Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 472: 115174, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39098398

RESUMO

Sepsis-associated encephalopathy (SAE) is a common and severe clinical feature of sepsis; however, therapeutic approaches are limited because of the unclear pathogenesis. Adiponectin receptor agonist (AdipoRon) is a small-molecule agonist of the adiponectin receptor that exhibits anti-inflammatory and memory-improving effects in various diseases. In the present study, we established lipopolysaccharide (LPS)-induced mice models of SAE and found that Adiponectin receptor 1 (AdipoR1) was significantly decreased in the hippocampus. Administration of AdipoRon improves memory impairment, mitigates synaptic damage, and alleviates neuronal death. Furthermore, AdipoRon reduces the number of microglia. More importantly, AdipoRon promotes the phosphorylation of adenosine 5 '-monophosphate activated protein kinase (pAMPK). In conclusion, AdipoRon is protective against SAE-induced memory decline and brain injury in the SAE models via activating the hippocampal adenosine 5 '-monophosphate activated protein kinase (AMPK).


Assuntos
Modelos Animais de Doenças , Hipocampo , Transtornos da Memória , Receptores de Adiponectina , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Lipopolissacarídeos/farmacologia , Transtornos da Memória/tratamento farmacológico , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Piperidinas/farmacologia , Receptores de Adiponectina/agonistas , Receptores de Adiponectina/metabolismo , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo
2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 481-487, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38952086

RESUMO

Objective To elucidate the role of chaperone-mediated autophagy (CMA) in alleviating emotional dysfunction in mice with sepsis-associated encephalopathy (SAE). Methods The SAE mouse model was established by cecal ligation and perforation (CLP). The severity of sepsis was assessed using the sepsis severity score (MSS). Emotional function in SAE mice was assessed by the open-field test and elevated plus-maze. The expression levels of cognitive heat shock cognate protein 70 (HSC70), lysosomal-associated membrane protein 2A (LAMP2A) and high mobility group box 1 protein B1 (HMGB1) were detected using Western blotting. Co-localization of LAMP2A in the hippocampal neurons was observed by immunofluorescence. The release of inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) was measured using ELISA. Following 12 hours post-CLP, mice were orally administered resveratrol at a dose of 30 mg/kg once daily until day 14. Results The mortality rate of CLP mice was 45.83% 24 days post CLP, and all surviving mice exhibited emotional disturbances. 24 hours after CLP, a significant decrease in HSC70 and LAMP2A expression in hippocampal neurons was observed, indicating impaired CMA activity. Meanwhile, HMGB1 and inflammatory cytokines (IL-6 and TNF-α) levels increased. After resveratrol treatment, an increase of HSC70 and LAMP2A expression, and a decrease of HMGB1 expression and inflammatory cytokine release were observed, suggesting enhanced CMA activity and reduced neuroinflammation. Behavioral tests showed that emotional dysfunction was improved in SAE mice after resveratrol treatment. Conclusion CMA activity of hippocampal neurons in SAE mice is significantly reduced, leading to emotional dysfunction. Resveratrol can alleviate neuroinflammation and emotional dysfunction in SAE mice by promoting CMA and inhibiting the expression of HMGB1 and the release of inflammatory factors.


Assuntos
Autofagia Mediada por Chaperonas , Proteína HMGB1 , Resveratrol , Encefalopatia Associada a Sepse , Animais , Camundongos , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/fisiopatologia , Encefalopatia Associada a Sepse/metabolismo , Masculino , Resveratrol/farmacologia , Proteína HMGB1/metabolismo , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Interleucina-6/metabolismo , Estilbenos/farmacologia , Proteínas de Choque Térmico HSC70/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/fisiopatologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
3.
Neurosci Lett ; 834: 137845, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38821202

RESUMO

Sepsis-associated encephalopathy, which manifests in severe cognitive and depressive symptoms, is directly linked to neuroinflammation. Our study investigates the efficacy of 25H-NBOMe, a phenethylamine, in alleviating these symptoms, potentially offering an innovative treatment for post-sepsis depression. Wistar rats, weighing between 250-300 g, were subjected to cecal ligation and puncture (CLP) surgery to induce sepsis. Depressive-like behaviors were assessed using the forced swim test (FST) on either day 7 or 14 post-surgery, to establish the presence of depressive symptoms. The impact of 25H-NBOMe treatment was then evaluated, focusing on the head-twitch response (HTR), performance in the FST, and GFAP expression in the prefrontal cortex. Treatment with 25H-NBOMe resulted in significant behavioral changes, demonstrated by decreased immobility and increased swimming times in the FST, along with a rise in the HTR. These outcomes indicate a reduction in depressive-like symptoms post-sepsis and the psychoactive effects of the compound. Furthermore, a notable decrease in GFAP expression in the study highlights the compound's impact on mitigating sepsis-induced astrogliosis. This study demonstrates the effectiveness of 25H-NBOMe, a psychedelic in the phenethylamine class, in treating post-sepsis depression and reducing astrogliosis. However, the psychedelic nature of 25H-NBOMe calls for further investigation into similar compounds with less psychoactive impact, crucial for advancing treatment options for neuropsychiatric symptoms following sepsis.


Assuntos
Depressão , Ratos Wistar , Sepse , Animais , Masculino , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/psicologia , Depressão/tratamento farmacológico , Depressão/etiologia , Ratos , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Fenetilaminas/farmacologia , Fenetilaminas/uso terapêutico , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo
4.
J Neuroinflammation ; 21(1): 131, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760784

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS: A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1ß, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS: Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1ß and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION: This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.


Assuntos
Camundongos Endogâmicos C57BL , Orexinas , Encefalopatia Associada a Sepse , Animais , Camundongos , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Orexinas/metabolismo , Masculino , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Modelos Animais de Doenças , Administração Intranasal
5.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 319-326, 2024 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-38710516

RESUMO

Objective To investigate the impact of the cannabinoid receptor agonist arachidonyl-2'-chloroethylamide (ACEA) on cognitive function in mice with sepsis-associated encephalopathy (SAE). Methods C57BL/6 mice were randomly divided into artificial cerebrospinal fluid (ACSF) and lipopolysaccharide (LPS) groups. The SAE model was established by intraventricular injection of LPS. The severity of sepsis in mice was assessed by sepsis severity score (MSS) and body mass changes. Behavioral paradigms were used to evaluate motor ability (open field test) and cognitive function (contextual fear conditioning test, Y-maze test). To evaluate the effects of ACEA intervention on SAE, mice were randomly assigned to ACSF group, ACEA intervention combined with ACSF group, LPS group, and ACEA intervention combined with LPS group. The dosage of ACEA intervention was 1.5 mg/kg. Real-time quantitative PCR was used to measure the mRNA expression levels of interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor α (TNF-α) in mouse hippocampal tissues. Western blot analysis was used to assess the protein levels of IL-6 and TNF-α in the hippocampus. Nissl staining was performed to examine neuronal damage in the CA1 region of the mouse hippocampus. Behavioral paradigms were again employed to evaluate motor ability and cognitive function. Results Three days after intraventricular LPS injection, mice exhibited significant cognitive dysfunction, confirming SAE modeling. Compared to the control group, the LPS group showed significant increases in mRNA of inflammatory factors such as IL-6, TNF-α, and IL-1ß, together with significant increases in IL-6 and TNF-α protein levels in the hippocampus, a decrease in Nissl bodies in the CA1 region, and significant cognitive dysfunction. Compared to the LPS group, the ACEA intervention group showed a significant decrease in the mRNA of IL-6, TNF-α, and IL-1ß, a significant reduction in IL-6 and TNF-α protein levels, an increase in Nissl bodies, and improved cognitive function. Conclusion ACEA improves cognitive function in SAE mice by inhibiting the expression levels of inflammatory factors IL-6 and TNF-α.


Assuntos
Ácidos Araquidônicos , Camundongos Endogâmicos C57BL , Encefalopatia Associada a Sepse , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Camundongos , Masculino , Ácidos Araquidônicos/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Lipopolissacarídeos/efeitos adversos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/agonistas , Cognição/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/complicações , Sepse/metabolismo
6.
Int Immunopharmacol ; 133: 112036, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38640713

RESUMO

BACKGROUND: Sepsis refers to a systemic inflammatory response caused by infection, involving multiple organs. Sepsis-associated encephalopathy (SAE), as one of the most common complications in patients with severe sepsis, refers to the diffuse brain dysfunction caused by sepsis without central nervous system infection. However, there is no clear diagnostic criteria and lack of specific diagnostic markers. METHODS: The main active ingredients of coptidis rhizoma(CR) were identified from TCMSP and SwissADME databases. SwissTargetPrediction and PharmMapper databases were used to obtain targets of CR. OMIM, DisGeNET and Genecards databases were used to explore targets of SAE. Limma differential analysis was used to identify the differential expressed genes(DEGs) in GSE167610 and GSE198861 datasets. WGCNA was used to identify feature module. GO and KEGG enrichment analysis were performed using Metascape, DAVID and STRING databases. The PPI network was constructed by STRING database and analyzed by Cytoscape software. AutoDock and PyMOL software were used for molecular docking and visualization. Cecal ligation and puncture(CLP) was used to construct a mouse model of SAE, and the core targets were verified in vivo experiments. RESULTS: 277 common targets were identified by taking the intersection of 4730 targets related to SAE and 509 targets of 9 main active ingredients of CR. 52 common DEGs were mined from GSE167610 and GSE198861 datasets. Among the 25,864 DEGs in GSE198861, LCN2 showed the most significant difference (logFC = 6.9). GO and KEGG enrichment analysis showed that these 52 DEGs were closely related to "inflammatory response" and "innate immunity". A network containing 38 genes was obtained by PPI analysis, among which LCN2 ranked the first in Degree value. Molecular docking results showed that berberine had a well binding affinity with LCN2. Animal experiments results showed that berberine could inhibit the high expression of LCN2,S100A9 and TGM2 induced by CLP in the hippocampus of mice, as well as the high expression of inflammatory factors (TNFα, IL-6 and IL-1ß). In addition, berberine might reduce inflammation and neuronal cell death by partially inhibiting NFκB/LCN2 pathway in the hippocampus of CLP models, thereby alleviating SAE. CONCLUSION: Overall, Berberine may exert anti-inflammatory effects through multi-ingredients, multi-targets and multi-pathways to partially rescue neuronal death and alleviate SAE.


Assuntos
Berberina , Biologia Computacional , Lipocalina-2 , NF-kappa B , Farmacologia em Rede , Encefalopatia Associada a Sepse , Animais , Humanos , Masculino , Camundongos , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Berberina/farmacologia , Berberina/uso terapêutico , Modelos Animais de Doenças , Regulação para Baixo , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Lipocalina-2/genética , Lipocalina-2/metabolismo , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Doenças Neuroinflamatórias/tratamento farmacológico , NF-kappa B/metabolismo , Mapas de Interação de Proteínas , Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Lipids Health Dis ; 23(1): 128, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685023

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) refers to the widespread impairment of brain function caused by noncentral nervous system infection mediated by sepsis. Lipid peroxidation-induced ferroptosis contributes to the occurrence and course of SAE. This study aimed to investigate the relationship between neuronal injury and lipid peroxidation-induced ferroptosis in SAE. METHODS: Baseline data were collected from pediatric patients upon admission, and the expression levels of various markers related to lipid peroxidation and ferroptosis were monitored in the serum and peripheral blood mononuclear cells (PBMCs) of patients with SAE as well as SAE model mice. The hippocampal phosphatidylethanolamine-binding protein (PEBP)-1/15-lysine oxidase (LOX)/ glutathione peroxidase 4 (GPX4) pathway was assessed for its role on the inhibitory effect of ferroptosis in SAE treatment. RESULTS: The results showed elevated levels of S100 calcium-binding protein beta (S-100ß), glial fibrillary acidic protein, and malondialdehyde in the serum of SAE patients, while superoxide dismutase levels were reduced. Furthermore, analysis of PBMCs revealed increased transcription levels of PEBP1, LOX, and long-chain fatty acyl-CoA synthetase family member 4 (ACSL4) in SAE patients, while the transcription levels of GPX4 and cystine/glutamate transporter xCT (SLC7A11) were decreased. In comparison to the control group, the SAE mice exhibited increased expression of S-100ß and neuron-specific enolase (NSE) in the hippocampus, whereas the expression of S-100ß and NSE were reduced in deferoxamine (DFO) mice. Additionally, iron accumulation was observed in the hippocampus of SAE mice, while the iron ion levels were reduced in the DFO mice. Inhibition of ferroptosis alleviated the mitochondrial damage (as assessed by transmission electron microscopy, hippocampal mitochondrial ATP detection, and the JC-1 polymer-to-monomer ratio in the hippocampus) and the oxidative stress response induced by SAE as well as attenuated neuroinflammatory reactions. Further investigations revealed that the mechanism underlying the inhibitory effect of ferroptosis in SAE treatment is associated with the hippocampal PEBP-1/15-LOX/GPX4 pathway. CONCLUSION: These results offer potential therapeutic targets for the management of neuronal injury in SAE and valuable insights into the potential mechanisms of ferroptosis in neurological disorders.


Assuntos
Ferroptose , Hipocampo , Peroxidação de Lipídeos , Proteína de Ligação a Fosfatidiletanolamina , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Encefalopatia Associada a Sepse , Ferroptose/efeitos dos fármacos , Animais , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Masculino , Feminino , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/antagonistas & inibidores , Inflamação/metabolismo , Inflamação/patologia , Inflamação/tratamento farmacológico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/genética , Modelos Animais de Doenças , Pré-Escolar , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Criança , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Malondialdeído/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Lactente
8.
Behav Brain Res ; 465: 114887, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38499156

RESUMO

Sepsis-associated encephalopathy (SAE) frequently encounters patients who are in intensive care units and ∼70% of patients with severe systemic infection. However, due to the unclear pathological mechanisms of SAE, the desease-modifying drug is still lack. Here, we aimed to explore whether the flavonoid components extracted from CCL (CCLF) seeds possess protective effects on SAE animals, and systematically evaluate the transcriptomic alteration (in the hippocampus) after CCLF treatment on SAE animals employing RNA sequencing. We observed that CCLF improved the brain's learning and memory abilities and the structural integrity of BBB using cecal ligation and puncture (CLP)-induced SAE animal models, evaluated by behavioral test and tissue examination of animals respectively. RNA sequencing results showed that CCLF treatment reverses SAE-induced transcriptomic alteration in the hippocampus. Moreover, CCLF also dramatically relieved inflammatory (such as TNF-α, IL-2, and IL-6) and oxidative (MDA and SOD activity) stresses, and inhibited SAE-induced neuron apoptosis in brain tissues. More importantly, CCLF restored the PI3K/AKT signaling pathway and then induced the Nrf2 nuclear translocation to drive HO-1 expression both in vitro and in vivo. LY294002, an inhibitor of PI3K, obviously blocked CCLF's functions on anti-apoptosis, anti-inflammation, and anti-oxidation in vivo, demonstrating that CCLF achieves its bioactivities in a PI3K/AKT signaling dependent manner. Altogether, CCLF exhibits remarkable neuro-protective function and may be a promising candidate for further clinical trials for SAE treatment.


Assuntos
Cuscuta , Encefalopatia Associada a Sepse , Sepse , Animais , Cuscuta/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/patologia , Encefalopatia Associada a Sepse/tratamento farmacológico
9.
Biotechnol Appl Biochem ; 71(4): 701-711, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38409880

RESUMO

Sepsis-associated encephalopathy (SAE) is characterized by high incidence and mortality rates, with limited treatment options available. The underlying mechanisms and pathogenesis of SAE remain unclear. Annexin A1 (ANXA1), a membrane-associated protein, is involved in various in vivo pathophysiological processes. This study aimed to explore the neuroprotective effects and mechanisms of a novel bioactive ANXA1 tripeptide (ANXA1sp) in SAE. Forty Sprague-Dawley rats were randomly divided into four groups (n = 10 each): control, SAE (intraperitoneal injection of lipopolysaccharide), vehicle (SAE + normal saline), and ANXA1sp (SAE + ANXA1sp) groups. Changes in serum inflammatory factors (interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), hippocampal reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) levels were measured. The Morris water maze and Y maze tests were used to assess learning and memory capabilities in the rats. Further, changes in peroxisome proliferator-activated receptor-gamma (PPAR-γ) and apoptosis-related protein expression were detected using western blot. The IL-6, TNF-α, and ROS levels were significantly increased in the SAE group compared with the levels in the control group. Intraperitoneal administration of ANXA1sp led to a significant decrease in the IL-6, TNF-α, and ROS levels (p < 0.05). Compared with the SAE group, the ANXA1sp group exhibited reduced escape latency on day 5, a significant increase in the number of platform crossings and the percent spontaneous alternation, and significantly higher hippocampal MMP and ATP levels (p < 0.05). Meanwhile, the expression level of PPAR-γ protein in the ANXA1sp group was significantly increased compared with that in the other groups (p < 0.05). The expressions of apoptosis-related proteins (nuclear factor-kappa B [NF-κB], Bax, and Caspase-3) in the SAE and vehicle groups were significantly increased, with a noticeable decrease in Bcl-2 expression, compared with that noted in the control group. Moreover, the expressions of NF-κB, Bax, and Caspase-3 were significantly decreased in the ANXA1sp group, and the expression of Bcl-2 was markedly increased (p < 0.05). ANXA1sp can effectively reverse cognitive impairment in rats with SAE. The neuroprotective effect of ANXA1sp may be attributed to the activation of the PPAR-γ pathway, resulting in reduced neuroinflammatory response and inhibition of apoptosis.


Assuntos
Anexina A1 , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Encefalopatia Associada a Sepse , Animais , Anexina A1/metabolismo , Anexina A1/farmacologia , Ratos , Fármacos Neuroprotetores/farmacologia , Masculino , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/patologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , PPAR gama/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos
10.
Neuromolecular Med ; 25(4): 616-631, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37796401

RESUMO

Anxiety manifestations and cognitive dysfunction are common sequelae in patients with sepsis-associated encephalopathy (SAE). Microglia-mediated inflammatory signaling is involved in anxiety, depression, and cognitive dysfunction during acute infection with bacterial lipopolysaccharide (LPS). However, the molecular mechanisms underlying microglia activation and behavioral and cognitive deficits in sepsis have not been in fully elucidated. Based on previous research, we speculated that the CD137 receptor/ligand system modulates microglia function during sepsis to mediate classical neurological SAE symptoms. A murine model of SAE was established by injecting male C57BL/6 mice with LPS, and cultured mouse BV2 microglia were used for in vitro assays. RT-qPCR, immunofluorescence staining, flow cytometry, and ELISA were used to assess microglial activation and the expression of CD137L and inflammation-related cytokines in the mouse hippocampus and in cultured BV2 cells. In addition, behavioral tests were conducted in assess cognitive performance and behavioral distress. Immunofluorescence and RT-qPCR analyses showed that hippocampal expression of CD137L was upregulated in activated microglia following LPS treatment. Pre-treatment with the CD137L neutralizing antibody TKS-1 significantly reduced CD137L levels, attenuated the expression of M1 polarization markers in microglia, and inhibited the production of TNF-α, IL-1ß, and IL-6 in both LPS-treated mice and BV2 cells. Conversely, stimulation of CD137L signaling by recombinant CD137-Fc fusion protein activated the synthesis and release of pro-inflammatory cytokines in cultures BV2 microglia. Importantly, open field, elevated plus maze, and Y-maze spontaneous alternation test results indicated that TKS-1 administration alleviated anxiety-like behavior and spatial memory decline in mice with LPS-induced SAE. These findings suggest that CD137L upregulation in activated microglia critically contributes to neuroinflammation, anxiety-like behavior, and cognitive dysfunction in the mouse model of LPS-induced sepsis. Therefore, therapeutic modulation of the CD137L/CD137 signaling pathway may represent an effective way to minimize brain damage and prevent cognitive and emotional deficits associated with SAE.


Assuntos
Ligante 4-1BB , Encefalopatia Associada a Sepse , Sepse , Animais , Humanos , Masculino , Camundongos , Citocinas/metabolismo , Modelos Animais de Doenças , Hipocampo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Ligante 4-1BB/efeitos dos fármacos , Ligante 4-1BB/metabolismo , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico
11.
Phytomedicine ; 121: 155119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801894

RESUMO

BACKGROUND: Previous studies have reported that puerarin possesses cardioprotective, vasodilatory, anti-inflammatory, anti-apoptotic, and hypoglycemic properties. However, the impact of puerarin on sepsis-associated encephalopathy (SAE) remains unexplored. In this study, we explored whether puerarin can modulate microglia-mediated neuroinflammation for the treatment of SAE and delved into the underlying mechanisms. METHODS: We established a murine model of SAE through intraperitoneal injection of lipopolysaccharide (LPS). The puerarin treatment group received pretreatment with puerarin. For in vitro experiments, BV2 cells were pre-incubated with puerarin for 2 h before LPS exposure. We employed network pharmacology, the Morris Water Maze (MWM) test, Novel Object Recognition (NOR) test, immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA), Western blotting, and quantitative real-time PCR (qRT-PCR) to elucidate the molecular mechanism of underlying puerarin's effects in SAE treatment. RESULTS: Our findings demonstrate that puerarin significantly reduced the production of inflammatory cytokines (TNF-α and IL-6) in the peripheral blood of LPS-treated mice. Moreover, puerarin treatment markedly ameliorated sepsis-associated cognitive impairment. Puerarin also exhibited inhibitory effects on the release of TNF-α and IL-6 from microglia, thereby preventing hippocampal neuronal cell death. Network pharmacology analysis identified AKT1 as a potential therapeutic target for puerarin in SAE treatment. Subsequently, we validated these results in both in vitro and in vitro experiments. Our study conclusively demonstrated that puerarin reduced LPS-induced phosphorylation of AKT1, with the AKT activator SC79 reversing puerarin's anti-inflammatory effects through the activation of the AKT1 signaling pathway. CONCLUSION: Puerarin exerts an anti-neuroinflammatory effect against SAE by modulating the AKT1 pathway in microglia.


Assuntos
Encefalopatia Associada a Sepse , Camundongos , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Microglia , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
12.
Biochem Pharmacol ; 217: 115816, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37748665

RESUMO

Sepsis-associated encephalopathy (SAE) is an acute brain dysfunction induced by systemic inflammation caused by sepsis and is one of the most common types of encephalopathy in intensive care units. Deteriorative neuroinflammation is closely related to the development of brain injury, which often transforms into common pathological manifestations in patients with severe sepsis. Therefore, taking necessary preventive and protective measures for potential brain injury and promptly reducing neuroinflammatory injury is necessary to improve the long-term prognoses of patients. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) can play a significant protective role in septic lung injury, but studies on its expression and role in neurological diseases are rare. In the present study, we found that TIPE2 can expressed in microglia and ameliorate brain injury caused by SAE by suppressing neuroinflammation. The RhoA/ROCK2 pathway is the central coordinator of tissue injury response, and the activation of RhoA participates in the lipopolysaccharide-induced activation of the nuclear factor kappa B (NF-κB) signaling pathway. The activation of RhoA and phosphorylation of NF-κB was enhanced after TIPE2 deficiency. Importantly, TIPE2 negatively regulates inflammatory responses in vivo and in vitro and plays a protective role in SAE by inhibiting the activation of RhoA/ROCK2-NF-κB signaling pathways. The ultimate aim of our proposed project is to provide a theoretical basis for the development of a novel strategy for the early prevention and therapy of SAE.


Assuntos
Lesões Encefálicas , Disfunção Cognitiva , Encefalopatia Associada a Sepse , Sepse , Humanos , Lesões Encefálicas/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Doenças Neuroinflamatórias , NF-kappa B/metabolismo , Quinases Associadas a rho/metabolismo , Sepse/complicações , Encefalopatia Associada a Sepse/tratamento farmacológico , Transdução de Sinais/fisiologia
13.
Int Immunopharmacol ; 123: 110758, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37556997

RESUMO

Sepsis-associated encephalopathy (SAE) is characterised by long-term cognitive impairment and psychiatric illness in sepsis survivors, associated with increased morbidity and mortality. There is a lack of effective therapeutics for SAE. Molecular hydrogen (H2) plays multiple roles in septic diseases by regulating neuroinflammation, reducing oxidative stress parameters, regulating signalling pathways, improving mitochondrial dysfunction, and regulating astrocyte and microglia activation. Here we report the protective effect of hydrogen-rich saline in the juvenile SAE rat model and its possible underlying mechanisms. Rats were injected intraperitoneally with lipopolysaccharide at a dose of 5 mg/kg to induce sepsis; Hydrogen-rich saline (HRS) was administered 1 h after LPS induction at a dose of 5 ml/kg and nigericin at 1 mg/kg 1 h before LPS injection. H&E staining for neuronal damage, TUNEL assay for detection of apoptotic cells, immunofluorescence, ELISA protocol for inflammatory cytokines and 8-OHdG determination and western blot analysis to determine the effect of HRS in LPS-induced septic rats. Rats treated with HRS showed decreased TNF-α and IL-1ß expression levels. HRS treatment enhanced the activities of antioxidant enzymes (SOD, CAT and GPX) and decreased MDA and MPO activities. The number of MMP-9 and NLRP3 positive immunoreactivity cells decreased in the HRS-treated group. Subsequently, GFAP, IBA-1 and CD86 immunoreactivity were reduced, and CD206 increased after HRS treatment. 8-OHdG expression was decreased in the HRS-treated rats. Western blot analysis showed decreased NLRP3, ASC, caspase-1, MMP-2/9, TLR4 and Bax protein levels after HRS treatment, while Bcl-2 expression increased after HRS treatment. These data demonstrated that HRS attenuated neuroinflammation, NLRP3 inflammasome activation, neuronal injury, and mitochondrial damage via NLRP3/Caspase-1/TLR4 signalling in the juvenile rat model, making it a potential therapeutic agent in the treatment of paediatric SAE.


Assuntos
Encefalopatia Associada a Sepse , Sepse , Animais , Criança , Humanos , Ratos , Caspase 1 , Hidrogênio/uso terapêutico , Inflamassomos/metabolismo , Lipopolissacarídeos , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/tratamento farmacológico , Receptor 4 Toll-Like
14.
BMC Neurosci ; 24(1): 37, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474902

RESUMO

Hydrogen (H2) can protect against blood‒brain barrier (BBB) damage in sepsis-associated encephalopathy (SAE), but the mechanism is still unclear. We examined whether it is related to PPARα and its regulatory targets, ABC efflux transporters. After injection with DMSO/GW6471 (a PPARα inhibitor), the mice subjected to sham/caecal ligation and puncture (CLP) surgery were treated with H2 for 60 min postoperation. Additionally, bEnd.3 cells were grown in DMSO/GW6471-containing or saline medium with LPS. In addition to the survival rates, cognitive function was assessed using the Y-maze and fear conditioning tests. Brain tissues were stained with TUNEL and Nissl staining. Additionally, inflammatory mediators (TNF-α, IL-6, HMGB1, and IL-1ß) were evaluated with ELISA, and PPARα, ZO-1, occludin, VE-cadherin, P-gp, BCRP and MRP2 were detected using Western blotting. BBB destruction was assessed by brain water content and Evans blue (EB) extravasation. Finally, we found that H2 improved survival rates and brain dysfunction and decreased inflammatory cytokines. Furthermore, H2 decreased water content in the brain and EB extravasation and increased ZO-1, occludin, VE-cadherin and ABC efflux transporters regulated by PPARα. Thus, we concluded that H2 decreases BBB permeability to protect against brain dysfunction in sepsis; this effect is mediated by PPARα and its regulation of ABC efflux transporters.


Assuntos
Disfunção Cognitiva , Encefalopatia Associada a Sepse , Camundongos , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Barreira Hematoencefálica , PPAR alfa , Hidrogênio/farmacologia , Transportadores de Cassetes de Ligação de ATP , Células Endoteliais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Ocludina , Dimetil Sulfóxido , Proteínas de Neoplasias , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia
15.
J Transl Med ; 21(1): 486, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37475042

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is characterized by diffuse brain dysfunction, long-term cognitive impairment, and increased morbidity and mortality. The current treatment for SAE is mainly symptomatic; the lack of specific treatment options and a poor understanding of the underlying mechanism of disease are responsible for poor patient outcomes. Fgr is a member of the Src family of tyrosine kinases and is involved in the innate immune response, hematologic cancer, diet-induced obesity, and hemorrhage-induced thalamic pain. This study investigated the protection provided by an Fgr kinase inhibitor in SAE and the underlying mechanism(s) of action. METHODS: A cecal ligation and puncture (CLP)-induced mouse sepsis model was established. Mice were treated with or without an Fgr inhibitor and a PGC-1α inhibitor/activator. An open field test, a novel object recognition test, and an elevated plus maze were used to assess neurobehavioral changes in the mice. Western blotting and immunofluorescence were used to measure protein expression, and mRNA levels were measured using quantitative PCR (qPCR). An enzyme-linked immunosorbent assay was performed to quantify inflammatory cytokines. Mitochondrial membrane potential and morphology were measured by JC-1, electron microscopy, and the MitoTracker Deep Red probe. Oxidative stress and mitochondrial dysfunction were analyzed. In addition, the regulatory effect of Fgr on sirtuin 1 (SIRT1) was assessed. RESULTS: CLP-induced sepsis increased the expression of Fgr in the hippocampal neurons. Pharmacological inhibition of Fgr attenuated CLP-induced neuroinflammation, the survival rate, cognitive and emotional dysfunction, oxidative stress, and mitochondrial dysfunction. Moreover, Fgr interacted with SIRT1 and reduced its activity and expression. In addition, activation of SIRT1/PGC-1α promoted the protective effects of the Fgr inhibitor on CLP-induced brain dysfunction, while inactivation of SIRT1/PGC-1α counteracted the benefits of the Fgr inhibitor. CONCLUSIONS: To our knowledge, this is the first report of Fgr kinase inhibition markedly ameliorating SAE through activation of the SIRT1/PGC-1α pathway, and this may be a promising therapeutic target for SAE.


Assuntos
Antineoplásicos , Encefalopatia Associada a Sepse , Sepse , Camundongos , Animais , Encefalopatia Associada a Sepse/complicações , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Sirtuína 1/metabolismo , Doenças Neuroinflamatórias , Mitocôndrias/metabolismo , Estresse Oxidativo , Transdução de Sinais , Sepse/complicações , Sepse/tratamento farmacológico , Modelos Animais de Doenças , Antineoplásicos/farmacologia
16.
ACS Chem Neurosci ; 14(11): 2172-2182, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216423

RESUMO

Sepsis-associated encephalopathy is a severe systemic infection complication. Although early stages involve pathophysiological changes, detection using conventional imaging is challenging. Glutamate chemical exchange saturation transfer and diffusion kurtosis imaging can noninvasively investigate cellular and molecular events in early disease stages using magnetic resonance imaging (MRI). N-Acetylcysteine, an antioxidant and precursor of glutathione, regulates neurotransmitter glutamate metabolism and participates in neuroinflammation. We investigated the protective role of n-acetylcysteine in sepsis-associated encephalopathy using a rat model and monitored changes in brain using magnetic resonance (MR) molecular imaging. Bacterial lipopolysaccharide was injected intraperitoneally to induce a sepsis-associated encephalopathy model. Behavioral performance was assessed using the open-field test. Tumor necrosis factor α and glutathione levels were detected biochemically. Imaging was performed using a 7.0-T MRI scanner. Protein expression, cellular damage, and changes in blood-brain barrier permeability were assessed using western blotting, pathological staining, and Evans blue staining, respectively. Lipopolysaccharide-induced rats showed reduced anxiety and depression after treatment with n-acetylcysteine. MR molecular imaging can identify pathological processes at different disease stages. Furthermore, rats treated with n-acetylcysteine showed increased glutathione levels and decreased tumor necrosis factor α, suggesting enhanced antioxidant capacity and inhibition of inflammatory processes, respectively. Western blot analysis showed reduced expression of nuclear factor kappa B (p50) protein after treatment, suggesting that n-acetylcysteine inhibits inflammation via this signaling pathway. Finally, n-acetylcysteine-treated rats showed reduced cellular damage by pathology and reduced extravasation of their blood-brain barrier by Evans Blue staining. Thus, n-acetylcysteine might be a therapeutic option for sepsis-associated encephalopathy and other neuroinflammatory diseases. Furthermore, noninvasive "dynamic visual monitoring" of physiological and pathological changes related to sepsis-associated encephalopathy was achieved using MR molecular imaging for the first time, providing a more sensitive imaging basis for early diagnosis, identification, and prognosis.


Assuntos
Encefalopatia Associada a Sepse , Ratos , Animais , Encefalopatia Associada a Sepse/diagnóstico por imagem , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Acetilcisteína/farmacologia , Antioxidantes , Lipopolissacarídeos , Fator de Necrose Tumoral alfa , Azul Evans , Glutationa
17.
Food Chem Toxicol ; 177: 113813, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150347

RESUMO

The present study aims to investigate the role of liensinine in life-threatened sepsis-associated encephalopathy (SAE) mice and the underlying mechanism. Here, seventy-two mice were divided into six groups, including the control group, SAE group, liensinine-treated group, and three doses of liensinine-treated SAE groups. Lipopolysaccharide triggered cerebrum necrosis and disrupted the integrity and permeability of blood-brain barrier (BBB). While liensinine restored cerebrum structure and improved BBB integrity with upregulated tight junction proteins, decreased evans blue leakage and fibrinogen expression with decreased matrix metalloproteinases 2/9 in serum, thereby reducing BBB permeability. Moreover, lipopolysaccharide triggered cerebrum oxidative stress and inflammation, whereas liensinine enhanced antioxidant enzymes activities and weakened malondialdehyde through nuclear factor erythroid 2-related factor. Meanwhile, liensinine inhibited inflammation by activating inducible nitric oxide synthase. Tunel staining combined with transmission electron microscope indicated that lipopolysaccharide induced cerebrum apoptosis, whereas liensinine blocked apoptosis through decreasing B-cell lymphoma-2 associated X (Bax) expression and cytochrome C (Cyto-c) release, increasing B-cell lymphoma-2 (Bcl-2) expression, blocking apoptosome assembly, inhibiting caspase-3 activation, thereby suppressing intrinsic mitochondria apoptosis. Recovering of inflammatory homeostasis and inhibition of mitochondria apoptosis by liensinine ultimately restored cognitive function in SAE mice. Altogether, liensinine attenuated lipopolysaccharide-induced SAE via modulation of Nrf2-mediated inflammatory biomarkers and mitochondria apoptosis.


Assuntos
Alcaloides , Antineoplásicos , Lotus , Encefalopatia Associada a Sepse , Camundongos , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Lipopolissacarídeos/farmacologia , Apoptose , Antineoplásicos/farmacologia , Mitocôndrias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Inflamação/metabolismo , Alcaloides/farmacologia
18.
PLoS One ; 18(1): e0279964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36608000

RESUMO

BACKGROUND: Sepsis associated encephalopathy (SAE) is a common but poorly understood complication during sepsis. Currently, there are no preventive or therapeutic agents available for this neurological disorder. The present study was designed to determine the potential protective effects of ß-patchoulene (ß-PAE) in a mouse model of SAE and explore the putative mechanisms underpinning the beneficial effects. MATERIALS AND METHODS: SAE was induced in C57BL/6 mice by cecal ligation and puncture(CLP). Mice were administrated with ß-PAE or saline by intra-cerebral ventricle(i.c.v) injection immediately after CLP surgery. The inhibitory avoidance tests and open field tests were performed at 24h, 48h and 7days after procedures. Cytokines expression, oxidative parameters, microglia polarization and apoptosis in the brain tissue were assessed. Sirt1, Nrf2, HO-1and cleaved-caspase3 expression in hippocampus was determined by western-blotting. Further, serum cytokines expression and spleen lymphocytes apoptosis were evaluated, and survival study was performed. RESULTS: Septic mice suffered severe cognitive decline following CLP as evidenced by decreased memory latency time and lower frequency of line crossing in the behavioral tests. A high dose of ß-PAE(1mg/kg) improved the cognitive impairment in SAE mice, which was accompanied by reduced cytokines expression and oxidative stress. Immunofluorescence assay showed that ß-PAE inhibited the expression of Iba-1 and iNOS in microglia. The mechanistic study indicated that ß-PAE could promote the nuclear expression of Sirt1/Nrf2 and enhance cytoplasmic HO-1 expression. Furthermore, i.c.v administration of ß-PAE decreased the expression of serum cytokines and apoptosis in the spleen, thus leading to an improved 7-day survival of septic mice. Finally, blockade of Nrf2 activation with ML385 largely mitigated the protective effects of ß-PAE on the cognitive function, neuroinflammation and survival in SAE mice. CONCLUSION: In this study, we found that ß-PAE significantly altered sepsis induced neuroinflammation and microglia activation, thus reversed the cognitive decline and improved the peripheral immune function. The neuroprotective effects were possibly mediated by the activation of Sirt1/Nrf2/HO-1 pathway. ß-PAE might serve as a promising therapeutic agent for SAE prevention and treatment.


Assuntos
Disfunção Cognitiva , Encefalopatia Associada a Sepse , Sepse , Camundongos , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neuroinflamatórias , Sirtuína 1/metabolismo , Microglia/metabolismo , Camundongos Endogâmicos C57BL , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/complicações , Transdução de Sinais , Citocinas/metabolismo
19.
Int Immunopharmacol ; 114: 109603, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36538853

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is a cognitive dysfunction caused by sepsis. Hyperphosphorylated tau is considered to play a significant role in the progression of neurodegenerative disease and also contributes to cognitive dysfunction in septic mice. Molecular hydrogen (H2) plays an antioxidant and anti-inflammatory role, and plays a protective role in septic mice. This study explored the possible effects of H2 on cognition and tau phosphorylation in a mouse model of SAE. METHODS: The model of sepsis was established in C57BL/6J male mice by cecal ligation and puncture surgery. Mice treated with 2 % H2 inhalation for 60 min at 1 h and 6 h after surgery, respectively. HY-15769, the inhibitor of Tau Tubulin Kinase 1 (TTBK1), was injected 1 h before the surgery. The 7-day survival rates of the mice were recorded. Cognitive behavior was tested with both novel object recognition and the Y-maze novelty arm recognition on day 7 after surgery. Hematoxylin-eosin staining was used to observe the histological damage in CA1 region of hippocampus. The expression of inflammatory factors in hippocampus was assessed by Elisa. Western blotting was adopted to determine the tau phosphorylation levels at AT8 epitopes (pSer202 and pThr205) and T22 epitopes (neurofibrillary tangle protein oligomer), and the GSK3ß phosphorylation levels (Tyr216), as well as p-Ser422 and TTBK1 levels in the hippocampus. The number of dendritic spine and mushroom type of dendritic spines in the hippocampus were assessed by Golgi staining. RESULTS: The survival rate, visual and spatial learning ability, and memory ability were improved in septic mice treated with H2. After H2 treatment, the density of dendritic spine, mushroom type of dendritic spine, and the number of normal hippocampal neurons were progressively elevated. H2 decreased the levels of phosphorylated tau protein, tau oligomer and TTBK1, as well as the phosphorylation of tau key kinase. Furthermore, the injection of HY-15769 (a TTBK1 inhibitor) protected SAE through the similar way. CONCLUSION: The protective effect of H2 on cognitive dysfunction induced by SAE may be achieved by inhibiting tau phosphorylation, which is perhaps related with the inhibition of TTBK1.


Assuntos
Disfunção Cognitiva , Doenças Neurodegenerativas , Encefalopatia Associada a Sepse , Sepse , Masculino , Camundongos , Animais , Proteínas tau/metabolismo , Fosforilação , Doenças Neurodegenerativas/metabolismo , Camundongos Endogâmicos C57BL , Sepse/complicações , Sepse/tratamento farmacológico , Sepse/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Hipocampo , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico
20.
Neuromolecular Med ; 25(2): 230-241, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36333543

RESUMO

Neuroinflammation and microglial activation are involved in the pathogenesis of sepsis-associated encephalopathy (SAE). Mitochondrial dynamics emerged as a new player in the regulation of immunological processes. In this study, we aimed at exploring the effects of mitochondrial-targeted antioxidant peptide SS-31 on cognitive function in mice with SAE. In mice, SS-31 was intraperitoneally administered for seven consecutive days after cecal ligation and puncture surgery. SS-31 improved cognitive performance and survival rate of mice and alleviated hippocampal inflammation, reactive oxygen species production, and excessive mitochondrial fission. The increase of nucleotide-binding oligomerization domain 3 (NLRP3) and phosphorylated dynamin-related protein 1 (Drp1) ser616 in microglia was attenuated by SS-31. In vitro, the microglial cell line BV-2 was pre-treated with SS-31, followed by lipopolysaccharide/adenosine triphosphate induction. SS-31 effectively decreased the activation of NLRP3 inflammasome, mitochondrial translocation of Drp1, excessive mitochondrial fission, and mitochondrial membrane recruitment of gasdermin-D N-terminal (GSDMD-N). Similarly, knockdown of Drp1 inhibited the activation of NLRP3 inflammasome. SS-31 improved survival rate and cognitive functions of mice with SAE, related to mitochondrial fission protein Drp1 to inhibiting activation of NLRP3 inflammasome.


Assuntos
Inflamassomos , Encefalopatia Associada a Sepse , Humanos , Encefalopatia Associada a Sepse/tratamento farmacológico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Cognição , Dinaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA