Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.145
Filtrar
1.
J Neuroinflammation ; 21(1): 128, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745307

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system characterized by inflammation-driven synaptic abnormalities. Interleukin-9 (IL-9) is emerging as a pleiotropic cytokine involved in MS pathophysiology. METHODS: Through biochemical, immunohistochemical, and electrophysiological experiments, we investigated the effects of both peripheral and central administration of IL-9 on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. RESULTS: We demonstrated that both systemic and local administration of IL-9 significantly improved clinical disability, reduced neuroinflammation, and mitigated synaptic damage in EAE. The results unveil an unrecognized central effect of IL-9 against microglia- and TNF-mediated neuronal excitotoxicity. Two main mechanisms emerged: first, IL-9 modulated microglial inflammatory activity by enhancing the expression of the triggering receptor expressed on myeloid cells-2 (TREM2) and reducing TNF release. Second, IL-9 suppressed neuronal TNF signaling, thereby blocking its synaptotoxic effects. CONCLUSIONS: The data presented in this work highlight IL-9 as a critical neuroprotective molecule capable of interfering with inflammatory synaptopathy in EAE. These findings open new avenues for treatments targeting the neurodegenerative damage associated with MS, as well as other inflammatory and neurodegenerative disorders of the central nervous system.


Assuntos
Encefalomielite Autoimune Experimental , Interleucina-9 , Camundongos Endogâmicos C57BL , Microglia , Sinapses , Fator de Necrose Tumoral alfa , Animais , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/induzido quimicamente , Camundongos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Interleucina-9/metabolismo , Feminino , Fator de Necrose Tumoral alfa/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Esclerose Múltipla/patologia , Esclerose Múltipla/metabolismo , Modelos Animais de Doenças
2.
Sci Immunol ; 9(95): eadk0865, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701189

RESUMO

Dysregulated B cell cytokine production contributes to pathogenesis of immune-mediated diseases including multiple sclerosis (MS); however, the underlying mechanisms are poorly understood. In this study we investigated how cytokine secretion by pro-inflammatory (GM-CSF-expressing) and anti-inflammatory (IL-10-expressing) B cells is regulated. Pro-inflammatory human B cells required increased oxidative phosphorylation (OXPHOS) compared with anti-inflammatory B cells. OXPHOS reciprocally modulated pro- and anti-inflammatory B cell cytokines through regulation of adenosine triphosphate (ATP) signaling. Partial inhibition of OXPHOS or ATP-signaling including with BTK inhibition resulted in an anti-inflammatory B cell cytokine shift, reversed the B cell cytokine imbalance in patients with MS, and ameliorated neuroinflammation in a myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalitis mouse model. Our study identifies how pro- and anti-inflammatory cytokines are metabolically regulated in B cells and identifies ATP and its metabolites as a "fourth signal" that shapes B cell responses and is a potential target for restoring the B cell cytokine balance in autoimmune diseases.


Assuntos
Linfócitos B , Citocinas , Encefalomielite Autoimune Experimental , Inflamação , Esclerose Múltipla , Fosforilação Oxidativa , Animais , Esclerose Múltipla/imunologia , Humanos , Citocinas/imunologia , Citocinas/metabolismo , Camundongos , Linfócitos B/imunologia , Encefalomielite Autoimune Experimental/imunologia , Inflamação/imunologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Adulto , Trifosfato de Adenosina/metabolismo , Pessoa de Meia-Idade
3.
Yakugaku Zasshi ; 144(5): 489-496, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692922

RESUMO

The tumor necrosis factor receptor (TNFR)-associated factor (TRAF) family of molecules are intracellular adaptors that regulate cellular signaling through members of the TNFR and Toll-like receptor superfamily. Mammals have seven TRAF molecules numbered sequentially from TRAF1 to TRAF7. Although TRAF5 was identified as a potential regulator of TNFR superfamily members, the in vivo function of TRAF5 has not yet been fully elucidated. We identified an unconventional role of TRAF5 in interleukin-6 (IL-6) receptor signaling involving CD4+ T cells. Moreover, TRAF5 binds to the signal-transducing glycoprotein 130 (gp130) receptor for IL-6 and inhibits the activity of the janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway. In addition, Traf5-deficient CD4+ T cells exhibit significantly enhanced IL-6-driven differentiation of T helper 17 (Th17) cells, which exacerbates neuroinflammation in experimental autoimmune encephalomyelitis. Furthermore, TRAF5 demonstrates a similar activity to gp130 for IL-27, another cytokine of the IL-6 family. Additionally, Traf5-deficient CD4+ T cells display significantly increased IL-27-mediated differentiation of Th1 cells, which increases footpad swelling in delayed-type hypersensitivity response. Thus, TRAF5 functions as a negative regulator of gp130 in CD4+ T cells. This review aimed to explain how TRAF5 controls the differentiation of CD4+ T cells and discuss how the expression of TRAF5 in T cells and other cell types can influence the development and progression of autoimmune and inflammatory diseases.


Assuntos
Linfócitos T CD4-Positivos , Encefalomielite Autoimune Experimental , Transdução de Sinais , Fator 5 Associado a Receptor de TNF , Humanos , Animais , Fator 5 Associado a Receptor de TNF/genética , Fator 5 Associado a Receptor de TNF/metabolismo , Fator 5 Associado a Receptor de TNF/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Receptor gp130 de Citocina/fisiologia , Receptor gp130 de Citocina/metabolismo , Células Th17/imunologia , Interleucina-6/metabolismo , Interleucina-6/fisiologia , Diferenciação Celular , Receptores de Interleucina-6/fisiologia , Receptores de Interleucina-6/metabolismo , Janus Quinases/metabolismo , Janus Quinases/fisiologia , Fatores de Transcrição STAT/fisiologia , Fatores de Transcrição STAT/metabolismo , Camundongos
4.
Yakugaku Zasshi ; 144(5): 497-501, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38692923

RESUMO

Signal-transducing adaptor protein-2 (STAP-2) is a unique scaffold protein that regulates several immunological signaling pathways, including LIF/LIF receptor and LPS/TLR4 signals. STAP-2 is required for Fas/FasL-dependent T cell apoptosis and SDF-1α-induced T cell migration. Conversely, STAP-2 modulates integrin-mediated T cell adhesion, suggesting that STAP-2 is essential for several negative and positive T cell functions. However, whether STAP-2 is involved in T cell-antigen receptor (TCR)-mediated T cell activation is unknown. STAP-2 deficiency was recently reported to suppress TCR-mediated T cell activation by inhibiting LCK-mediated CD3ζ and ZAP-70 activation. Using STAP-2 deficient mice, it was demonstrated that STAP-2 is required for the pathogenesis of Propionibacterium acnes-induced granuloma formation and experimental autoimmune encephalomyelitis. Here, detailed functions of STAP-2 in TCR-mediated T cell activation, and how STAP-2 affects the pathogenesis of T cell-mediated inflammation and immune diseases, are reviewed.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Linfócitos T , Proteína-Tirosina Quinase ZAP-70 , Animais , Receptores de Antígenos de Linfócitos T/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Humanos , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Camundongos , Proteína-Tirosina Quinase ZAP-70/metabolismo , Proteína-Tirosina Quinase ZAP-70/fisiologia , Propionibacterium acnes/fisiologia , Propionibacterium acnes/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/etiologia , Inflamação/imunologia , Apoptose , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/fisiologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Movimento Celular , Adesão Celular , Complexo CD3 , Quimiocina CXCL12/fisiologia , Quimiocina CXCL12/metabolismo
5.
Mol Biol Rep ; 51(1): 522, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627337

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a complex autoimmune disease that affects the central nervous system, causing inflammation, demyelination, and neurodegeneration. Understanding the dysregulation of Tregs, dynamic cells involved in autoimmunity, is crucial in comprehending diseases like MS. However, the role of lymphocyte-activation gene 3 (Lag-3) in MS remains unclear. METHODS: In this study, we explore the potential of exosomes derived from human umbilical cord mesenchymal stem cells (hUMSCs-Exs) as an immune modulator in experimental autoimmune encephalomyelitis (EAE), a model for MS. RESULTS: Using flow cytometry, our research findings indicate that groups receiving treatment with hUMSC-Exs revealed a significant increase in Lag-3 expression on Foxp3 + CD4 + T cells. Furthermore, cell proliferation conducted on spleen tissue samples from EAE mice using the CFSE method exposed to hUMSC-Exs yielded relevant results. CONCLUSIONS: These results suggest that hUMSCs-Exs could be a promising anti-inflammatory agent to regulate T-cell responses in EAE and other autoimmune diseases. However, further research is necessary to fully understand the underlying mechanisms and Lag-3's precise role in these conditions.


Assuntos
Encefalomielite Autoimune Experimental , Exossomos , Células-Tronco Mesenquimais , Esclerose Múltipla , Animais , Humanos , Camundongos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical
6.
Eur J Pharmacol ; 973: 176600, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38643834

RESUMO

Multiple sclerosis is an autoimmune disease that causes inflammatory damage to the central nervous system. At present, the pathogenesis of the disease is unknown. There is a lack of few effective therapy medications available. Therefore, it is necessary to further explore the pathogenesis of this illness and develop potential therapeutic drugs. Dabrafenib is potential therapeutic medicine for nervous system disease. In this study, we preliminarily studied the possible mechanism of dabrafenib in the treatment of multiple sclerosis from the perspective of ferroptosis. First, we observed that dabrafenib significantly improved symptoms of gait abnormalities, limb weakness or paralysis, and down-regulated levels of spinal cord inflammation in an experimental autoimmune encephalitis (EAE) model. Meanwhile, we also observed that dabrafenib could inhibit the proteins of ferroptosis in spinal cord tissue of EAE mice by Western blot. The results of immunohistochemical analysis showed that the effect of dabrafenib on ferroptosis mainly occurred in microglia. Second, dabrafenib was demonstrated to be able to inhibit the S phase of the cell cycle, reduce ROS levels, and reinstate mitochondrial activity in the LPS-induced BV2 inflammatory cell model. Futhermore, we found that dabrafenib inhibits P-JAK2 and P-STAT3 activation by acting Axl receptor, which in turn prevents neurogenic inflammation in microglia. The co-stimulated BV2 cell model with LPS and Erastin also verified these findings. Ultimately, the Axl knockout mice used to construct the EAE model allowed for the confirmation that dabrafenib prevented ferroptosis in microglia by up-regulating Axl receptor, which reduced the inflammatory demyelination associated with EAE. In summary, our research demonstrates the advantages of dabrafenib in multiple sclerosis treatment, which can prevent ferroptosis in microglia in multiple sclerosis through up-regulating Axl receptor, thus halting the progression of multiple sclerosis.


Assuntos
Receptor Tirosina Quinase Axl , Encefalomielite Autoimune Experimental , Ferroptose , Imidazóis , Oximas , Proteínas Proto-Oncogênicas , Receptores Proteína Tirosina Quinases , Regulação para Cima , Animais , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/metabolismo , Ferroptose/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Camundongos , Oximas/farmacologia , Oximas/uso terapêutico , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Regulação para Cima/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Feminino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Fator de Transcrição STAT3/metabolismo , Linhagem Celular , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
J Neuroinflammation ; 21(1): 103, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643194

RESUMO

BACKGROUND: Colony stimulating factor 1 receptor (CSF1R) signaling is crucial for the maintenance and function of various myeloid subsets. CSF1R antagonism was previously shown to mitigate clinical severity in experimental autoimmune encephalomyelitis (EAE). The associated mechanisms are still not well delineated. METHODS: To assess the effect of CSF1R signaling, we employed the CSF1R antagonist PLX5622 formulated in chow (PLX5622 diet, PD) and its control chow (control diet, CD). We examined the effect of PD in steady state and EAE by analyzing cells isolated from peripheral immune organs and from the CNS via flow cytometry. We determined CNS infiltration sites and assessed the extent of demyelination using immunohistochemistry of cerebella and spinal cords. Transcripts of genes associated with neuroinflammation were also analyzed in these tissues. RESULTS: In addition to microglial depletion, PD treatment reduced dendritic cells and macrophages in peripheral immune organs, both during steady state and during EAE. Furthermore, CSF1R antagonism modulated numbers and relative frequencies of T effector cells both in the periphery and in the CNS during the early stages of the disease. Classical neurological symptoms were milder in PD compared to CD mice. Interestingly, a subset of PD mice developed atypical EAE symptoms. Unlike previous studies, we observed that the CNS of PD mice was infiltrated by increased numbers of peripheral immune cells compared to that of CD mice. Immunohistochemical analysis showed that CNS infiltrates in PD mice were mainly localized in the cerebellum while in CD mice infiltrates were primarily localized in the spinal cords during the onset of neurological deficits. Accordingly, during the same timepoint, cerebella of PD but not of CD mice had extensive demyelinating lesions, while spinal cords of CD but not of PD mice were heavily demyelinated. CONCLUSIONS: Our findings suggest that CSF1R activity modulates the cellular composition of immune cells both in the periphery and within the CNS, and affects lesion localization during the early EAE stages.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/tratamento farmacológico , Compostos Orgânicos/farmacologia , Medula Espinal/patologia , Microglia , Receptores de Fator Estimulador de Colônias , Receptores Proteína Tirosina Quinases , Camundongos Endogâmicos C57BL
8.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612856

RESUMO

PURPOSE: Resveratrol is a natural polyphenol which has a very low bioavailability but whose antioxidant, anti-inflammatory and anti-apoptotic properties may have therapeutic potential for the treatment of neurodegenerative diseases such as multiple sclerosis (MS). Previously, we reported the oral administration of resveratrol nanoparticles (RNs) elicited a neuroprotective effect in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, at significantly lower doses than unconjugated resveratrol (RSV) due to enhanced bioavailability. Furthermore, we demonstrated that the intranasal administration of a cell-derived secretome-based therapy at low concentrations leads to the selective neuroprotection of the optic nerve in EAE mice. The current study sought to assess the potential selective efficacy of lower concentrations of intranasal RNs for attenuating optic nerve damage in EAE mice. METHODS: EAE mice received either a daily intranasal vehicle, RNs or unconjugated resveratrol (RSV) for a period of thirty days beginning on the day of EAE induction. Mice were assessed daily for limb paralysis and weekly for visual function using the optokinetic response (OKR) by observers masked to treatment regimes. After sacrifice at day 30, spinal cords and optic nerves were stained to assess inflammation and demyelination, and retinas were immunostained to quantify retinal ganglion cell (RGC) survival. RESULTS: Intranasal RNs significantly increased RGC survival at half the dose previously shown to be required when given orally, reducing the risk of systemic side effects associated with prolonged use. Both intranasal RSV and RN therapies enhanced RGC survival trends, however, only the effects of intranasal RNs were significant. RGC loss was prevented even in the presence of inflammatory and demyelinating changes induced by EAE in optic nerves. CONCLUSIONS: The intranasal administration of RNs is able to reduce RGC loss independent of the inflammatory and demyelinating effects on the optic nerve and the spinal cord. The concentration of RNs needed to achieve neuroprotection is lower than previously demonstrated with oral administration, suggesting intranasal drug delivery combined with nanoparticle conjugation warrants further exploration as a potential neuroprotective strategy for the treatment of optic neuritis, alone as well as in combination with glucocorticoids.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Nanopartículas , Animais , Camundongos , Resveratrol/farmacologia , Neuroproteção , Administração Intranasal , Encefalomielite Autoimune Experimental/tratamento farmacológico
9.
Cell Mol Life Sci ; 81(1): 161, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565808

RESUMO

The susceptibility to autoimmune diseases is conditioned by the association of modest genetic alterations which altogether weaken self-tolerance. The mechanism whereby these genetic interactions modulate T-cell pathogenicity remains largely uncovered. Here, we investigated the epistatic interaction of two interacting proteins involved in T Cell Receptor signaling and which were previously associated with the development of Multiple Sclerosis. To this aim, we used mice expressing an hypomorphic variant of Vav1 (Vav1R63W), combined with a T cell-conditional deletion of Themis. We show that the combined mutations in Vav1 and Themis induce a strong attenuation of the severity of Experimental Autoimmune Encephalomyelitis (EAE), contrasting with the moderate effect of the single mutation in each of those two proteins. This genotype-dependent gradual decrease of EAE severity correlates with decreased quantity of phosphorylated Vav1 in CD4 T cells, establishing that Themis promotes the development of encephalitogenic Tconv response by enhancing Vav1 activity. We also show that the cooperative effect of Themis and Vav1 on EAE severity is independent of regulatory T cells and unrelated to the impact of Themis on thymic selection. Rather, it results from decreased production of pro-inflammatory cytokines (IFN-γ, IL-17, TNF and GM-CSF) and reduced T cell infiltration in the CNS. Together, our results provide a rationale to study combination of related genes, in addition to single gene association, to better understand the genetic bases of human diseases.


Assuntos
Linfócitos T CD4-Positivos , Encefalomielite Autoimune Experimental , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/metabolismo , Sistema Nervoso Central/metabolismo , Encefalomielite Autoimune Experimental/genética , Inflamação , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-vav/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Virulência
10.
Molecules ; 29(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543019

RESUMO

The exact mechanisms of MS (multiple sclerosis) evolution are still unknown. However, the development of EAE (experimental autoimmune encephalomyelitis simulating human MS) in C57BL/6 mice occurs due to the violation of bone marrow hematopoietic stem cell differentiation profiles, leading to the production of toxic for human autoantibody splitting MBP (myelin basic protein), MOG (mouse oligodendrocyte glycoprotein), five histones, DNA, and RNA. Here, we first analyzed the changes in the relative phosphatase activity of IgGs from C57BL/6 mice blood over time, corresponding to three stages of EAE: onset, acute, and remission. Antibodies have been shown to catalyze the hydrolysis of p-nitrophenyl phosphate at several optimal pH values, mainly in the range of 6.5-7.0 and 8.5-9.5. During the spontaneous development of EAE, the most optimal value is pH 6.5. At 50 days after the birth of mice, the phosphatase activity of IgGs at pH 8.8 is 1.6-fold higher than at pH 6.5. During spontaneous development of EAE from 50 to 100 days, an increase in phosphatase activity is observed at pH 6.5 but a decrease at pH 8.8. After mice were immunized with DNA-histone complex by 20 and 60 days, phosphatase activity increased respectively by 65.3 and 109.5 fold (pH 6.5) and 128.4 and 233.6 fold (pH 8.8). Treatment of mice with MOG at the acute phase of EAE development (20 days) leads to a maximal increase in the phosphatase activity of 117.6 fold (pH 6.5) and 494.7 fold (pH 8.8). The acceleration of EAE development after mice treatment with MOG and DNA-histone complex results in increased production of lymphocytes synthesizing antibodies with phosphatase activity. All data show that IgG phosphatase activity could be essential in EAE pathogenesis.


Assuntos
Anticorpos Catalíticos , Encefalomielite Autoimune Experimental , Camundongos , Humanos , Animais , Encefalomielite Autoimune Experimental/patologia , Autoanticorpos , Glicoproteína Mielina-Oligodendrócito , Histonas , Camundongos Endogâmicos C57BL , DNA , Monoéster Fosfórico Hidrolases
11.
Nanoscale ; 16(15): 7515-7531, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498071

RESUMO

Despite the pharmacological arsenal approved for Multiple Sclerosis (MS), there are treatment-reluctant patients for whom cell therapy appears as the only therapeutic alternative. Myeloid-derived suppressor cells (MDSCs) are immature cells of the innate immunity able to control the immune response and to promote oligodendroglial differentiation in the MS animal model experimental autoimmune encephalomyelitis (EAE). However, when isolated and cultured for cell therapy purposes, MDSCs lose their beneficial immunomodulatory properties. To prevent this important drawback, culture devices need to be designed so that MDSCs maintain a state of immaturity and immunosuppressive function similar to that exerted in the donor organism. With this aim, we select graphene oxide (GO) as a promising candidate as it has been described as a biocompatible nanomaterial with the capacity to biologically modulate different cell types, yet its immunoactive potential has been poorly explored to date. In this work, we have fabricated GO films with two distintive redox and roughness properties and explore their impact in MDSC culture right after isolation. Our results show that MDSCs isolated from immune organs of EAE mice maintain an immature phenotype and highly immunosuppressive activity on T lymphocytes after being cultured on highly-reduced GO films (rGO200) compared to those grown on conventional glass coverslips. This immunomodulation effect is depleted when MDSCs are exposed to slightly rougher and more oxidized GO substrates (rGO90), in which cells experience a significant reduction in cell size associated with the activation of apoptosis. Taken together, the exposure of MDSCs to GO substrates with different redox state and roughness is presented as a good strategy to control MDSC activity in vitro. The versatility of GO nanomaterials in regards to the impact of their physico-chemical properties in immunomodulation opens the door to their selective therapeutic potential for pathologies where MDSCs need to be enhanced (MS) or inhibited (cancer).


Assuntos
Encefalomielite Autoimune Experimental , Grafite , Esclerose Múltipla , Células Supressoras Mieloides , Humanos , Camundongos , Animais , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Grafite/farmacologia , Imunossupressores , Camundongos Endogâmicos C57BL
12.
Nat Neurosci ; 27(5): 901-912, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514857

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by demyelination of the central nervous system (CNS). Autologous hematopoietic cell transplantation (HCT) shows promising benefits for relapsing-remitting MS in open-label clinical studies, but the cellular mechanisms underlying its therapeutic effects remain unclear. Using single-nucleus RNA sequencing, we identify a reactive myeloid cell state in chronic experimental autoimmune encephalitis (EAE) associated with neuroprotection and immune suppression. HCT in EAE mice results in an increase of the neuroprotective myeloid state, improvement of neurological deficits, reduced number of demyelinated lesions, decreased number of effector T cells and amelioration of reactive astrogliosis. Enhancing myeloid cell incorporation after a modified HCT further improved these neuroprotective effects. These data suggest that myeloid cell manipulation or replacement may be an effective therapeutic strategy for chronic inflammatory conditions of the CNS.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos Endogâmicos C57BL , Células Mieloides , Animais , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/patologia , Camundongos , Feminino , Transplante de Células-Tronco Hematopoéticas/métodos , Neuroproteção/fisiologia
13.
ACS Chem Neurosci ; 15(7): 1596-1608, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526238

RESUMO

Multiple sclerosis (MS) is a debilitating autoimmune disease that impacts millions of patients worldwide, disproportionately impacting women (4:1), and often presenting at highly productive stages of life. This disease affects the spinal cord and brain and is characterized by severe neuroinflammation, demyelination, and subsequent neuronal damage, resulting in symptoms like loss of mobility. While untargeted and pan-immunosuppressive therapies have proven to be disease-modifying and manage (or prolong the time between) symptoms in many patients, a significant fraction are unable to achieve remission. Recent work has suggested that targeted neuroinflammation mitigation through selective inflammasome inhibition can offer relief to patients while preserving key components of immune function. Here, we show a screening of potential therapeutic targets using inflammasome-inhibiting Nanoligomers (NF-κB1, TNFR1, TNF-α, IL-6) that meet or far-exceed commercially available small-molecule counterparts like ruxolitinib, MCC950, and deucravacitinib. Using the human brain organoid model, top Nanoligomer combinations (NF-κB1 + TNFR1: NI111, and NF-κB1 + NLRP3: NI112) were shown to significantly reduce neuroinflammation without any observable negative impact on organoid function. Further testing of these top Nanoligomer combinations in an aggressive experimental autoimmune encephalomyelitis (EAE) mouse model for MS using intraperitoneal (IP) injections showed that NF-κB1 and NLRP3 targeting Nanoligomer combination NI112 rescues mice without observable loss of mobility or disability, minimal inflammation in brain and spinal cord histology, and minimal to no immune cell infiltration of the spinal cord and no demyelination, similar to or at par with mice that received no EAE injections (negative control). Mice receiving NI111 (NF-κB1 + TNFR1) also showed reduced neuroinflammation compared to saline (sham)-treated EAE mice and at par/similar to other inflammasome-inhibiting small molecule treatments, although it was significantly higher than NI112 leading to subsequent worsening clinical outcomes. Furthermore, treatment with an oral formulation of NI112 at lower doses showed a significant reduction in EAE severity, albeit with higher variance owing to administration and formulation/fill-and-finish variability. Overall, these results point to the potential of further development and testing of these inflammasome-targeting Nanoliogmers as an effective neuroinflammation treatment for multiple neurodegenerative diseases and potentially benefit several patients suffering from such debilitating autoimmune diseases like MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Feminino , Camundongos , Animais , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Receptores Tipo I de Fatores de Necrose Tumoral/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Camundongos Endogâmicos C57BL
14.
Neurochem Int ; 175: 105697, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38364938

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by immune-mediated attacks on the central nervous system (CNS), resulting in demyelination and recurring T-cell responses. Unfortunately, there is no cure for it. Current therapies that target immunomodulation and/or immunosuppression show only modest beneficial effects, have many side effects, and do not block neurodegeneration or progression of the disease. Since neurodegeneration and in particular axonal degeneration is implicated in disability in progressive MS, development of novel therapeutic strategies to attenuate the neurodegenerative processes is imperative. This study aims to develop new safe and efficacious treatments that address both the inflammatory and neurodegenerative aspects of MS using its animal model, experimental allergic encephalomyelitis (EAE). In EAE, the cysteine protease calpain is upregulated in CNS tissue, and its activity correlates with neurodegeneration. Our immunologic studies on MS have indicated that increased calpain activity promotes pro-inflammatory T helper (Th)1 cells and the severity of the disease in EAE, suggesting that calpain inhibition could be a novel target to combat neurodegeneration in MS/EAE. While calpain inhibition by SNJ1945 reduced disease severity, treatment of EAE animals with a novel protease-resistant altered small peptide ligand (3aza-APL) that mimic myelin basic protein (MBP), also decreased the incidence of EAE, disease severity, infiltration of inflammatory cells, and protected myelin. A reduction in inflammatory T-cells with an increase in Tregs and myeloid suppressor cells is also found in EAE mice treated with SNJ1945 and 3aza-APL. Thus, a novel combination strategy was tested in chronic EAE mouse model in B10 mice which showed multiple pathological mechanisms could be addressed by simultaneous treatment with calpain inhibitor SNJ1945 and protease-resistant 3aza-APL to achieve a stronger therapeutic effect.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Camundongos , Animais , Calpaína/metabolismo , Calpaína/uso terapêutico , Inflamação/tratamento farmacológico , Sistema Nervoso Central/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
15.
J Neuroimmunol ; 389: 578313, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401393

RESUMO

The clinical effect of human Mesenchymal stem cells (hMSCs) transplanted into EAE mice/MS patients is short lived due to poor survival of the transplanted cells. Since Granagard, a nanoformulation of pomegranate seed oil, extended the presence of Neuronal Stem cells transplanted into CJD mice brains, we tested whether this safe food supplement can also elongate the survival of hMSCs transplanted into EAE mice. Indeed, pathological studies 60 days post transplantation identified human cells only in brains of Granagard treated mice, concomitant with increased clinical activity. We conclude that Granagard may prolong the activity of stem cell transplantation in neurological diseases.


Assuntos
Encefalomielite Autoimune Experimental , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Esclerose Múltipla , Humanos , Animais , Camundongos , Esclerose Múltipla/terapia , Esclerose Múltipla/patologia , Encefalomielite Autoimune Experimental/terapia , Encefalomielite Autoimune Experimental/patologia , Encéfalo/patologia , Transplante de Células-Tronco , Fatores Imunológicos , Células-Tronco Mesenquimais/patologia , Células-Tronco Mesenquimais/fisiologia
16.
J Cell Physiol ; 239(5): e31230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403972

RESUMO

Multiple sclerosis (MS) is a chronic central nervous system (CNS) disorder characterized by demyelination, neuronal damage, and oligodendrocyte depletion. Reliable biomarkers are essential for early diagnosis and disease management. Emerging research highlights the role of mitochondrial dysfunction and oxidative stress in CNS disorders, including MS, in which mitochondria are central to the degenerative process. Adenosine monophosphate-activated protein kinase (AMPK) regulates the mitochondrial energy balance and initiates responses in neurodegenerative conditions. This systematic review, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, aimed to comprehensively assess the literature on AMPK pathways, mitochondrial dysfunction, and in vivo studies using MS animal models. The search strategy involved the use of AMPK syntaxes, MS syntaxes, and animal model syntaxes. The PubMed, Scopus, Web of Science, and Google Scholar databases were systematically searched on August 26, 2023 without publication year restrictions. The review identified and analyzed relevant papers to provide a comprehensive overview of the current state of related research. Eight studies utilizing various interventions and methodological approaches were included. Risk of bias assessment revealed some areas of low risk but lacked explicit reporting in others. These studies collectively revealed a complex relationship between AMPK, mitochondrial dysfunction, and MS pathogenesis, with both cuprizone and experimental autoimmune encephalomyelitis models demonstrating associations between AMPK and mitochondrial disorders, including oxidative stress and impaired expression of mitochondrial genes. These studies illuminate the multifaceted role of AMPK in MS animal models, involving energy metabolism, inflammatory processes, oxidative stress, and gene regulation leading to mitochondrial dysfunction. However, unanswered questions about its mechanisms and clinical applications underscore the need for further research to fully harness its potential in addressing MS-related mitochondrial dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP , Modelos Animais de Doenças , Mitocôndrias , Esclerose Múltipla , Estresse Oxidativo , Animais , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Esclerose Múltipla/enzimologia , Mitocôndrias/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Humanos , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia
17.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38324068

RESUMO

TH17 differentiation is critically controlled by "signal 3" of cytokines (IL-6/IL-23) through STAT3. However, cytokines alone induced only a moderate level of STAT3 phosphorylation. Surprisingly, TCR stimulation alone induced STAT3 phosphorylation through Lck/Fyn, and synergistically with IL-6/IL-23 induced robust and optimal STAT3 phosphorylation at Y705. Inhibition of Lck/Fyn kinase activity by Srci1 or disrupting the interaction between Lck/Fyn and STAT3 by disease-causing STAT3 mutations selectively impaired TCR stimulation, but not cytokine-induced STAT3 phosphorylation, which consequently abolished TH17 differentiation and converted them to FOXP3+ Treg cells. Srci1 administration or disrupting the interaction between Lck/Fyn and STAT3 significantly ameliorated TH17 cell-mediated EAE disease. These findings uncover an unexpected deterministic role of TCR signaling in fate determination between TH17 and Treg cells through Lck/Fyn-dependent phosphorylation of STAT3, which can be exploited to develop therapeutics selectively against TH17-related autoimmune diseases. Our study thus provides insight into how TCR signaling could integrate with cytokine signal to direct T cell differentiation.


Assuntos
Encefalomielite Autoimune Experimental , Receptores de Antígenos de Linfócitos T , Células Th17 , Diferenciação Celular , Citocinas , Interleucina-23 , Interleucina-6 , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Fosforilação , Encefalomielite Autoimune Experimental/imunologia , Animais
18.
Brain Res Bull ; 209: 110907, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395110

RESUMO

Multiple sclerosis (MS) is considered an immune-mediated inflammatory disorder that causes cognitive impairments by damaging the hippocampal tissue. Conversely, norepinephrine (NEP) has anti-inflammatory and re-myelinating properties, which improve cognitive impairments. The aim of this study was to assess the neuroprotective effects of NEP on learning and memory disorders in an experimental animal model of MS. Two guide cannulas were bilaterally implanted in the rat hippocampal CA1 regions. After recovery, the animals received 3 µl of 0.01% ethidium bromide (EtB) in each of both hippocampal regions. After three days, the rats were randomly divided into 6 groups (8 rats/group), including control, sham 1, sham 2, and three groups of NEP 0.25, 0.5, and 1 mg/kg by intrahippocampal injection. Behavioral tests (e.g. shuttle box test and open-field test) were then performed. Finally, ROS, MDA, GSH, TNF-α, IL-6, and IL-1ß concentrations in the left CA1 area, as well as using western-blot analysis, p-p38, p-JNK, p-AKT, p-ERK1/2, p-NMDA, p-AMPA, p-CREB, and BDNF proteins in the right CA1 region evaluated. The EtB injection increased ROS, MDA, TNF-α, IL-6, and IL-1ß levels, as well as p-JNK and p-P38, except all other proteins, while decreasing GSH content, as well as step-through latency and locomotor activity in sham groups compared to the control group. Conversely, NEP (0.5 and 1 mg/kg, particularly at the dose of 1 mg/kg) counterbalanced all the alterations mentioned above in comparison to the sham groups. The EtB induced learning and memory impairment; however, NEP dose-dependently restored these impairments to normal levels.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Fármacos Neuroprotetores , Ratos , Animais , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Norepinefrina/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Modelos Teóricos
19.
Brain Res Bull ; 207: 110885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246200

RESUMO

Multiple sclerosis (MS), a demyelinating autoimmune disease of the central nervous system (CNS), predominately affects females compared to males. Tumor necrosis factor (TNF), a pro-inflammatory cytokine, signaling through TNF receptor 1 contributes to inflammatory disease pathogenesis. In contrast, TNF receptor 2 signaling is neuroprotective. Current anti-TNF MS therapies are shown to be detrimental to patients due to pleiotropic effects on both pro- and anti-inflammatory functions. Using a non-pertussis toxin (nPTX) experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice, we systemically administered a TNFR2 agonist (p53-sc-mTNFR2) to investigate behavioral and pathophysiological changes in both female and male mice. Our data shows that TNFR2 activation alleviates motor and sensory symptoms in females. However, in males, the agonist only alleviates sensory symptoms and not motor. nPTX EAE induction in TNFR2 global knockout mice caused exacerbated motor symptoms in females along with an earlier day of onset, but not in males. Our data demonstrates that TNFR2 agonist efficacy is sex-specific for alleviation of motor symptoms, however, it effectively reduces mechanical hypersensitivity in both females and males. Altogether, these data support the therapeutic promise TNFR2 agonism holds as an MS therapeutic and, more broadly, to treat central neuropathic pain.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Masculino , Feminino , Camundongos , Animais , Receptores Tipo II do Fator de Necrose Tumoral/agonistas , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Camundongos Endogâmicos C57BL , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Proteínas da Mielina , Fator de Necrose Tumoral alfa/metabolismo , Camundongos Knockout
20.
J Affect Disord ; 350: 761-773, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220100

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an autoimmune disease causing central nervous system demyelination, often associated with depression. Current treatments for MS do not effectively address both physical disability and depression. Roflumilast, a phosphodiesterase-4 inhibitor with anti-inflammatory properties, has shown promise for autoimmune diseases. METHODS: We used an experimental autoimmune encephalomyelitis (EAE) rat model to study roflumilast's effects. Motor dysfunction and depression symptoms were assessed, and histopathological analysis evaluated its anti-inflammatory properties. Flow cytometry examined the drug's impact on brain microglia. TNF-α, IL-1ß, and IL-6 levels in hippocampal tissue were assessed using ELISA kits. RESULTS: Roflumilast improved motor dysfunction and depression symptoms in EAE rats. Histopathological analysis revealed reduced inflammation, demyelination, and axonal loss in the spinal cord. Roflumilast suppressed microglial cell activation and conversion to pro-inflammatory M1-type cells. Flow cytometry showed roflumilast inhibited inflammatory marker expression in microglia and their activation in the hippocampus. IL-6 was identified as a roflumilast target for suppressing hippocampal inflammation. LIMITATIONS: This study used an animal model and did not assess long-term or potential side effects of roflumilast treatment. CONCLUSIONS: Roflumilast holds promise as a treatment for depression and motor impairment in MS. Its anti-inflammatory properties, reducing inflammation and inhibiting microglial activation, suggest its potential for MS therapy. However, further research is needed to evaluate long-term effects and safety in MS patients.


Assuntos
Aminopiridinas , Benzamidas , Encefalomielite Autoimune Experimental , Esclerose Múltipla , Humanos , Ratos , Animais , Camundongos , Esclerose Múltipla/tratamento farmacológico , Depressão/tratamento farmacológico , Doenças Neuroinflamatórias , Interleucina-6 , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Camundongos Endogâmicos C57BL , Ciclopropanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA