Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Clin Epigenetics ; 16(1): 68, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773655

RESUMO

BACKGROUND: Large B-cell lymphoma (LBCL) is the most common lymphoma and is known to be a biologically heterogeneous disease regarding genetic, phenotypic, and clinical features. Although the prognosis is good, one-third has a primary refractory or relapsing disease which underscores the importance of developing predictive biological markers capable of identifying high- and low-risk patients. DNA methylation (DNAm) and telomere maintenance alterations are hallmarks of cancer and aging. Both these alterations may contribute to the heterogeneity of the disease, and potentially influence the prognosis of LBCL. RESULTS: We studied the DNAm profiles (Infinium MethylationEPIC BeadChip) and relative telomere lengths (RTL) with qPCR of 93 LBCL cases: Diffuse large B-cell lymphoma not otherwise specified (DLBCL, n = 66), High-grade B-cell lymphoma (n = 7), Primary CNS lymphoma (n = 8), and transformation of indolent B-cell lymphoma (n = 12). There was a substantial methylation heterogeneity in DLBCL and other LBCL entities compared to normal cells and other B-cell neoplasms. LBCL cases had a particularly aberrant semimethylated pattern (0.15 ≤ ß ≤ 0.8) with large intertumor variation and overall low hypermethylation (ß > 0.8). DNAm patterns could not be used to distinguish between germinal center B-cell-like (GC) and non-GC DLBCL cases. In cases treated with R-CHOP-like regimens, a high percentage of global hypomethylation (ß < 0.15) was in multivariable analysis associated with worse disease-specific survival (DSS) (HR 6.920, 95% CI 1.499-31.943) and progression-free survival (PFS) (HR 4.923, 95% CI 1.286-18.849) in DLBCL and with worse DSS (HR 5.147, 95% CI 1.239-21.388) in LBCL. These cases with a high percentage of global hypomethylation also had a higher degree of CpG island methylation, including islands in promoter-associated regions, than the cases with less hypomethylation. Additionally, telomere length was heterogenous in LBCL, with a subset of the DLBCL-GC cases accounting for the longest RTL. Short RTL was independently associated with worse DSS (HR 6.011, 95% CI 1.319-27.397) and PFS (HR 4.689, 95% CI 1.102-19.963) in LBCL treated with R-CHOP-like regimens. CONCLUSION: We hypothesize that subclones with high global hypomethylation and hypermethylated CpG islands could have advantages in tumor progression, e.g. by inactivating tumor suppressor genes or promoting treatment resistance. Our findings suggest that cases with high global hypomethylation and thus poor prognosis could be candidates for alternative treatment regimens including hypomethylating drugs.


Assuntos
Metilação de DNA , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Metilação de DNA/genética , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Idoso , Adulto , Rituximab/uso terapêutico , Idoso de 80 Anos ou mais , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Vincristina/uso terapêutico , Prednisona/uso terapêutico , Telômero/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Encurtamento do Telômero/genética , Epigênese Genética/genética , Ilhas de CpG/genética
2.
Taiwan J Obstet Gynecol ; 62(6): 845-851, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38008503

RESUMO

OBJECTIVE: The aim of this study was to investigate the correlation between hormone receptor levels and telomere length (TL) in infertile women with and without polycystic ovary syndrome (PCOS). MATERIALS AND METHODS: This prospective cohort study recruited a total of 431 cumulus oocyte complex (COC) from 88 infertile women between July 2012 and June 2014. The participants were divided into three groups: young age (<38 years, n = 42 and 227 COC), advanced age (≥38 years, n = 33 and 107 COC) and PCOS patients (n = 13 and 97 COC). Cumulus cells were collected from individual follicle during oocyte pick-up, and the mRNA levels of hormone receptors and TL were measured using real-time PCR. RESULTS: The cumulus cells of PCOS patients demonstrated lower mRNA levels of LH receptor (75.57 ± 138.10 vs. 171.07 ± 317.68; p < 0.01) and androgen receptor (1.13 ± 1.52 vs. 4.08 ± 9.57; p < 0.01), as well as a shorter TL (2.39 ± 2.58 vs. 3.96 ± 4.72; p < 0.01) compared to those of the young age group. In the young age group, only androgen receptor mRNA level showed a significant association with TL (rho = 0.148, p = 0.026), while FSH receptor mRNA level was the only factor associated with TL (rho = 0.247, p = 0.015) in PCOS patients. For advanced-aged patients, no significant relationship was observed between hormone receptor mRNA levels and TL. Alternative splicing of androgen receptors was identified in some PCOS patients but not in young age controls. CONCLUSION: The findings suggest that the androgen receptor level and function may be altered in the cumulus cells of PCOS patients, leading to a shorter TL in cumulus cells in PCOS patients.


Assuntos
Infertilidade Feminina , Síndrome do Ovário Policístico , Feminino , Humanos , Idoso , Adulto , Células do Cúmulo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/complicações , Receptores Androgênicos/genética , Infertilidade Feminina/genética , Infertilidade Feminina/complicações , Estudos Prospectivos , Encurtamento do Telômero/genética , Telômero/genética , RNA Mensageiro , Hormônios
3.
PLoS Genet ; 19(7): e1010856, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37463174

RESUMO

Premature telomere shortening is a known factor correlated to idiopathic pulmonary fibrosis (IPF) occurrence, which is a chronic, progressive, age-related disease with high mortality. The etiology of IPF is still unknown. Here, we found that UBQLN1 plays a key role in telomere length maintenance and is potentially relevant to IPF. UBQLN1 involves in DNA replication by interacting with RPA1 and shuttling it off from the replication fork. The deficiency of UBQLN1 retains RPA1 at replication fork, hinders replication and thus causes cell cycle arrest and genome instability. Especially at telomere regions of the genome, where more endogenous replication stress exists because of G rich sequences, UBQLN1 depletion leads to rapid telomere shortening in HeLa cells. It revealed that UBQLN1 depletion also shortens telomere length at mouse lung and accelerates mouse lung fibrosis. In addition, the UBQLN1 expression level in IPF patients is downregulated and correlated to poor prognosis. Altogether, these results uncover a new role of UBQLN1 in ensuring DNA replication and maintaining telomere stability, which may shed light on IPF pathogenesis and prevention.


Assuntos
Fibrose Pulmonar Idiopática , Encurtamento do Telômero , Humanos , Animais , Camundongos , Encurtamento do Telômero/genética , Células HeLa , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/epidemiologia , Fibrose Pulmonar Idiopática/patologia , Homeostase do Telômero , Telômero/genética , Proteína de Replicação A/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
4.
Nat Aging ; 3(5): 567-584, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37142828

RESUMO

Telomere shortening is a hallmark of aging and is counteracted by telomerase. As in humans, the zebrafish gut is one of the organs with the fastest rate of telomere decline, triggering early tissue dysfunction during normal zebrafish aging and in prematurely aged telomerase mutants. However, whether telomere-dependent aging of an individual organ, the gut, causes systemic aging is unknown. Here we show that tissue-specific telomerase expression in the gut can prevent telomere shortening and rescues premature aging of tert-/-. Induction of telomerase rescues gut senescence and low cell proliferation, while restoring tissue integrity, inflammation and age-dependent microbiota dysbiosis. Averting gut aging causes systemic beneficial impacts, rescuing aging of distant organs such as reproductive and hematopoietic systems. Conclusively, we show that gut-specific telomerase expression extends the lifespan of tert-/- by 40%, while ameliorating natural aging. Our work demonstrates that gut-specific rescue of telomerase expression leading to telomere elongation is sufficient to systemically counteract aging in zebrafish.


Assuntos
Senilidade Prematura , Telomerase , Humanos , Animais , Idoso , Peixe-Zebra/genética , Telomerase/genética , Envelhecimento/genética , Encurtamento do Telômero/genética , Senilidade Prematura/genética
5.
Tissue Cell ; 79: 101925, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36137363

RESUMO

Telomeres are often considered as the 'ageing clock' that determines the lifespan at the cellular level, forming the ends of a chromosome, which shorten each time the cell divides itself to the point where they become so short the cell is unable to divide itself further. Telomere length alteration is often linked with lifestyle factors such as age, obesity, exposure to pesticides and pollution, depression, unhealthy diet, lack of exercise, and stress. The current review discusses the mechanism of telomere shortening in relation to ageing and lifestyle factors in general and its association with chronic diseases like diabetes which may influence the health and lifespan of an individual by increasing telomere shortening. Accelerated or excessive telomere shortening is also associated with the early onset of age-related disorders globally and, hence, reduced lifespan of individuals. Upregulated Telomerase activity and reactivation of telomeres is observed in > 70 % of cancer patients by TERT point mutations, rearrangements, DNA amplifications, and transcript fusions, making it a useful marker in diagnosis and prognosis of various cancers. The study presents a systematic review of the unregulated Telomere activity with progression of various cancer and extrapolation of suitable pathways and prognostic information correlated with mRNA levels of TERT, which are critical among thymic epithelial tumors (TETs). In most cancers, unlimited proliferation is due to the reactivation of reverse transcriptase gene TERT. All these observations are comprehensively presented in the paper and might be useful for researchers working in the field of telomere dynamics and finding the correlation of age shortening with mRNA expression profiling.


Assuntos
Diabetes Mellitus , Neoplasias , Telomerase , Humanos , Encurtamento do Telômero/genética , Telômero/genética , Telômero/metabolismo , Telomerase/genética , Telomerase/metabolismo , Envelhecimento/genética , Estilo de Vida , RNA Mensageiro
6.
Mol Ecol ; 31(23): 6273-6285, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35510763

RESUMO

Recent developments in telomere and cancer evolutionary ecology demonstrate a very complex relationship between the need of tissue repair and controlling the emergence of abnormally proliferating cells. The trade-off is balanced by natural and sexual selection and mediated via both intrinsic and environmental factors. Here, we explore the effects of telomere-cancer dynamics on life history traits and strategies as well as on the cumulative effects of genetic and environmental factors. We show that telomere-cancer dynamics constitute an incredibly complex and multifaceted process. From research to date, it appears that the relationship between telomere length and cancer risk is likely nonlinear with good evidence that both (too) long and (too) short telomeres can be associated with increased cancer risk. The ability and propensity of organisms to respond to the interplay of telomere dynamics and oncogenic processes, depends on the combination of its tissue environments, life history strategies, environmental challenges (i.e., extreme climatic conditions), pressure by predators and pollution, as well as its evolutionary history. Consequently, precise interpretation of telomere-cancer dynamics requires integrative and multidisciplinary approaches. Finally, incorporating information on telomere dynamics and the expression of tumour suppressor genes and oncogenes could potentially provide the synergistic overview that could lay the foundations to study telomere-cancer dynamics at ecosystem levels.


Assuntos
Ecossistema , Neoplasias , Humanos , Encurtamento do Telômero/genética , Neoplasias/genética , Evolução Biológica , Telômero/genética
7.
Respirology ; 27(11): 959-965, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35419815

RESUMO

BACKGROUND AND OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) is a heterogenous disease with a median survival of 3-4 years. Patients with mutations in telomere-related genes exhibit extrapulmonary signs and symptoms. These patients represent a distinct phenotype of IPF with worse survival. As genetic analyses are not available for most patients with IPF, we sought to determine the predictive value of extrapulmonary signs and symptoms of a telomere syndrome in patients with IPF. METHODS: We retrospectively studied 409 patients with IPF. Clinical characteristics, laboratory results and family history suggestive of a telomere syndrome were related to leukocyte telomere length measured by quantitative PCR and patient outcomes. RESULTS: The cohort included 293 patients with sporadic IPF and 116 patients with a background of familial pulmonary fibrosis. Any or a combination of a clinical history (haematological disease, liver disease, early greying of hair, nail dystrophy, skin abnormalities), a family history or haematological laboratory abnormalities (macrocytosis, anaemia, thrombopenia or leukopenia) suggestive of a telomere syndrome was present in 27% of IPF patients and associated with shorter leukocyte telomere length and shorter survival (p = 0.002 in a multivariate model). In sporadic IPF, having either a clinical history, family history or haematological laboratory abnormalities was not significantly associated with decreased survival (p = 0.07 in a multivariate model). CONCLUSION: Taking a careful clinical and family history focused on extrapulmonary manifestations of a telomere syndrome can provide important prognostic information in patients with IPF, as this is associated with shorter survival.


Assuntos
Fibrose Pulmonar Idiopática , Estudos de Coortes , Humanos , Fibrose Pulmonar Idiopática/genética , Estudos Retrospectivos , Telômero/genética , Encurtamento do Telômero/genética
8.
Blood ; 140(6): 608-618, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35421215

RESUMO

Mutations in the TINF2 gene, encoding the shelterin protein TIN2, cause telomere shortening and the inherited bone marrow (BM) failure syndrome dyskeratosis congenita (DC). A lack of suitable model systems limits the mechanistic understanding of telomere shortening in the stem cells and thus hinders the development of treatment options for BM failure. Here, we endogenously introduced TIN2-DC mutations in human embryonic stem cells (hESCs) and human hematopoietic stem and progenitor cells (HSPCs) to dissect the disease mechanism and identify a gene-editing strategy that rescued the disease phenotypes. The hESCs with the T284R disease mutation exhibited the short telomere phenotype observed in DC patients. Yet, telomeres in mutant hESCs did not trigger DNA damage responses at telomeres or show exacerbated telomere shortening when differentiated into telomerase-negative cells. Disruption of the mutant TINF2 allele by introducing a frameshift mutation in exon 2 restored telomere length in stem cells and the replicative potential of differentiated cells. Similarly, we introduced TIN2-DC disease variants in human HSPCs to assess the changes in telomere length and proliferative capacity. Lastly, we showed that editing at exon 2 of TINF2 that restored telomere length in hESCs could be generated in TINF2-DC patient HSPCs. Our study demonstrates a simple genetic intervention that rescues the TIN2-DC disease phenotype in stem cells and provides a versatile platform to assess the efficacy of potential therapeutic approaches in vivo.


Assuntos
Disceratose Congênita , Telomerase , Disceratose Congênita/genética , Disceratose Congênita/terapia , Humanos , Mutação , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Encurtamento do Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
9.
Neuro Oncol ; 24(12): 2063-2075, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35325218

RESUMO

BACKGROUND: Heterozygous TERT (telomerase reverse transcriptase) promoter mutations (TPMs) facilitate TERT expression and are the most frequent mutation in glioblastoma (GBM). A recent analysis revealed this mutation is one of the earliest events in gliomagenesis. However, no appropriate human models have been engineered to study the role of this mutation in the initiation of these tumors. METHOD: We established GBM models by introducing the heterozygous TPM in human induced pluripotent stem cells (hiPSCs) using a two-step targeting approach in the context of GBM genetic alterations, CDKN2A/B and PTEN deletion, and EGFRvIII overexpression. The impact of the mutation was evaluated through the in vivo passage and in vitro experiment and analysis. RESULTS: Orthotopic injection of neuronal precursor cells (NPCs) derived from hiPSCs with the TPM into immunodeficient mice did not enhance tumorigenesis compared to TERT promoter wild type NPCs at initial in vivo passage presumably due to relatively long telomeres. However, the mutation recruited GA-Binding Protein and engendered low-level TERT expression resulting in enhanced tumorigenesis and maintenance of short telomeres upon secondary passage as observed in human GBM. These results provide the first insights regarding increased tumorigenesis upon introducing a TPM compared to isogenic controls without TPMs. CONCLUSION: Our novel GBM models presented the growth advantage of heterozygous TPMs for the first time in the context of GBM driver mutations relative to isogenic controls, thereby allowing for the identification and validation of TERT promoter-specific vulnerabilities in a genetically accurate background.


Assuntos
Glioblastoma , Células-Tronco Pluripotentes Induzidas , Telomerase , Humanos , Camundongos , Animais , Encurtamento do Telômero/genética , Telomerase/genética , Telômero/genética , Glioblastoma/genética , Mutação , Carcinogênese
10.
Hum Mol Genet ; 31(16): 2669-2677, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35244708

RESUMO

Telomeres protect chromosome ends and control cell division and senescence. During organogenesis, telomeres need to be long enough to ensure the cell proliferation necessary at this stage of development. Previous studies have shown that telomere shortening is associated with growth retardation and congenital malformations. However, these studies were performed in newborns or postnatally, and data on telomere length (TL) during the prenatal period are still very limited. We measured TL using quantitative PCR in amniotic fluid (AF) and chorionic villi (CV) samples from 69 control fetuses with normal ultrasound (52 AF and 17 CV) and 213 fetuses (165 AF and 48 CV) with intrauterine growth retardation (IUGR) or congenital malformations diagnosed by ultrasound. The samples were collected by amniocentesis at the gestational age (GA) of 25.0 ± 5.4 weeks and by CV biopsy at 18.1 ± 6.3 weeks. In neither sample type was TL influenced by GA or fetal sex. In AF, a comparison of abnormal versus normal fetuses showed a significant telomere shortening in cases of IUGR (reduction of 34%, P < 10-6), single (29%, P < 10-6) and multiple (44%, P < 10-6) malformations. Similar TL shortening was also observed in CV from abnormal fetuses but to a lesser extent (25%, P = 0.0002; 18%, P = 0.016; 20%, P = 0.004, respectively). Telomere shortening was more pronounced in cases of multiple congenital anomalies than in fetuses with a single malformation, suggesting a correlation between TL and the severity of fetal phenotype. Thus, TL measurement in fetal samples during pregnancy could provide a novel predictive marker of pathological development.


Assuntos
Desenvolvimento Fetal , Encurtamento do Telômero , Biomarcadores , Feminino , Retardo do Crescimento Fetal/diagnóstico , Retardo do Crescimento Fetal/genética , Humanos , Gravidez , Telômero/genética , Encurtamento do Telômero/genética
11.
Cancer Epidemiol Biomarkers Prev ; 31(2): 453-460, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34782395

RESUMO

BACKGROUND: Survivors of childhood cancer are at risk for therapy-related subsequent malignant neoplasms (SMN), including thyroid SMN. Telomere length (TL) is associated with cancer risk, but the relationship between TL and SMN risk among survivors is less clear. METHODS: We conducted a nested, matched case-control study of radiation-exposed 15-year+ adult survivors of childhood cancer with thyroid SMN (cases) and without SMN (controls). Forty-six cases were matched to 46 controls by primary diagnosis, chemotherapy (yes/no), radiation field, and follow-up duration. Lymphocyte TL (LTL) was measured by telomere flow-FISH cytometry using blood samples banked at a mean of 38.9 years (cases), 39.2 years (controls). Genetic variation in telomere genes was assessed by whole genome sequencing. Point estimates for LTL <10th percentile were determined for cases and controls. RESULTS: Cases had shorter median LTL than controls in three out of four leukocyte subsets. Cases were more likely to have NK cell LTL <10th percentile (P = 0.01), and 2.8-fold more likely to have naïve T-cell LTL <10th percentile than controls (CI, 1.07-8.78). Five out of 15 cases with a rare indel or missense variant had naïve T-cell LTL <10th percentile, compared with one out of eight controls. CONCLUSIONS: Long-term survivors have shorter than expected LTL, a finding that is more pronounced among survivors with thyroid SMN. IMPACT: The long-term impact of childhood cancer treatment on immune function is poorly understood. Our findings support immune function studies in larger survivor cohorts to assess long-term deficits in adaptive and innate immunity that may underlie SMN risk.


Assuntos
Sobreviventes de Câncer/estatística & dados numéricos , Segunda Neoplasia Primária/genética , Encurtamento do Telômero/genética , Neoplasias da Glândula Tireoide/genética , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Segunda Neoplasia Primária/sangue , Radioterapia/efeitos adversos , Inquéritos e Questionários , Linfócitos T , Neoplasias da Glândula Tireoide/sangue
12.
J Heart Lung Transplant ; 41(5): 654-663, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34933798

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is the most common indication for lung transplantation in North America and variants in telomere-maintenance genes are the most common identifiable cause of IPF. We reasoned that younger IPF patients are more likely to undergo lung transplantation and we hypothesized that lung transplant recipients would be enriched for individuals with telomere-mediated disease due to the earlier onset and more severe disease in these patients. METHODS: Individuals with IPF who underwent lung transplantation or were evaluated in an interstitial lung disease specialty clinic who did not undergo lung transplantation were examined. Genetic evaluation was completed via whole genome sequencing (WGS) of 426 individuals and targeted sequencing for 5 individuals. Rare variants in genes previously associated with IPF were classified using the American College of Medical Genetics guidelines. Telomere length from WGS data was measured using TelSeq software. Patient characteristics were collected via medical record review. RESULTS: Of 431 individuals, 149 underwent lung transplantation for IPF. The median age of diagnosis of transplanted vs non-transplanted individuals was significantly younger (60 years vs 70 years, respectively, p<0.0001). IPF lung transplant recipients (IPF-LTRs) were twice as likely to have telomere-related rare variants compared to non-transplanted individuals (24% vs 12%, respectively, p=0.0013). IPF-LTRs had shorter telomeres than non-transplanted IPF patients (p=0.0028) and >85% had telomeres below the age-adjusted mean. Post-transplant survival and CLAD were similar amongst IPF-LTRs with rare variants in telomere-maintenance genes compared to those without, as well as in those with short telomeres versus longer telomeres. CONCLUSIONS: There is an enrichment for telomere-maintenance gene variants and short telomeres among IPF-LTRs. However, transplant outcomes of survival and CLAD do not differ by gene variants or telomere length within IPF-LTRs. Our findings support individual with telomere-mediated disease should not be excluded from lung transplantation and focusing research efforts on therapies directed toward individuals with short-telomere mediated disease.


Assuntos
Fibrose Pulmonar Idiopática , Doenças Pulmonares Intersticiais , Transplante de Pulmão , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/cirurgia , Pessoa de Meia-Idade , Telômero/genética , Encurtamento do Telômero/genética
13.
Mol Ecol ; 31(23): 5946-5965, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865259

RESUMO

Research on telomeres in the fields of ecology and evolution has been rapidly expanding over the last two decades. This has resulted in the formulation of a multitude of, often name-given, hypotheses related to the associations between telomeres and life-history traits or fitness-facilitating processes (and the mechanisms underlying them). However, the differences (or similarities) between the various hypotheses, which can originate from different research fields, are often not obvious. Our aim here is therefore to give an overview of the hypotheses that are of interest in ecology and evolution and to provide two frameworks that help discriminate among them. We group the hypotheses (i) based on their association with different research questions, and (ii) using a hierarchical approach that builds on the assumptions they make, such as about causality of telomere length/shortening and/or the proposed functional consequences of telomere shortening on organism performance. Both our frameworks show that there exist parallel lines of thoughts in different research fields. Moreover, they also clearly illustrate that there are in many cases competing hypotheses within clusters, and that some of these even have contradictory assumptions and/or predictions. We also touch upon two topics in telomere research that would benefit from further conceptualization. This review should help researchers, both those familiar with and those new to the subject, to identify future avenues of research.


Assuntos
Características de História de Vida , Encurtamento do Telômero , Encurtamento do Telômero/genética , Ecologia , Telômero/genética
14.
Aging (Albany NY) ; 13(24): 25653-25669, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34923483

RESUMO

Emerging research suggests associations of physical and psychosocial stressors with epigenetic aging. Although this work has included early-life exposures, data on maternal exposures and epigenetic aging of their children remain sparse. Using longitudinally collected data from the California, Salinas Valley CHAMACOS study, we examined relationships between maternal Adverse Childhood Experiences (ACEs) reported up to 18 years of life, prior to pregnancy, with eight measures (Horvath, Hannum, SkinBloodClock, Intrinsic, Extrinsic, PhenoAge, GrimAge, and DNAm telomere length) of blood leukocyte epigenetic age acceleration (EAA) in their children at ages 7, 9, and 14 years (N = 238 participants with 483 observations). After adjusting for maternal chronological age at delivery, pregnancy smoking/alcohol use, parity, child gestational age, and estimated leukocyte proportions, higher maternal ACEs were significantly associated with at least a 0.76-year increase in child Horvath and Intrinsic EAA. Higher maternal ACEs were also associated with a 0.04 kb greater DNAm estimate of telomere length of children. Overall, our data suggests that maternal preconception ACEs are associated with biological aging in their offspring in childhood and that preconception ACEs have differential relationships with EAA measures, suggesting different physiologic utilities of EEA measures. Studies are necessary to confirm these findings and to elucidate potential pathways to explain these relationships, which may include intergenerational epigenetic inheritance and persistent physical and social exposomes.


Assuntos
Experiências Adversas da Infância/psicologia , Envelhecimento/genética , Envelhecimento/metabolismo , Epigenômica , Adolescente , Adulto , Envelhecimento/sangue , California , Criança , Metilação de DNA , Feminino , Humanos , Leucócitos , Estudos Longitudinais , Masculino , Americanos Mexicanos/genética , Americanos Mexicanos/estatística & dados numéricos , Gravidez , Encurtamento do Telômero/genética
15.
Nat Commun ; 12(1): 6850, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824242

RESUMO

The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells' self-renewal capabilities and eventually leads to their exhaustion. Mechanistically, we demonstrate that targeting members of the Ifi20x/IFI16 family of cytosolic DNA sensors using the oligodeoxynucleotide A151, which comprises four repeats of the TTAGGG motif of the telomeric DNA, overcomes interferon signaling activation in telomere-dysfunctional hematopoietic stem cells and these cells' skewed differentiation towards the megakaryocytic lineage. This study challenges the historical hypothesis that telomere attrition limits the proliferative potential of hematopoietic stem cells by inducing apoptosis, autophagy, or senescence, and suggests that targeting IFI16 signaling axis might prevent hematopoietic stem cell functional decline in conditions affecting telomere maintenance.


Assuntos
Hematopoese/fisiologia , Encurtamento do Telômero/fisiologia , Animais , Transtornos da Insuficiência da Medula Óssea/genética , Transtornos da Insuficiência da Medula Óssea/metabolismo , Transtornos da Insuficiência da Medula Óssea/patologia , Autorrenovação Celular , Reprogramação Celular , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Interferons/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Análise de Célula Única , Telômero/química , Telômero/fisiologia , Encurtamento do Telômero/genética
16.
Nucleic Acids Res ; 49(20): 11690-11707, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34725692

RESUMO

Loss of telomeric DNA leads to telomere uncapping, which triggers a persistent, p53-centric DNA damage response that sustains a stable senescence-associated proliferation arrest. Here, we show that in normal cells telomere uncapping triggers a focal telomeric DNA damage response accompanied by a transient cell cycle arrest. Subsequent cell division with dysfunctional telomeres resulted in sporadic telomeric sister chromatid fusions that gave rise to next-mitosis genome instability, including non-telomeric DNA lesions responsible for a stable, p53-mediated, senescence-associated proliferation arrest. Unexpectedly, the blocking of Rad51/RPA-mediated homologous recombination, but not non-homologous end joining (NHEJ), prevented senescence despite multiple dysfunctional telomeres. When cells approached natural replicative senescence, interphase senescent cells displayed genome instability, whereas near-senescent cells that underwent mitosis despite the presence of uncapped telomeres did not. This suggests that these near-senescent cells had not yet acquired irreversible telomeric fusions. We propose a new model for telomere-initiated senescence where tolerance of telomere uncapping eventually results in irreversible non-telomeric DNA lesions leading to stable senescence. Paradoxically, our work reveals that senescence-associated tumor suppression from telomere shortening requires irreversible genome instability at the single-cell level, which suggests that interventions to repair telomeres in the pre-senescent state could prevent senescence and genome instability.


Assuntos
Instabilidade Genômica , Recombinação Homóloga , Encurtamento do Telômero/genética , Células Cultivadas , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Humanos , Rad51 Recombinase/metabolismo
17.
Aging (Albany NY) ; 13(20): 23517-23526, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661551

RESUMO

Telomere length (TL) is a hallmark of cellular aging and is associated with chronic diseases development. The vascular endothelial growth factor A (VEGF-A), a potent angiogenesis factor, is implicated in the pathophysiology of many chronic diseases. The aim of the present study was to investigate the associations between VEGF-A and TL. TL in leukocytes (LTL) and skeletal muscle (MTL) were measured, 10 VEGF-related polymorphisms genotyped, and VEGF-A plasma concentrations determined in 402 individuals from the TELARTA cohort. LTL/MTL ratio was calculated as an estimate of lifelong TL attrition. Associations between VEGF-A variants and levels, and TL parameters were investigated. We identified one significant association between the minor allele (T) of rs6993770 variant and LTL/MTL ratio (P=0.001143, ß=0.0148, SE=0.004516). The rs6993770 is an intronic variant of the ZFPM2 gene, which is involved in haematopoiesis and the identified association with increased telomere attrition could be due to increased haematopoiesis. No significant epistatic interaction was identified, and no association was found between levels of VEGF-A and any of assessed phenotypes. We identified a potential common genetic regulation between VEGF-A and telomere length attrition that could be explained by mechanisms of increased hematopoiesis and production of platelets. VEGF-A and TL could play an important role in personalized medicine of chronic diseases and identification of molecular links between them can promote the understanding of their complex implications.


Assuntos
Encurtamento do Telômero/genética , Telômero/genética , Fator A de Crescimento do Endotélio Vascular/genética , Hematopoese/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética
18.
Biomolecules ; 11(10)2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680143

RESUMO

Telomeres are protective structures at the ends of linear chromosomes. Shortened telomere lengths (TL) are an indicator of premature biological aging and have been associated with a wide spectrum of disorders, including multiple sclerosis (MS). MS is a chronic inflammatory, demyelinating and neurodegenerative disease of the central nervous system. The exact cause of MS is still unclear. Here, we provide an overview of genetic, environmental and lifestyle factors that have been described to influence TL and to contribute to susceptibility to MS and possibly disease severity. We show that several early-life factors are linked to both reduced TL and higher risk of MS, e.g., adolescent obesity, lack of physical activity, smoking and vitamin D deficiency. This suggests that the mechanisms underlying the disease are connected to cellular aging and senescence promoted by increased inflammation and oxidative stress. Additional prospective research is needed to clearly define the extent to which lifestyle changes can slow down disease progression and prevent accelerated telomere loss in individual patients. It is also important to further elucidate the interactions between shared determinants of TL and MS. In future, cell type-specific studies and advanced TL measurement methods could help to better understand how telomeres may be causally involved in disease processes and to uncover novel opportunities for improved biomarkers and therapeutic interventions in MS.


Assuntos
Envelhecimento/genética , Inflamação/genética , Esclerose Múltipla/genética , Encurtamento do Telômero/genética , Senescência Celular/genética , Cromossomos/genética , Humanos , Inflamação/patologia , Estilo de Vida , Esclerose Múltipla/patologia , Estresse Oxidativo/genética , Telômero/genética
19.
Aging (Albany NY) ; 13(19): 23416-23434, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633987

RESUMO

Aging involves progressive physiological and metabolic reprogramming to adapt to gradual deterioration of organs and functions. This includes mechanisms of defense against pre-malignant transformations. Thus, certain tumors are more prone to appear in elderly patients. This is the case of the two most frequent types of primary liver cancer, i.e., hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Accordingly, aging hallmarks, such as genomic instability, telomere attrition, epigenetic alterations, altered proteostasis, mitochondrial dysfunction, cellular senescence, exhaustion of stem cell niches, impaired intracellular communication, and deregulated nutrient sensing can play an important role in liver carcinogenesis in the elders. In addition, increased liver fragility determines a worse response to risk factors, which more frequently affect the aged population. This, together with the difficulty to carry out an early detection of HCC and iCCA, accounts for the late diagnosis of these tumors, which usually occurs in patients with approximately 60 and 70 years, respectively. Furthermore, there has been a considerable controversy on what treatment should be used in the management of HCC and iCCA in elderly patients. The consensus reached by numerous studies that have investigated the feasibility and safety of different curative and palliative therapeutic approaches in elders with liver tumors is that advanced age itself is not a contraindication for specific treatments, although the frequent presence of comorbidities in these individuals should be taken into consideration for their management.


Assuntos
Envelhecimento , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Envelhecimento/fisiologia , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Colangiocarcinoma/epidemiologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Colangiocarcinoma/terapia , Feminino , Instabilidade Genômica/genética , Humanos , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Encurtamento do Telômero/genética
20.
Breast Cancer Res ; 23(1): 89, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488828

RESUMO

BACKGROUND: Telomere maintenance is crucial for the unlimited proliferation of cancer cells and essential for the "stemness" of multiple cancer cells. TAZ is more extensively expressed in triple negative breast cancers (TNBC) than in other types of breast cancers, and promotes proliferation, transformation and EMT of cancer cells. It was reported that TAZ renders breast cancer cells with cancer stem cell features. However, whether TAZ regulates telomeres is still unclear. In this study, we explored the roles of TAZ in the regulation of telomere maintenance in TNBC cells. METHODS: siRNA and shRNA was used to generate TAZ-depleted TNBC cell lines. qPCR and Southern analysis of terminal restriction fragments techniques were used to test telomere length. Co-immunoprecipitation, Western blotting, immunofluorescence, Luciferase reporter assay and Chromatin-IP were conducted to investigate the underlying mechanism. RESULTS: By knocking down the expression of TAZ in TNBC cells, we found, for the first time, that TAZ is essential for the maintenance of telomeres in TNBC cells. Moreover, loss of TAZ causes senescence phenotype of TNBC cells. The observed extremely shortened telomeres in late passages of TAZ knocked down cells correlate with an elevated hTERT expression, reductions of shelterin proteins, and an activated DNA damage response pathway. Our data also showed that depletion of TAZ results in overexpression of TERRAs, which are a group of telomeric repeat-containing RNAs and regulate telomere length and integrity. Furthermore, we discovered that TAZ maintains telomere length of TNBC cells likely by facilitating the expression of Rad51C, a crucial element of homologous recombination pathway that promotes telomere replication. CONCLUSIONS: This study supports the notion that TAZ is an oncogenic factor in TNBC, and further reveals a novel telomere-related pathway that is employed by TAZ to regulate TNBC.


Assuntos
Proteínas de Ligação a DNA/genética , Homeostase do Telômero/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Senescência Celular/genética , Dano ao DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Complexo Shelterina/genética , Complexo Shelterina/metabolismo , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Telômero/patologia , Encurtamento do Telômero/genética , Fatores de Transcrição/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/genética , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA