against viral infection. While many viruses have evolved mechanisms to antagonize the antiviral effects of the autophagy pathway, others subvert autophagy to facilitate replication. For flaviviruses, both the positive and negative role of autophagy in virus replication has been reported. The interplay between autophagy and tick-borne encephalitis virus (TBEV) in innate immune cells is largely unknown. Here we report the relationship between an autophagy and TBEV replication in mouse macrophage cell line PMJ2-R using Hypr strain of TBEV. First, we examined the effect of Hypr infection on the autophagy pathway. We detected a mild and a temporary increase of autophagy marker LC3-II in Hypr-infected cells. The role of autophagy in TBEV replication was evaluated in autophagy related gene 5 (Atg5) knockdown cells (shAtg5). Our results showed that during an early stage of Hypr infection the viral titers were increased, while later on, at 72 hpi, the titers have declined in shAtg5 cells compared to control. Moreover, the higher number of virus-positive cells was observed in shAtg5 cells in early stage of infection and correlated with enhanced virus entry. Finally, we found an increased production of IFN-ß in Hypr-infected shAtg5 cells in comparison to control at 48 and 72 hpi implicating that autophagy restricts the amount of IFN produced by TBEV-infected macrophages. To conclude, in mouse macrophages TBEV replication is controlled by autophagy in time dependent manner, having temporally an antiviral and then a pro-viral role during infection. Our study points out to a delicate and complex involvement of autophagy machinery at level of virus entry and IFN-ß production when controlling TBEV infection.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Animais , Antivirais/metabolismo , Autofagia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/genética , Interferon beta/genética , Interferon beta/metabolismo , Macrófagos/metabolismo , Camundongos , Replicação Viral
16.
Front Immunol ; 13: 825702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340807

RESUMO

Tick-borne encephalitis virus (TBEV) is a zoonotic flavivirus which is endemic in many European and Asian countries. Humans can get infected with TBEV usually via ticks, and possible symptoms of the infection range from fever to severe neurological complications such as encephalitis. Vaccines to protect against TBEV-induced disease are widely used and most of them consist of whole viruses, which are inactivated by formaldehyde. Although this production process is well established, it has several drawbacks, including the usage of hazardous chemicals, the long inactivation times required and the potential modification of antigens by formaldehyde. As an alternative to chemical treatment, low-energy electron irradiation (LEEI) is known to efficiently inactivate pathogens by predominantly damaging nucleic acids. In contrast to other methods of ionizing radiation, LEEI does not require substantial shielding constructions and can be used in standard laboratories. Here, we have analyzed the potential of LEEI to generate a TBEV vaccine and immunized mice with three doses of irradiated or chemically inactivated TBEV. LEEI-inactivated TBEV induced binding antibodies of higher titer compared to the formaldehyde-inactivated virus. This was also observed for the avidity of the antibodies measured after the second dose. After viral challenge, the mice immunized with LEEI- or formaldehyde-inactivated TBEV were completely protected from disease and had no detectable virus in the central nervous system. Taken together, the results indicate that LEEI could be an alternative to chemical inactivation for the production of a TBEV vaccine.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Vacinas Virais , Vírus , Animais , Anticorpos Antivirais , Elétrons , Encefalite Transmitida por Carrapatos/prevenção & controle , Formaldeído , Camundongos , Vacinas de Produtos Inativados
17.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34546870

RESUMO

Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is common in Europe and Asia and causes a severe disease of the central nervous system. A promising approach in the development of therapy for TBEV infection is the search for small molecule antivirals targeting the flavivirus envelope protein E, particularly its ß-n-octyl-d-glucoside binding pocket (ß-OG pocket). However, experimental studies of candidate antivirals may be complicated by varying amounts and different forms of the protein E in the virus samples. Viral particles with different conformations and arrangements of the protein E are produced during the replication cycle of flaviviruses, including mature, partially mature, and immature forms, as well as subviral particles lacking genomic RNA. The immature forms are known to be abundant in the viral population. We obtained immature virion preparations of TBEV, characterized them by RT-qPCR, and assessed in vivo and in vitro infectivity of the residual mature virions in the immature virus samples. Analysis of the ß-OG pocket structure on the immature virions confirmed the possibility of binding of adamantylmethyl esters of 5-aminoisoxazole-3-carboxylic acid in the pocket. We demonstrated that the antiviral activity of these compounds in plaque reduction assay is significantly reduced in the presence of immature TBEV particles.


Assuntos
Adamantano/farmacologia , Antivirais/farmacologia , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/virologia , Isoxazóis/farmacologia , Vírion/fisiologia , Adamantano/metabolismo , Animais , Antivirais/metabolismo , Linhagem Celular , Vírus da Encefalite Transmitidos por Carrapatos/crescimento & desenvolvimento , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Glucosídeos/metabolismo , Isoxazóis/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Suínos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Ensaio de Placa Viral , Vírion/imunologia , Vírion/patogenicidade , Vírion/ultraestrutura
18.
BMC Ophthalmol ; 21(1): 315, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34454464

RESUMO

BACKGROUND: Tick-borne encephalitis (TBE) is an infectious disease of the central nervous system caused by the TBE virus (TBEV), which is usually transmitted by a tick-bite, with increasing incidence in northeastern Europe and eastern Asia during the past decade. Ocular involvement has not been described in the literature to date. CASE PRESENTATION: A 58-year-old patient presented to the emergency department with occipital headaches and poor balance for 5 days. He reported a tick-bite 6 weeks before without erythema migrans followed by a flu-like syndrome. Serological testing was negative for Borreliosis and TBEV. At presentation, he was febrile with neck stiffness and signs of ataxia. Three days later, he presented unilateral visual loss in his right eye. Examination revealed non granulomatous anterior uveitis, vitreous inflammation, and retinal haemorrhages at the posterior pole without macular oedema or papillitis. Polymerase chain reaction (PCR) of the cerebrospinal fluid returned negative for all Herpes family viruses. No clinical evidence of other infection nor malignancy was identified. A seroconversion of the TBEV- immunoglobulin titres was observed 2 weeks later while the serum antibodies for Borrelia were still not detected. Magnetic resonance imaging was unremarkable. We concluded to the diagnosis of TBE-related uveitis. Under supportive treatment, there was complete resolution of the neurological symptoms and the intraocular inflammation without sequelae within the following weeks. CONCLUSIONS: We describe a new association of TBEV with uveitis. In view of the growing number of TBE cases and the potential severity of the disease we aim at heightening awareness to achieve prompt recognition, prevention, and treatment.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Uveíte , Encefalite Transmitida por Carrapatos/complicações , Encefalite Transmitida por Carrapatos/diagnóstico , Europa (Continente) , Humanos , Inflamação , Masculino , Pessoa de Meia-Idade
19.
Viruses ; 13(8)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34452359

RESUMO

Tick-borne encephalitis virus (TBEV) causes 5-7 thousand cases of human meningitis and encephalitis annually. The neutralizing and protective antibody ch14D5 is a potential therapeutic agent. This antibody exhibits a high affinity for binding with the D3 domain of the glycoprotein E of the Far Eastern subtype of the virus, but a lower affinity for the D3 domains of the Siberian and European subtypes. In this study, a 2.2-fold increase in the affinity of single-chain antibody sc14D5 to D3 proteins of the Siberian and European subtypes of the virus was achieved using rational design and computational modeling. This improvement can be further enhanced in the case of the bivalent binding of the full-length chimeric antibody containing the identified mutation.


Assuntos
Anticorpos Antivirais/imunologia , Desenho Assistido por Computador , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/uso terapêutico , Sítios de Ligação de Anticorpos , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/terapia , Humanos , Camundongos , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/uso terapêutico , Proteínas do Envelope Viral/imunologia
20.
Front Cell Infect Microbiol ; 11: 696337, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277474

RESUMO

Although anti-TBE vaccines are highly effective, vaccine breakthrough (VBT) cases have been reported. With increasing evidence for immune system involvement in TBE pathogenesis, we characterized the immune mediators reflecting innate and adaptive T and B cell responses in neurological and convalescent phase in VBT TBE patients. At the beginning of the neurological phase, VBT patients have significantly higher serum levels of several innate and adaptive inflammatory cytokines compared to healthy donors, reflecting a global inflammatory state. The majority of cytokines, particularly those associated with innate and Th1 responses, are highly concentrated in CSF and positively correlate with intrathecal immune cell counts, demonstrating the localization of Th1 and proinflammatory responses in CNS, the site of disease in TBE. Interestingly, compared to unvaccinated TBE patients, VBT TBE patients have significantly higher CSF levels of VEGF-A and IFN-ß and higher systemic levels of neutrophil chemoattractants IL-8/CXCL8 and GROα/CXCL1 on admission. Moreover, serum levels of IL-8/CXCL8 and GROα/CXCL1 remain elevated for two months after the onset of neurological symptoms, indicating a prolonged systemic immune activation in VBT patients. These findings provide the first insights into the type of immune responses and their dynamics during TBE in VBT patients. An observed systemic upregulation of neutrophil derived inflammation in acute and convalescent phase of TBE together with highly expressed VEGF-A could contribute to BBB disruption that facilitates the entry of immune cells and supports the intrathecal localization of Th1 responses observed in VBT patients.


Assuntos
Encefalite Transmitida por Carrapatos , Vacinas , Citocinas , Encefalite Transmitida por Carrapatos/prevenção & controle , Humanos , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA