Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 12: e17427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827289

RESUMO

Background: Survivors of sepsis may encounter cognitive impairment following their recovery from critical condition. At present, there is no standardized treatment for addressing sepsis-associated encephalopathy. Lactobacillus rhamnosus GG (LGG) is a prevalent bacterium found in the gut microbiota and is an active component of probiotic supplements. LGG has demonstrated to be associated with cognitive improvement. This study explored whether LGG administration prior to and following induced sepsis could ameliorate cognitive deficits, and explored potential mechanisms. Methods: Female C57BL/6 mice were randomly divided into three groups: sham surgery, cecal ligation and puncture (CLP), and CLP+LGG. Cognitive behavior was assessed longitudinally at 7-9d, 14-16d, and 21-23d after surgery using an open field test and novel object recognition test. The impact of LGG treatment on pathological changes, the expression level of brain-derived neurotrophic factor (BDNF), and the phosphorylation level of the TrkB receptor (p-TrkB) in the hippocampus of mice at two weeks post-CLP (16d) were evaluated using histological, immunofluorescence, immunohistochemistry, and western blot analyses. Results: The CLP surgery induced and sustained cognitive impairment in mice with sepsis for a minimum of three weeks following the surgery. Compared to mice subjected to CLP alone, the administration of LGG improved the survival of mice with sepsis and notably enhanced their cognitive functioning. Moreover, LGG supplementation significantly alleviated the decrease in hippocampal BDNF expression and p-TrkB phosphorylation levels caused by sepsis, preserving neuronal survival and mitigating the pathological changes within the hippocampus of mice with sepsis. LGG supplementation mitigates sepsis-related cognitive impairment in mice and preserves BDNF expression and p-TrkB levels in the hippocampus.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Hipocampo , Lacticaseibacillus rhamnosus , Camundongos Endogâmicos C57BL , Probióticos , Sepse , Animais , Sepse/complicações , Sepse/terapia , Sepse/microbiologia , Sepse/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/etiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Camundongos , Hipocampo/metabolismo , Probióticos/farmacologia , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Modelos Animais de Doenças , Receptor trkB/metabolismo , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Encefalopatia Associada a Sepse/dietoterapia , Fosforilação
2.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 102-109, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650148

RESUMO

Sepsis-associated encephalopathy (SAE) is a serious complication of sepsis. The tumour necrosis factor receptor superfamily member 6 (TNFRSF6) gene encodes the Fas protein, and it participates in apoptosis induced in different cell types. This study aimed to explore TNFRSF6 function in SAE. The SAE mouse model was established by intraperitoneal injection of LPS in TNFRSF6-/- mice and C57BL/6J mice. Microglia were treated with LPS to establish the cell model. The learning, memory and cognitive functions in mice were tested by behavioral tests. Nissl staining was utilized for determining neuronal injury. Microglial activation was tested by immunofluorescence assay. ELISA was utilized for determining TNF-α, IL-1ß, IL-6, and IL-10 contents. Mitochondrial dysfunction was measured by mitochondrial oxygen consumption, ATP content, ROS production, and JC-1 assay. TNFRSF6 was upregulated in the LPS-induced mouse model and cell model. TNFRSF6 deficiency notably alleviated the impaired learning, memory and cognitive functions in SAE mice. Furthermore, we found that TNFRSF6 deficiency could alleviate neuronal injury, microglial activation, and inflammation in SAE mice. Additionally, mitochondrial dysfunction in the SAE mice was improved by TNFRSF6 depletion. In the LPS-induced microglia, we also proved that TNFRSF6 knockdown reduced inflammatory response inhibited ROS production, and alleviated mitochondrial dysfunction. TNFRSF6 induced mitochondrial dysfunction and microglia activation in the in vivo and in vitro models of SAE.


Assuntos
Modelos Animais de Doenças , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Microglia , Mitocôndrias , Encefalopatia Associada a Sepse , Animais , Masculino , Camundongos , Inflamação/patologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Espécies Reativas de Oxigênio/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/patologia , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia
3.
Lipids Health Dis ; 23(1): 128, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685023

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) refers to the widespread impairment of brain function caused by noncentral nervous system infection mediated by sepsis. Lipid peroxidation-induced ferroptosis contributes to the occurrence and course of SAE. This study aimed to investigate the relationship between neuronal injury and lipid peroxidation-induced ferroptosis in SAE. METHODS: Baseline data were collected from pediatric patients upon admission, and the expression levels of various markers related to lipid peroxidation and ferroptosis were monitored in the serum and peripheral blood mononuclear cells (PBMCs) of patients with SAE as well as SAE model mice. The hippocampal phosphatidylethanolamine-binding protein (PEBP)-1/15-lysine oxidase (LOX)/ glutathione peroxidase 4 (GPX4) pathway was assessed for its role on the inhibitory effect of ferroptosis in SAE treatment. RESULTS: The results showed elevated levels of S100 calcium-binding protein beta (S-100ß), glial fibrillary acidic protein, and malondialdehyde in the serum of SAE patients, while superoxide dismutase levels were reduced. Furthermore, analysis of PBMCs revealed increased transcription levels of PEBP1, LOX, and long-chain fatty acyl-CoA synthetase family member 4 (ACSL4) in SAE patients, while the transcription levels of GPX4 and cystine/glutamate transporter xCT (SLC7A11) were decreased. In comparison to the control group, the SAE mice exhibited increased expression of S-100ß and neuron-specific enolase (NSE) in the hippocampus, whereas the expression of S-100ß and NSE were reduced in deferoxamine (DFO) mice. Additionally, iron accumulation was observed in the hippocampus of SAE mice, while the iron ion levels were reduced in the DFO mice. Inhibition of ferroptosis alleviated the mitochondrial damage (as assessed by transmission electron microscopy, hippocampal mitochondrial ATP detection, and the JC-1 polymer-to-monomer ratio in the hippocampus) and the oxidative stress response induced by SAE as well as attenuated neuroinflammatory reactions. Further investigations revealed that the mechanism underlying the inhibitory effect of ferroptosis in SAE treatment is associated with the hippocampal PEBP-1/15-LOX/GPX4 pathway. CONCLUSION: These results offer potential therapeutic targets for the management of neuronal injury in SAE and valuable insights into the potential mechanisms of ferroptosis in neurological disorders.


Assuntos
Ferroptose , Hipocampo , Peroxidação de Lipídeos , Proteína de Ligação a Fosfatidiletanolamina , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Encefalopatia Associada a Sepse , Ferroptose/efeitos dos fármacos , Animais , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Masculino , Feminino , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/antagonistas & inibidores , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Modelos Animais de Doenças , Pré-Escolar , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Criança , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Malondialdeído/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Lactente
4.
J Immunol Res ; 2022: 3218452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571566

RESUMO

Sepsis-associated encephalopathy (SAE) is often associated with increased ICU occupancy and hospital mortality and poor long-term outcomes, with currently no specific treatment. Pathophysiological mechanisms of SAE are complex and may involve activation of microglia, multiple intracranial inflammatory factors, and inflammatory pathways. We hypothesized that metformin may have an effect on microglia, which affects the prognosis of SAE. In this study, metformin treatment of mice with SAE induced by lipopolysaccharide (LPS) reduced the expression of microglia protein and related inflammatory factors. Poor prognosis of SAE is related to increased expression of tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1ß) in brain tissues. Levels of inflammatory cytokines produced by LPS-induced SAE mouse microglia were significantly increased compared with those in the sham group. In addition, ionized calcium-binding adapter molecule 1 (Iba-1) was significantly reduced in metformin-treated SAE mice compared with untreated SAE mice, suggesting that metformin can reduce microgliosis and inhibit central nervous system inflammation, thereby improving patient outcomes. In conclusion, our results stipulate that metformin inhibits inflammation through the adenosine 5'-monophosphate (AMP-) activated protein kinase pathway by inhibiting nuclear factor kappa beta (NF-κB). Metformin can partially reverse the severe prognosis caused by sepsis by blocking microglial proliferation and inhibiting the production of inflammatory factors.


Assuntos
Metformina , Encefalopatia Associada a Sepse , Sepse , Animais , Lipopolissacarídeos/farmacologia , Metformina/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Microglia/metabolismo , NF-kappa B/metabolismo , Prognóstico , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia
5.
Pediatr Res ; 89(3): 464-475, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32521540

RESUMO

BACKGROUND: Exposure to inflammation exacerbates injury in neonatal encephalopathy (NE). We hypothesized that brain biomarker mRNA, cytokine mRNA and microRNA differentiate inflammation (E. coli LPS), hypoxia (Hypoxia), and inflammation-sensitized hypoxia (LPS+Hypoxia) in an NE piglet model. METHODS: Sixteen piglets were randomized: (i) LPS 2 µg/kg bolus; 1 µg/kg infusion (LPS; n = 5), (ii) Saline with hypoxia (Hypoxia; n = 6), (iii) LPS commencing 4 h pre-hypoxia (LPS+Hypoxia; n = 5). Total RNA was acquired at baseline, 4 h after LPS and 1, 3, 6, 12, 24, 48 h post-insult (animals euthanized at 48 h). Quantitative PCR was performed for cytokines (IL1A, IL6, CXCL8, IL10, TNFA) and brain biomarkers (ENO2, UCHL1, S100B, GFAP, CRP, BDNF, MAPT). MicroRNA was detected using GeneChip (Affymetrix) microarrays. Fold changes from baseline were compared between groups and correlated with cell death (TUNEL) at 48 h. RESULTS: Within 6 h post-insult, we observed increased IL1A, CXCL8, CCL2 and ENO2 mRNA in LPS+Hypoxia and LPS compared to Hypoxia. IL10 mRNA differentiated all groups. Four microRNAs differentiated LPS+Hypoxia and Hypoxia: hsa-miR-23a, 27a, 31-5p, 193-5p. Cell death correlated with TNFA (R = 0.69; p < 0.01) at 1-3 h and ENO2 (R = -0.69; p = 0.01) at 48 h. CONCLUSIONS: mRNA and miRNA differentiated hypoxia from inflammation-sensitized hypoxia within 6 h in a piglet model. This information may inform human studies to enable triage for tailored neuroprotection in NE. IMPACT: Early stratification of infants with neonatal encephalopathy is key to providing tailored neuroprotection. IL1A, CXCL8, IL10, CCL2 and NSE mRNA are promising biomarkers of inflammation-sensitized hypoxia. IL10 mRNA levels differentiated all three pathological states; fold changes from baseline was the highest in LPS+Hypoxia animals, followed by LPS and Hypoxia at 6 h. miR-23, -27, -31-5p and -193-5p were significantly upregulated within 6 h of a hypoxia insult. Functional analysis highlighted the diverse roles of miRNA in cellular processes.


Assuntos
Citocinas/genética , Hipóxia-Isquemia Encefálica/sangue , Inflamação/sangue , MicroRNAs/sangue , RNA Mensageiro/sangue , Animais , Animais Recém-Nascidos , Biomarcadores , Encéfalo/patologia , Quimiocinas/biossíntese , Quimiocinas/genética , Citocinas/biossíntese , Modelos Animais de Doenças , Endotoxemia/sangue , Endotoxemia/induzido quimicamente , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Hipóxia-Isquemia Encefálica/patologia , Inflamação/genética , Lipopolissacarídeos/toxicidade , Masculino , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Fosfopiruvato Hidratase/biossíntese , Fosfopiruvato Hidratase/genética , Distribuição Aleatória , Encefalopatia Associada a Sepse/sangue , Encefalopatia Associada a Sepse/induzido quimicamente , Encefalopatia Associada a Sepse/patologia , Suínos , Fatores de Tempo , Análise Serial de Tecidos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
6.
J Surg Res ; 256: 258-266, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32712439

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is a common complication of sepsis. Although sepsis is effectively managed with the administration of antibiotics and source control, which may include surgical intervention, SAE usually leads to prolonged cognitive dysfunction affecting the quality of life of the patients. In this study, we investigated the possible effect of electroacupuncture (EA) on cognition in a model of SAE induced by cecal ligation and puncture (CLP). MATERIALS AND METHODS: The rats were randomly divided into four groups: the control group, the CLP group, the CLP with EA treatment group (CLP + EA), and the CLP with sham EA treatment group (CLP + sham EA). EA at DU20, LI11, and ST36 or sham EA was performed 30 min daily for 10 consecutive days starting from 2 days before CLP. Then cognitive function was examined by the Morris water maze test. On day 14 after CLP surgery, the synaptic injury, neuron loss, and oxidative stress were studied. RESULTS: Rats with EA treatment showed improved survival rate, spatial learning, and memory abilities. The dendritic spine density, the synaptic proteins, and the hippocampal neuron number were also increased after EA treatment. Furthermore, EA suppressed oxidative stress through regulating the level of malondialdehyde and superoxide dismutase and enhanced the expression of antioxidant nuclear factor erythroid-2-related factor-2 and hemeoxygenase-1. But sham EA did not have the same effect. CONCLUSIONS: EA may protect against SAE-induced cognitive dysfunction by inhibiting synaptic injury, neuronal loss, and oxidative stress, and the nuclear factor erythroid-2-related factor-2/hemeoxygenase-1 signaling pathway may be involved in this effect.


Assuntos
Disfunção Cognitiva/terapia , Eletroacupuntura , Encefalopatia Associada a Sepse/terapia , Sepse/complicações , Animais , Cognição/fisiologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Modelos Animais de Doenças , Heme Oxigenase (Desciclizante)/metabolismo , Humanos , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Neurônios/patologia , Estresse Oxidativo/fisiologia , Ratos , Sepse/terapia , Encefalopatia Associada a Sepse/diagnóstico , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/patologia , Transdução de Sinais/fisiologia , Sinapses/patologia
7.
Brain Res ; 1746: 147003, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32603701

RESUMO

Sepsis encephalopathy (SAE) has a high incidence and mortality rate in patients with sepsis; however, there is currently no effective treatment. Our previous studies have reported that 2% hydrogen (H2) gas inhalation had a protective effect on sepsis and SAE; however, the specific mechanism have not been fully elucidated. In the current study, male Institute of Cancer Research mice were either used to create the cecal ligation and puncture (CLP) model or for sham surgery, followed by 2% H2 gas inhalation for 60 min beginning at 1 and 6 h following sham or CLP surgeries. The isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomics combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, hematoxylin and eosin (H&E) staining, Nissl staining, and western blot analysis were used to investigate the effects of H2 on brain injury in mice with sepsis. The results of the H&E, and Nissl staining indicated that the CLP mice had a significant brain injury, which was characterized by aggravated pathological damage and was alleviated by 2% H2 inhalation. Quantitative proteomics based on iTRAQ combined with LC-MS/MS analysis quantified a total of 5317 proteins, of which 39 were connected with the protective mechanism of H2. In addition, H2 could regulate the immune and the coagulation systems. Furthermore, western blot analysis revealed that H2 decreased SAE in septic mice by downregulating the protein expression levels of SMAD4, DPYS, PTGDS and upregulating the expression level of CUL4A. These results provide insights into the mechanism of the positive effect of H2 on SAE and contribute to the clinical application of H2 in patients with sepsis.


Assuntos
Hidrogênio/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteômica/métodos , Encefalopatia Associada a Sepse/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR
8.
J Cell Mol Med ; 24(12): 6634-6643, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32363721

RESUMO

Sepsis-associated encephalopathy (SAE) has typically been associated with a poor prognosis. Although sestrin 2 (SESN2) plays a crucial role in metabolic regulation and the stress response, its expression and functional roles in SAE are still unclear. In the present study, SAE was established in mice through caecal ligation and puncture (CLP). The adeno-associated virus 2 (AAV2)-mediated SESN2 expression (ie overexpression and knockdown) system was injected into the hippocampi of mice with SAE, and subsequently followed by electron microscopic analysis, the Morris water maze task and pathological examination. Our results demonstrated an increase of SESN2 in the hippocampal neurons of mice with SAE, 2-16 hours following CLP. AAV2-mediated ectopic expression of SESN2 attenuated brain damage and loss of learning and memory functions in mice with SAE, and these effects were associated with lower pro-inflammatory cytokines in the hippocampus. Mechanistically, SESN2 promoted unc-51-like kinase 1 (ULK1)-dependent autophagy in hippocampal neurons through the activation of the AMPK/mTOR signalling pathway. Finally, AMPK inhibition by SBI-0206965 blocked SESN2-mediated attenuation of SAE in mice. In conclusion, our findings demonstrated that SESN2 might be a novel pharmacological intervention strategy for SAE treatment through promotion of ULK1-dependent autophagy in hippocampal neurons.


Assuntos
Autofagia , Hipocampo/patologia , Neurônios/metabolismo , Neurônios/patologia , Peroxidases/metabolismo , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Adenilato Quinase/metabolismo , Animais , Autofagossomos/metabolismo , Autofagossomos/ultraestrutura , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Peroxidases/genética , Encefalopatia Associada a Sepse/genética , Encefalopatia Associada a Sepse/prevenção & controle , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima/genética
9.
Sci Rep ; 10(1): 7718, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382007

RESUMO

We investigated the role of dynamic changes of serum levels S100B protein in brain injury and poor outcome of sepsis. This is a prospective cohort study designed to include 104 adult patients with sepsis who are admitted to ICU from Jan 2015 to Aug 2016. Sepsis was defined as sepsis 3.0. Patients with a GCS score of <15, or at least one positive CAM-ICU score were thought to have brain dysfunction. 59 patients were diagnosed with SAE and the rest 45 patients were diagnosed with non-SAE. Serum S100B was measured on day 1 and 3 after ICU admission. Primary outcomes included brain dysfunction and 28-day/180-day mortality. The SAE group showed a significantly higher APACHE II score, SOFA scores, length of ICU stay, 28-day and 180-day mortality, serum S100B levels on day 1 and day 3. S100B levels on day 1 of 0.226 µg/L were diagnostic for SAE with 80.0% specificity and 66.1% sensitivity, and the area under (AUC) the curve was 0.728, S100B levels on day 3 of 0.144 µg/L were diagnostic for SAE with 84.44% specificity and 69.49% sensitivity, and the AUC was 0.819. In addition, the AUC for S100B on day 3 for predicting 180-day mortality was larger than for S100B on day 1 (0.731 vs. 0.611). Multiple logistic regression analysis showed that S100B3 (p = 0.001) but not S100B1 (p = 0.927) were independently correlated with SAE. Kaplan-Meier survival analysis showed that patients with S100B levels higher than 0.144 µg/L had a lower probability of survival at day 180. There were more patients with encephalopathy and a higher 28-day or 180-day mortality in the ΔS100B + group than in the ΔS100B- group. Multiple logistic regression analysis showed that SAE and IL-6 on day 3 were independently correlated with S100B dynamic increase. These findings suggest that elevated serum S100B levels on day 3 and the dynamic changes of serum S100B levels from day three to one were more associated with brain dysfunction and mortality than that on day 1 in patients with sepsis.


Assuntos
Lesões Encefálicas/sangue , Interleucina-6/sangue , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Encefalopatia Associada a Sepse/sangue , Lesões Encefálicas/epidemiologia , Lesões Encefálicas/patologia , Feminino , Humanos , Estimativa de Kaplan-Meier , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROC , Encefalopatia Associada a Sepse/epidemiologia , Encefalopatia Associada a Sepse/patologia
10.
Inflamm Res ; 69(7): 697-710, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32350570

RESUMO

OBJECTIVE: Sepsis-associated encephalopathy (SAE) is a major cause of mortality worldwide. Oxidative stress, inflammatory response and apoptosis participate in the pathogenesis of SAE. Nuclear factor erythroid 2-related factor 2 (Nrf2) and nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) pathway is involved in oxidative stress and inflammatory response. We reported that hydrogen gas protected against sepsis in wild-type (WT) but not Nrf2 knockout (KO) mice. Therefore, it is vital to identify the underlying cause of hydrogen gas treatment of sepsis-associated encephalopathy. METHODS: SAE was induced in WT and Nrf2 KO mice by cecal ligation and puncture (CLP). As a NLRP3 inflammasome inhibitor, MCC950 (50 mg/kg) was administered by intraperitoneal (i.p.) injection before operation. Hydrogen gas (H2)-rich saline solution (5 mL/kg) was administered by i.p. injection at 1 h and 6 h after sham and CLP operations. Brain tissue was collected to assess the NLRP3 and Nrf2 pathways by western blotting, reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. RESULTS: SAE increased NLRP3 and Nrf2 expression in microglia. MCC950 inhibited SAE-induced NLRP3 expression, interleukin (IL)-1ß and IL-18 cytokine release, neuronal apoptosis and mitochondrial dysfunction. SAE increased NLRP3 and caspase-1 expression in WT mice compared to Nrf2 KO mice. Hydrogen increased Nrf2 expression and inhibited the SAE-induced expression of NLRP3, caspase-1, cytokines IL-1ß and IL-18, neuronal apoptosis, and mitochondrial dysfunction in WT mice but not Nrf2 KO mice. CONCLUSION: SAE increased NLRP3 and Nrf2 expression in microglia. Hydrogen alleviated inflammation, neuronal apoptosis and mitochondrial dysfunction via inhibiting Nrf2-mediated NLRP3 pathway.


Assuntos
Hidrogênio/administração & dosagem , Fator 2 Relacionado a NF-E2/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Encefalopatia Associada a Sepse/prevenção & controle , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Química Encefálica , Ceco , Córtex Cerebral/ultraestrutura , Citocinas/metabolismo , Furanos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Indenos , Masculino , Camundongos , Camundongos Knockout , Microglia/fisiologia , Mitocôndrias/fisiologia , Fator 2 Relacionado a NF-E2/deficiência , Proteína 3 que Contém Domínio de Pirina da Família NLR/análise , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Punções , Encefalopatia Associada a Sepse/patologia , Sulfonamidas , Sulfonas/farmacologia
11.
Pak J Pharm Sci ; 33(6): 2567-2577, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33867332

RESUMO

Ginsenoside (Rg1) has biological effects including anti-oxidation, anti-inflammation, neuroprotection and neural function improvement, but with few studies in sepsis-associated encephalopathy (SAE). This study thus evaluated Ginsenoside in alleviating SAE, suppressing oxidative stress (OS) or neuronal apoptosis. SAE mouse model was generated and were assigned into SAE, SAE + LD-Rg1, and SAE + HD-Rg1 groups to measure neural apoptosis by flow cytometry. Contents of malondialdehyde (MDA), superoxide dismutase (SOD), GSH-Px and caspase-3 were quantified, and mouse neural reflex function was evaluated. Expression of Nrf2, HO-1 was measured. Mouse neuron MN-c and microglia BV2 were co-cultured in control, LPS, LPS+Rg1 (20µM) and LPS+Rg1 (40µM) groups. Iba-1 expression of BV2 cells was measured by flow cytometry. Contents of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and IL-6 were quantified. Apoptosis of MN-c cells was measured by flow cytometry, and reactive oxygen species (ROS) content was measured by DCFH-DA staining. SAE mice had elevated caspase-3 activity, cell apoptosis, MDA content, and decreased SOD, GSH-Px activity or neural reflex score comparing to Sham group. Rg1 treatment suppressed caspase-3 activity, apoptotic rate or MDA content, recovered SOD activity, neural reflex score, and expression of Nrf2 and HO-1. LPS treatment elevated Iba-1 expression and release of inflammatory cytokines TNF-α, IL-1ß and IL-6, induced MN-c apoptosis or ROS production, and enhanced Nrf2 and HO-1 expression. Rg1 treatment remarkably inhibited LPS-induced response or cell apoptosis. Ginsenoside can alleviate SAE damage via up-regulating Nrf2 and HO-1 to enhance anti-OS potency and to reduce neural cell apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Ginsenosídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Encefalopatia Associada a Sepse/tratamento farmacológico , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Caspase 3/metabolismo , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Heme Oxigenase-1/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Encefalopatia Associada a Sepse/patologia , Encefalopatia Associada a Sepse/fisiopatologia
12.
Brain Behav Immun ; 83: 200-213, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622656

RESUMO

Sepsis-associated encephalopathy (SAE) refers to brain dysfunction, including delirium, occurs during severe infection and is associated with development of post-traumatic stress disorder. SAE has been proposed to be related to reduced cerebral blood flow (CBF), blood-brain barrier breakdown (BBB), white matter edema and disruption and glia cell activation, but their exact relationships remain to be determined. In the present work, we set out to study CBF using Arterial Spin Labeling (ASL) and grey and white matter structure with T2- and diffusion magnetic resonance imaging (dMRI) in rats with cecal ligation and puncture (CLP)-induced encephalopathy. Using immunohistochemistry, the distribution of the vasoactive prostaglandin-synthesizing enzyme cyclooxygenase-2 (COX-2), perivascular immunoglobulins G (IgG), aquaporin-4 (AQP4) and the morphology of glial cell were subsequently assessed in brains of the same animals. CLP induced deficits in the righting reflex and resulted in higher T2-weighted contrast intensities in the cortex, striatum and at the base of the brain, decreased blood perfusion distribution to the cortex and increased water diffusion parallel to the fibers of the corpus callosum compared to sham surgery. In addition, CLP reduced staining for microglia- and astrocytic-specific proteins in the corpus callosum, decreased neuronal COX-2 and AQP4 expression in the cortex while inducing perivascular COX-2 expression, but did not induce widespread perivascular IgG diffusion. In conclusion, our findings indicate that experimental SAE can occur in the absence of BBB breakdown and is accompanied by increased water diffusion anisotropy and altered glia cell morphology in brain white matter.


Assuntos
Barreira Hematoencefálica , Ciclo-Oxigenase 2/biossíntese , Neuroglia/patologia , Perfusão , Encefalopatia Associada a Sepse , Água/metabolismo , Animais , Aquaporina 4 , Ciclo-Oxigenase 2/genética , Difusão , Imunoglobulina G , Masculino , Ratos , Ratos Wistar , Encefalopatia Associada a Sepse/sangue , Encefalopatia Associada a Sepse/enzimologia , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia
13.
Mol Med Rep ; 20(5): 4731-4740, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31702043

RESUMO

Sepsis­associated encephalopathy (SAE) is characterized by neuronal apoptosis and changes in mental status. Accumulating evidence has. indicated that dexmedetomidine is capable of protecting the brain against external stimuli and improving cognitive dysfunctions. The aim of the present study was to investigate the possible neuroprotective effects of dexmedetomidine on SAE and the role of heat­shock protein (Hsp)90/AKT signaling in an experimental model of sepsis. The SAE model was established by cecal ligation and perforation (CLP) in vivo and lipopolysaccharide (LPS) treated hippocampal neuronal cultures in vitro. It was found that dexmedetomidine inhibited caspase­3, but increased the expression level ofBcl­2 in CLP rats. CLP rats also exhibited a decreased level of phosphorylated AKT Thr 308 and Hsp90, and their expression could be reversed by treatment with dexmedetomidine. Additionally, application of dexmedetomidine increased cell survival and decreased neuronal apoptosis in vitro. Furthermore, the neuroprotective effects of dexmedetomidine could be reversed by 17­AAG (a Hsp90 inhibitor), or wortmannin (a PI3K inhibitor). Analysis of TUNEL staining indicated that dexmedetomidine improved LPS­induced neuronal apoptosis, which could be eradicated by AKT short hairpin RNA transfection, prazosin or yohimbine. Finally, dexmedetomidine ameliorated both the emotional and spatial cognitive disorders without alteration in locomotor activity. The present findings suggested that dexmedetomidine may protect the brain against SAE, and that the Hsp90/AKT pathway may be involved in this process.


Assuntos
Dexmedetomidina/farmacologia , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Encefalopatia Associada a Sepse/prevenção & controle , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Masculino , Neurônios/metabolismo , Neurônios/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Sepse/metabolismo , Sepse/patologia , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia
14.
Biomed Res Int ; 2019: 2612849, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781604

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is a transient and reversible brain dysfunction, that occurs when the source of sepsis is located outside of the central nervous system; SAE affects nearly 30% of septic patients at admission and is a risk factor for mortality. In our study, we sought to determine whether metabolite changes in plasma could be a potential biomarker for the early diagnosis and/or the prediction of the prognosis of sepsis. METHOD: A total of 31 SAE patients and 28 healthy controls matched by age, gender, and body mass index (BMI) participated in our study. SAE patients were divided into four groups according to the Glasgow Coma Score (GCS). Plasma samples were collected and used to detect metabolism changes by gas chromatography-mass spectrometry (GC-MS). Analysis of variance was used to determine which metabolites significantly differed between the control and SAE groups. RESULTS: We identified a total of 63 metabolites that showed significant differences among the SAE and control groups. In particular, the 4 common metabolites in the four groups were 4-hydroxyphenylacetic acid; carbostyril, 3-ethyl-4,7-dimethoxy (35.8%); malic acid peak 1; and oxalic acid. The concentration of 4-hydroxyphenylacetic acid in sepsis patients decreased with a decrease of the GCS. CONCLUSIONS: According to recent research on SAE, metabolic disturbances in tissue and cells may be the main pathophysiology of this condition. In our study, we found a correlation between the concentration of 4-hydroxyphenylacetic acid and the severity of consciousness disorders. We suggest that 4-hydroxyphenylacetic acid may be a potential biomarker for SAE and useful in predicting patient prognosis.


Assuntos
Biomarcadores/sangue , Metabolômica , Encefalopatia Associada a Sepse/sangue , Sepse/sangue , Idoso , Índice de Massa Corporal , Diagnóstico Precoce , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Escala de Coma de Glasgow , Humanos , Hidroxiquinolinas/sangue , Unidades de Terapia Intensiva , Malatos/sangue , Masculino , Pessoa de Meia-Idade , Ácido Oxálico/sangue , Fenilacetatos/sangue , Prognóstico , Quinolonas/sangue , Sepse/complicações , Sepse/patologia , Encefalopatia Associada a Sepse/complicações , Encefalopatia Associada a Sepse/patologia
15.
J Integr Neurosci ; 18(4): 415-421, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31912700

RESUMO

Sepsis associated encephalopathy is a common complication of sepsis, but its pathogenesis of sepsis-associated encephalopathy remains unclear. Astrocytes are the most abundant brain glial cells, and reactive astrogliosis, a pathological response to central nervous system diseases, has a clear disease and disease-stage specificity. Functional changes of astrocytes are of great significance for the detection and prognosis of sepsis-associated encephalopathy. The pathogenesis of sepsis-associated encephalopathy was explored at the cellular level by examining astrogliosis in an in vitro model of sepsis-associated encephalopathy. Astrocytes of Wistar neonatal rats were incubated with different concentrations of lipopolysaccharide combined with interferon-γ. Cell viability was assessed by levels of tumor necrosis factor-α, interleukin-6, nitric oxide, reactive oxygen species, glial fibrillary acidic protein, changes of astrocyte morphology, and prevalence of apoptosis and necrosis. Compared with the control group, the cell viability of treated groups was decreased. The levels of tumor necrosis factor-α, interleukin-6, nitric oxide, reactive oxygen species, and glial fibrillary acidic protein were increased, hypertrophy of astrocytes was observed, and apoptosis was increased. The pathogenic outcomes of astrogliosis in sepsis-associated encephalopathy is discussed and a new tool provided to explore the pathogenesis of sepsis-associated encephalopathy at the cellular level.


Assuntos
Apoptose , Gliose , Interferon gama , Lipopolissacarídeos , Encefalopatia Associada a Sepse , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Sobrevivência Celular/fisiologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Gliose/patologia , Ratos , Ratos Wistar , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia
16.
Toxicol Appl Pharmacol ; 363: 34-46, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30336174

RESUMO

Sepsis-induced brain injury is frequently encountered in critically ill patients with severe systemic infection. Butein (3,4,2',4'-tetrahydroxychalcone) has been demonstrated as the neuro-protective agent via reducing inflammation and oxidative stress on neurons. Moreover, activation of silent information regulator 1 (SIRT1) inhibits apoptosis, oxidation and inflammation thus alleviating sepsis-induced multiorgan injuries. In present study, we show that butein administrated intraperitoneally (10 mg/kg) saved mice from sepsis-induced lethality by increasing 7-day survival rate after cecal ligation and puncture (CLP) surgery. Additionally, butein treatment enhanced SIRT1 signaling thus decreasing the Ac-NF-κB, Ac-FOXO1 and Ac-p53 levels, thus attenuating the brain injury of mice after CLP surgery by decreasing cerebral edema, maintaining the blood-brain barrier integrity, inhibiting neuronal apoptosis, and decreasing pro-inflammatory cytokines production (IL-6, TNF-α and IL-1ß) and oxidative stress (downregulation of MDA, and upregulation of SOD and CAT) in both serum and cerebral cortex tissues. Moreover, butein treatment attenuated LPS induced neurological function loss. However, all above mentioned neuro-protective actions of butein were partially inhibited by EX527 co-treatment, one standard SIRT1 inhibitor. Collectively, butein attenuates sepsis-induced brain injury through alleviation of cerebral inflammation, oxidative stress and apoptosis by SIRT1 signaling activation.


Assuntos
Chalconas/farmacologia , Inflamação/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Encefalopatia Associada a Sepse/tratamento farmacológico , Sepse/complicações , Sirtuína 1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Carbazóis/farmacologia , Chalconas/uso terapêutico , Modelos Animais de Doenças , Humanos , Inflamação/etiologia , Inflamação/mortalidade , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Sepse/mortalidade , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/mortalidade , Encefalopatia Associada a Sepse/patologia , Transdução de Sinais/efeitos dos fármacos , Sirtuína 1/antagonistas & inibidores , Resultado do Tratamento
17.
J Neurochem ; 145(6): 474-488, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29500815

RESUMO

Sepsis-associated encephalopathy (SAE), characterized as diffuse brain dysfunction and neurological manifestations secondary to sepsis, is a common complication in critically ill patients and can give rise to poor outcome, but understanding the molecular basis of this disorder remains a major challenge. Given the emerging role of G protein-coupled receptor 2 (GRK2), first identified as a G protein-coupled receptor (GPCR) regulator, in the regulation of non-G protein-coupled receptor-related molecules contributing to diverse cellular functions and pathology, including inflammation, we tested the hypothesis that GRK2 may be linked to the neuropathogenesis of SAE. When mouse MG6 microglial cells were challenged with lipopolysaccharide (LPS), GRK2 cytosolic expression was highly up-regulated. The ablation of GRK2 by small interfering RNAs (siRNAs) prevented an increase in intracellular reactive oxygen species generation in LPS-stimulated MG6 cells. Furthermore, the LPS-induced up-regulation of inducible nitric-oxide synthase expression and increase in nitric oxide production were negated by GRK2 inhibitor or siRNAs. However, GRK2 inhibition was without effect on overproduction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß in LPS-stimulated MG cells. In mice with cecal ligation and puncture-induced sepsis, treatment with GRK2 inhibitor reduced high levels of oxidative and nitrosative stress in the mice brains, where GRK2 expression was up-regulated, alleviated neurohistological damage observed in cerebral cortex sections, and conferred a significant survival advantage to CLP mice. Altogether, these results uncover the novel role for GRK2 in regulating cellular oxidative and nitrosative stress during inflammation and suggest that GRK2 may have a potential as an intriguing therapeutic target to prevent or treat SAE.


Assuntos
Quinase 2 de Receptor Acoplado a Proteína G/fisiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Encefalopatia Associada a Sepse/patologia , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Citocinas/biossíntese , Inibidores Enzimáticos/uso terapêutico , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , RNA Interferente Pequeno/farmacologia , Encefalopatia Associada a Sepse/complicações , Encefalopatia Associada a Sepse/tratamento farmacológico , Regulação para Cima/efeitos dos fármacos
18.
Eur Rev Med Pharmacol Sci ; 21(17): 3924-3934, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28975969

RESUMO

OBJECTIVE: To study the structural and functional changes in mitochondria in astrocytes of the cerebral cortex of the rats in the simulated sepsis environment in vitro and the relationship between these changes and the biogenesis of mitochondria in astrocytes by establishing models of sepsis astrocytes. MATERIALS AND METHODS: The structural and functional changes in mitochondria in astrocytes of the cerebral cortex of the rats were evaluated. The ultra structural changes in the mitochondria, astrocytes, and ultrathin sections, were observed with a transmission electron microscope. The expression of the regulatory factors related to biogenesis of mitochondria in astrocytes of the cerebral cortex of the rats was evaluated in various experimental groups. RT-PCR and Western blot were used to evaluate the expression of the regulatory factors related to biogenesis of mitochondria in astrocytes of the cerebral cortex of the rats. The "point grid method" was used to evaluate the volume density of the mitochondria in the astrocytes of the cerebral cortex of the rats in various experimental groups. The Western blotting was used to evaluate the role of fusion and fission of mitochondria in the astrocytes of the cerebral cortex of the rats in various experimental groups in regulating the expression of the protein-OPAI and DRPI. RESULTS: In the sepsis astrocyte models established by co-incubation of LPS and IFN-γ and astrocytes of the cerebral cortex of the rats, the mitochondria with a minor injury in the 6 h group (2.97± 0.92) increased significantly when compared with those in the 0 h group (1.08±0.95), 12 h group (1.70±1.01), and 24 h group (1.59±0.55) (p<0.05); the concentration of adenosine triphosphate (ATP) in the astrocytes of the cerebral cortex of the rats in the 6 h, 12 h, and 24 h groups increased significantly when compared with that in the 0 h group (p<0.05). PGC-1α mRNA, NRF-1 mRNA, NRF-2α mRNA, NRF-2ß mRNA, and mitochondrial transcription factor A (TFAM) mRNA in the astrocytes of the cerebral cortex of the rats in the 6 h and 12 h groups increased significantly when compared with those in the 0 h group (p<0.05); the concentration of TFAM mRNA (1.20±0.19) increased significantly when compared with that in the 0 h group (p<0.05). The OPAI protein concentration (1.21±0.17:1.34±0.06) and DRPI protein concentration (1.04±0.05; 1.05±0.05) in the astrocytes of the cerebral cortex of the rats in the 12 h group (1.25±0.17), 24 h group (1.33±0.24), and 6 h group increased significantly when compared with that in the 0 h group (p <0.05). CONCLUSIONS: The experimental sepsis conditions can cause a minor injury of the ultrastructure of the mitochondria in the astrocytes of the cerebral cortex of the rats. The biogenesis of the mitochondria in the astrocytes of the cerebral cortex of the rats was strengthened to cater for the increased demand for energy of the astrocytes under the sepsis conditions and finally recover the ultrastructure of the mitochondria with a minor injury. In response to the increased mitochondrial biogenesis, the activities of the mitochondrial fusion and fission of the astrocytes of the cerebral cortex of the rats were increased.


Assuntos
Mitocôndrias/metabolismo , Biogênese de Organelas , Encefalopatia Associada a Sepse/patologia , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Biomarcadores/análise , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Interferon gama/farmacologia , Interleucina-6/análise , Lipopolissacarídeos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Fator 1 Relacionado a NF-E2/genética , Fator 1 Relacionado a NF-E2/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Encefalopatia Associada a Sepse/veterinária , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/análise
19.
Int J Clin Exp Pathol ; 8(8): 8881-91, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26464629

RESUMO

Sepsis-associated encephalopathy (SAE) is a common complication after sepsis development, which is associated with the poor prognosis. However, no effective agent is currently available to treat this complication. The objective of the present study was to investigate whether low-molecular-weight heparin (LMWH) has protective effects against sepsis-induced cognitive impairments. Male mice were randomly divided into the control + vehicle, control + LMWH, lipopolysaccharide (LPS) + vehicle, or LPS + LMWH group. LMWH was administrated 30 min after the LPS administration (5 mg/kg) and daily afterward for 2 days. The survival rate was estimated by the Kaplan-Meier method. Behavioral tests were performed by open field and fear conditioning tests at day 7 after LPS administration. The levels of tumor necrosis factor alpha, interleukin (IL)-1ß, IL-6, IL-10, malondialdehyde, and superoxide dismutase, Toll-like receptor 4, nuclear factor kappa B p65, inducible nitric oxide synthase, cyclooxygenase-2, occluding, high mobility group box-1, brain derived neurotrophic factor, and IBA1 positive cells were assessed at the indicated time points. LMWH attenuated LPS-induced hippocampus-dependent cognitive impairments, which was accompanied by decreased hippocampal IL-1ß, malondialdehyde, Toll-like receptor 4, nuclear factor kappa B p65, inducible nitric oxide synthase, cyclooxygenase-2, high mobility group box-1 protein, and IBA1 positive cells, and increased occluding and brain derived neurotrophic factor levels. In conclusion, LMWH treatment protects against sepsis-induced cognitive impairments by attenuating hippocampal microglial activation, cytokine and oxidative stress production, disruption of blood-brain barrier, and the loss of synaptic plasticity related proteins.


Assuntos
Anticoagulantes/farmacologia , Heparina de Baixo Peso Molecular/farmacologia , Hipocampo/efeitos dos fármacos , Encefalopatia Associada a Sepse/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Western Blotting , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Hipocampo/patologia , Imuno-Histoquímica , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA