Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Arch Microbiol ; 206(5): 229, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647675

RESUMO

In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.


Assuntos
Resveratrol , Estilbenos , Estilbenos/química , Estilbenos/farmacologia , Humanos , Resveratrol/farmacologia , Resveratrol/química , Fungos/efeitos dos fármacos , Endófitos/química , Endófitos/metabolismo , Endófitos/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Medicina Tradicional , Plantas/química
2.
Microb Cell Fact ; 22(1): 169, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649058

RESUMO

Endophytes, especially those isolated from herbal plants, may act as a reservoir of a variety of secondary metabolites exhibiting biological activity. Some endophytes express the ability to produce the same bioactive compounds as their plant hosts, making them a more sustainable industrial supply of these substances. Urtica dioica L. (common stinging nettle) is a synanthropic plant that is widely used in herbal medicine due to the diversity of bioactive chemicals it contains, e.g., polyphenols, which demonstrate anti-inflammatory, antioxidant, and anti-cancerous capabilities. This study aimed at isolating endophytic bacteria from stinging nettles for their bioactive compounds. The endophytic isolates were identified by both biochemical and molecular methods (16S rRNA) and investigated for enzymes, biosurfactants, and polyphenols production. Each of the isolated bacterial strains was capable of producing biosurfactants and polyphenols. However, three of the isolated endophytes, identified as two strains of Bacillus cereus and one strain of Bacillus mycoides, possessed the greatest capacity to produce biosurfactants and polyphenols. The derivatized extracts from culture liquid showed the 1.633 mol l-1 (9.691 mg l-1) concentration of polyphenol compounds. Therefore, the present study signifies that endophytic B. cereus and B. mycoides isolated from Urtica dioica L. could be a potential source of biosurfactants and polyphenols. However, further study is required to understand the mechanism of the process and achieve efficient polyphenol production by endophytic bacteria.


Assuntos
Bactérias , Urtica dioica , Urtica dioica/microbiologia , Bacillus cereus/metabolismo , Bactérias/química , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Endófitos/química , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Polifenóis/análise , Enzimas/metabolismo , Genótipo
3.
Braz. j. biol ; 83: 1-8, 2023. tab, ilus, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468837

RESUMO

Endophytic bacteria serve key roles in the maintenance of plant health and growth. Few studies to date, however, have explored the antagonistic and plant growth-promoting (PGP) properties of Prunus cerasifera endophytes. To that end, we isolated endophytic bacteria from P. cerasifera tissue samples and used a dual culture plate assay to screen these microbes for antagonistic activity against Verticillium dahliae, Botryosphaeria dothidea, Fusarium oxysporum, F. graminearum, and F. moniliforme. Of the 36 strains of isolated bacteria, four (strains P1, P10, P16, and P20) exhibited antagonistic effects against all five model pathogens, and the P10 strain exhibited the strongest antagonistic to five pathogens. This P10 strain was then characterized in-depth via phenotypic assessments, physiological analyses, and 16s rDNA sequencing, revealing it to be a strain of Bacillus subtilis. Application of a P10 cell suspension (1×108 CFU/mL) significantly enhanced the seed germination and seedling growth of tomato in a greenhouse setting. This P10 strain further significantly suppressed tomato Verticillium wilt with much lower disease incidence and disease index scores being observed following P10 treatment relative to untreated plants in pot-based experiments. Tomato plants that had been treated with strain P10 also enhanced defense-related enzymes, peroxidase, superoxide dismutase, and catalase activity upon V. dahliae challenge relative to plants that had not been treated with this endophytic bacterium. The results revealed that the P10 bacterial strain has potential value as a biocontrol agent for use in the prevention of tomato Verticillium wilt.


As bactérias endofíticas desempenham papel fundamental na manutenção da saúde e do crescimento das plantas. Poucos estudos até o momento, no entanto, exploraram as propriedades antagônicas e promotoras de crescimento de plantas (PGP) de endófitos de Prunus cerasifera. Para esse fim, isolamos bactérias endofíticas de amostras de tecido de P. cerasifera e usamos um ensaio de placa de cultura dupla para rastrear esses micróbios quanto à atividade antagonista contra Verticillium dahliae, Botryosphaeria dothidea, Fusarium oxysporum, F. graminearum e F. moniliforme. Das 36 cepas de bactérias isoladas, quatro (cepas P1, P10, P16 e P20) exibiram efeitos antagônicos contra todos os cinco patógenos modelo, e a cepa P10 exibiu o antagonista mais forte para cinco patógenos. Essa cepa P10 foi então caracterizada em profundidade por meio de avaliações fenotípicas, análises fisiológicas e sequenciamento de rDNA 16s, revelando ser uma cepa de Bacillus subtilis. A aplicação de uma suspensão de células P10 (1 × 108 UFC / mL) aumentou significativamente a germinação das sementes e o crescimento das mudas de tomate em casa de vegetação. Essa cepa P10 suprimiu ainda mais a murcha de Verticillium do tomate com incidência de doença muito menor e pontuações de índice de doença sendo observadas após o tratamento com P10 em relação a plantas não tratadas em experimentos baseados em vasos. As plantas de tomate que foram tratadas com a cepa P10 também aumentaram as enzimas relacionadas à defesa, peroxidase, superóxido dismutase e atividade da catalase após o desafio de V. dahliae em relação às plantas que não foram tratadas com essa bactéria endofítica. Os resultados revelaram que a cepa bacteriana P10 tem valor potencial como agente de biocontrole para uso na prevenção da murcha de Verticillium em tomate.


Assuntos
Bacillus subtilis/fisiologia , Bacillus subtilis/genética , Endófitos/isolamento & purificação , Fusarium/patogenicidade , Prunus/microbiologia , Verticillium/patogenicidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-34242158

RESUMO

A novel actinomycete, designated NUM-2625T, was isolated as an endophytic bacterium in aerial parts of Comarum salesowianum, an endemic species in the Altai, Himalaya mountain chain area, collected from Khasagt Khairkhan Mountain in Mongolia. The 16S rRNA gene sequence of strain NUM-2625T showed the highest similarity to Actinocatenispora thailandica TT2-10T (99.4 %), Actinocatenispora sera KV-744T (99.3 %), and Actinocatenispora rupis CS5-AC17T (97.7 %). Chemotaxonomic properties of strain NUM-2625T were essentially consistent with those of the genus Actinocatenispora, such as the presence of meso-diaminopimelic acid as the diagnostic diamino acid of the peptidoglycan, MK-9(H4) and MK-9(H6) as the major menaquinones, and iso-C16 : 0, iso-C15 : 0, iso-C14 : 0 3-OH, and anteiso-C17 : 0 as the major fatty acids. Meanwhile, digital DNA-DNA hybridization and average nucleotide identity values revealed a low relatedness between strain NUM-2625T and the other type strains of the genus Actinocatenispora. In addition, strain NUM-2625T exhibited several phenotypic properties that could be used to distinguish it from its closest relatives. Based on the results of polyphasic analyses, strain NUM-2625T represents a novel species in the genus Actinocatenispora, for which the name Actinocatenispora comari sp. nov. is proposed. The type strain is NUM-2625T (=NBRC 114660T=TBRC 13496T).


Assuntos
Micromonosporaceae/classificação , Filogenia , Componentes Aéreos da Planta/microbiologia , Rosácea/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Graxos/química , Micromonosporaceae/isolamento & purificação , Mongólia , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-34106825

RESUMO

An endophytic actinobacterium, designated strain CA1R205T, was isolated from the surface-sterilized root of Coffea arabica L. collected from Ratchaburi province, Thailand. The taxonomic position of this strain was evaluated using a polyphasic approach. The strain produced light yellowish brown to dark brownish black substrate mycelium and greyish white aerial mycelium. The spiral spore chains were produced directly on aerial mycelium. CA1R205T was found to have ll-diaminopimelic acid in the cell peptidoglycan, galactose, glucose, mannose and ribose as whole-cell reducing sugars, MK-10(H4), MK-9(H6), MK-10(H2), MK-9(H4), MK-10(H6) and MK-10(H8) as menaquinones and iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0 and C16 : 0 as major fatty acids. Diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol were detected in the cells. These characteristics were consistent the typical chemotaxonomic properties of members the genus Streptomyces. The taxonomic affiliation at the genus level of this strain could be confirmed using its 16S rRNA gene sequence data. CA1R205T showed the highest 16S rRNA gene sequence similarity value to Streptomyces rapamycinicus NRRL B-5491T (98.9 %), followed by Streptomyces iranensis HM 35T (98.8 %). Digital DNA-DNA hybridization and average nucleotide identity-by blast (ANIb) values between CA1R205T and S. rapamycinicus NRRL B-5491T were 27.2 and 81.5 %, respectively. The DNA G+C content of genomic DNA was 70.7 mol%. Due to the differences in physiological, biochemical and genotypic data, CA1R205T could be discriminated from its closest neighbour. Thus, CA1R205T should be recognized as representing a novel species of the genus Streptomyces, for which the name Streptomyces coffeae sp. nov. is proposed. The type strain is CA1R205T (=TBRC 11244T=NBRC 114295T).


Assuntos
Coffea/microbiologia , Endófitos/isolamento & purificação , Raízes de Plantas/microbiologia , Streptomyces/isolamento & purificação , Composição de Bases/genética , Sequência de Bases , DNA Bacteriano/genética , Endófitos/genética , Funções Verossimilhança , Filogenia , RNA Ribossômico 16S/genética , Streptomyces/classificação , Tailândia
6.
Microbiol Res ; 248: 126768, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33873141

RESUMO

The increase in the number of deaths from infections caused by multidrug-resistant bacteria and cancer diseases highlights the need for new molecules with biological activity. Actinobacteria represent a potential source of new compounds, as these microorganisms have already produced a great diversity of clinically employed antibiotics. Endophytes from unexplored biomes, such as the Pantanal (the largest wetland in the world), can be a source of new molecules. Hymenachne amplexicaulis is among the unexplored native plants of the Pantanal in terms of its endophytic community. This plant is considered a weed in other countries due to its ability to adapt and compete with native plants, and there is evidence to suggest that the endophytic community of H. amplexicaulis plays an important role in this competitiveness. To explore its therapeutic potential, the present study isolated, identified (using partial sequence of the 16S rDNA) and bioprospected H. amplexicaulis endophytic actinobacteria. Ten isolates belonging to the genera Streptomyces, Microbispora, Leifsonia, and Verrucosispora were obtained from root fragments. The susceptibility profile of the isolates to the different classes of antibiotics was evaluated, with 80 % of the isolates showing resistance to the antibiotics Nalidixic Acid, Ampicillin, Chloramphenicol, Oxacillin, and Rifampicin. To assess antibacterial and antitumor activities, methanolic extracts were obtained by fermentation in SG culture medium at 36 °C at 180 rpm for 10 days. The extract produced from the S. albidoflavus CMRP4854 isolate was the only one to show activity against the Gram-negative bacterium Acinetobacter baumanii. Due to the great clinical importance of this pathogen and the difficulty in obtaining active compounds against it, the CMRP4854 isolate should be further investigated for the identification of active compounds and mode of action. We also emphasize the results obtained by the extract of the isolates Streptomyces albidoflavus CMRP4852 and Verrucosispora sp. CMRP4860 that presented antibacterial effect against Methicilin-resistant Staphylococcus aureus (MRSA) (MIC: 1.5 µg/mL and 13 µg/mL, respectively) and Vancomycin-resistant Enterococcus (VRE) (MIC: 40 µg/mL for both extracts). Extracts (200 µg/mL) of these two endophytes also showed selective cytotoxicity action against murine B16-F10 melanoma cells. However, the CMRP4852 extract also affected the density of normal cells. Due to these results, the crude extract of isolate CMRP4860 Verrucosispora sp., which was the only one that presented cytotoxicity and reduced cell density only in tumor cells, was selected for subsequent analysis involving scale-up fermentation of the CMRP4860 resulting in 9 fractions that were tested against both bacteria and tumor cells, with particular fractions showing promise and meriting further investigation. Taken together, the results of this study not only show for the first time that the endophytic community of H. amplexicaulis actinobacteria can produce secondary metabolites that potentially possess important antibacterial and cytotoxic properties, but also reinforce the pressing need to conserve biomes such as the Brazilian Pantanal.


Assuntos
Actinobacteria/química , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Endófitos/química , Poaceae/microbiologia , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Brasil , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/metabolismo , Enterococcus/efeitos dos fármacos , Enterococcus/crescimento & desenvolvimento , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Camundongos , Áreas Alagadas
7.
Arch Microbiol ; 203(5): 2475-2489, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33675371

RESUMO

In a preliminary plant-based microbiome study, diverse bacterial taxa were identified from different medicinal plants using 16S rRNA gene sequencing. Based on initial antimicrobial screening, eight (8) bacterial endophytes in six (6) different genera, Streptomyces, Pseudomonas, Enterobacter, Bacillus, Arthrobacter, and Delftia, from four important medicinal plants Dodonaea viscosa, Fagonia indica, Caralluma tuberculata, and Calendula arvensis were selected for further analyses. Antimicrobial assays revealed that Pseudomonas taiwanensis MOSEL-RD23 has strong anti-Phytophthora activity. Volatiles produced by P. taiwanensis MOSEL-RD23and Bacillus flexus MOSEL-MIC5 inhibited the growth of Phytophthora parasitica by more than 80%. Ethyl acetate extracts of Streptomyces alboniger MOSEL-RD3, P. taiwanensis MOSEL-RD23, Enterobacter hormaechei MOSEL-FLS1, and Bacillus tequilensis MOSEL-FLS3, and Delftia lacustris MB322 displayed high potency against P. parasitica. All these bacterial extracts showed strong inhibition of more than 80% inhibition in vitro against P. parasitica at different concentrations (4-400 µg/mL). Bacterial extracts showing strong antimicrobial activity were selected for bioactivity-driven fractionation and showed anti-Phytophthoral activity in multiple fractions and different peaks observed in UV-Vis spectroscopy. In the detached-leaf assay against P. parasitica on tobacco, 1% ethyl acetate bacterial extract of S. alboniger MOSEL-RD3, P. taiwanensis MOSEL-RD23, E. hormaechei MOSEL-FLS1, B. tequilensis MOSEL-FLS3, and D. lacustris MB322 reduced lesion sizes and lesion frequencies caused by P. parasitica by 68 to 81%. Overall, P. taiwanensis MOSEL-RD23 showed positive activities for all the assays. Analyzing the potential of bacterial endophytes as biological control agents can potentially lead to the formulation of broad-spectrum biopesticides for the sustainable production of crops.


Assuntos
Agentes de Controle Biológico/farmacologia , Microbiota , Phytophthora/efeitos dos fármacos , Plantas Medicinais/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Agentes de Controle Biológico/isolamento & purificação , Agentes de Controle Biológico/metabolismo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Testes de Sensibilidade Parasitária , Phytophthora/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Plantas Medicinais/classificação , RNA Ribossômico 16S/genética
8.
Mar Drugs ; 19(2)2021 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-33498874

RESUMO

One new diterpenoid, diaporpenoid A (1), two new sesquiterpenoids, diaporpenoids B-C (2,3) and three new α-pyrone derivatives, diaporpyrones A-C (4-6) were isolated from an MeOH extract obtained from cultures of the mangrove endophytic fungus Diaporthe sp. QYM12. Their structures were elucidated by extensive analysis of spectroscopic data. The absolute configurations were determined by electronic circular dichroism (ECD) calculations and a comparison of the specific rotation. Compound 1 had an unusual 5/10/5-fused tricyclic ring system. Compounds 1 and 4 showed potent anti-inflammatory activities by inhibiting the production of nitric oxide (NO) in lipopolysaccharide (LPS)-induced RAW264.7 cells with IC50 values of 21.5 and 12.5 µM, respectively.


Assuntos
Anti-Inflamatórios/metabolismo , Endófitos/metabolismo , Extratos Vegetais/metabolismo , Rhizophoraceae/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Fungos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Células RAW 264.7
9.
Bioprocess Biosyst Eng ; 44(6): 1063-1070, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33495932

RESUMO

Endophytic fungi isolated from desert plants are among the less known organisms with potentially valuable applications. The bioactivities of an endophytic fungus isolated from Aloe vera, a plant found in central regions of Asir desert, Saudi Arabia. Based on primary phytochemical screening, an efficient isolate was selected and identified according to the sequence analysis of the internal spacer regions ITS1, ITS4 and the 5.8S region as Preussia africana belonging to the family Sporormiaceae. The crude extract of this fungus was evaluated for its bioactivities. Under static conditions, the crude extract at a concentration of 500 µg/mL had a strong 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging rate of 87%, whereas a higher concentration (100 µg/mL) had an astounding wound healing effect (42.6% at 48 h) when compared to positive control. Moreover, the crude extract with a concentration of 50 µg/mL was active against almost all cancer cell lines such as HeLa (cervical cancer), Hep G2 (liver cancer), MCF-7 (breast cancer), A549 (lung cancer), LN-229 (glioblastoma), A-431 (skin cancer), and kidney cell line (HEK 293T). The results suggest that the endophytic fungus P. africana from A. vera has wide therapeutic applications against severe disease conditions.


Assuntos
Aloe/microbiologia , Ascomicetos , Endófitos , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Arábia Saudita
10.
Nat Prod Res ; 35(5): 796-801, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30966796

RESUMO

Five indole derivatives, 1H-indol-7-ol (1), tryptophol (2), 3-indolepropionic acid (3), tryptophan (4), 3,3-di(1H-indol-3-yl)propane-1,2-diol (5) and two diketopiperazines, cyclo(L-Pro-L-Tyr) (6), cyclo[L-(4-hydroxyprolinyl)-L-leucine (7) along with one dihydrocinnamic acid (8) were isolated from Pantoea ananatis VERA8, that endophytic bacteria derived from Baccharoides anthelmintica roots. This is a first report towards an isolation of endophytic strains (funji or bacteria) from the B. anthelmintica herb. The synergetic properties of the total extract compositions, as well as effects of the pure isolated secondary metabolites evaluated on their melanin synthesis in murine B16 cells towards for vitiligo treatment.


Assuntos
Asteraceae/microbiologia , Endófitos/metabolismo , Melaninas/biossíntese , Melanoma Experimental/patologia , Pantoea/metabolismo , Raízes de Plantas/microbiologia , Metabolismo Secundário , Animais , Linhagem Celular Tumoral , Endófitos/isolamento & purificação , Camundongos , Pantoea/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia
11.
Can J Microbiol ; 67(1): 29-36, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32780963

RESUMO

Plant fungal endophytes are diverse microbial sources that reside inside plants. Grapes (Vitis vinifera) are rich in polyphenols that have beneficial health effects, and recent research has shown that fungal endophytes in grapes may contribute to the production of these polyphenols and may serve as biocontrol agents. In this study, we determined the fungal microbial endophyte diversity in North American table grapes found at a Winnipeg, Manitoba, market. The amplicon internal transcribed spacer (ITS) metagenomics approach was used to profile the fungal communities of the fruit endophyte microbiome of three table grape types. The data supported endophyte diversity in different table grapes, including possible bioactive, saprophytic, and pathogenic fungi. Culturable endophytes were isolated and identified by morphology and ITS amplicon sequencing. The majority of the isolated culturable strains included Alternaria spp. and Cladosporium spp. The results provided evidence of the existence of diverse fungal endophytes isolated and identified from the fruit of the table grapes. These fungal endophytes may have potential in agricultural, industrial, and pharmaceutical applications.


Assuntos
Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Vitis/microbiologia , Biodiversidade , DNA Espaçador Ribossômico/genética , Endófitos/classificação , Endófitos/genética , Frutas/microbiologia , Fungos/classificação , Fungos/genética , Manitoba , Microbiota/genética
12.
J Appl Microbiol ; 130(2): 604-616, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33053259

RESUMO

AIMS: The efficacy of three isolates of endophytic Penicillium species that have shown significant suppressive effect on root rotting fungi in our previous study were further evaluated in pots and field plot experiments for their effect on root diseases of okra, induction of systemic resistance and physiochemical properties of okra fruit. METHODS AND RESULTS: Aqueous suspensions of endophytic Penicillium and Pseudomonas monteilii were applied in pots and field plots using okra as test plant. Data on the fungal infection of roots, plant growth, plant resistance markers like polyphenol, salicylic acid and antioxidant status of plant were determined. These isolates significantly suppressed root diseases and induced systemic resistance via increasing level of resistance markers, polyphenol and salicylic acid besides improving antioxidant activity of Penicillium and P. monteilii-treated plants as compared to control plants. GC-MS analysis of n-hexane extract of mycelium of P. nigricans revealed the presence of 15 different volatile compounds. CONCLUSIONS: Endophytic Penicillium and P. monteilii have potential against root-infecting fungi of okra and can improve plant growth and yield. SIGNIFICANCE AND IMPACT OF THE STUDY: Endophytic Penicillium species and P. monteilii can suppress root rotting fungi by direct mechanism or induction of systemic resistance in plants.


Assuntos
Abelmoschus/microbiologia , Resistência à Doença , Endófitos/fisiologia , Penicillium/fisiologia , Pseudomonas/fisiologia , Abelmoschus/crescimento & desenvolvimento , Abelmoschus/imunologia , Endófitos/química , Endófitos/isolamento & purificação , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/microbiologia , Penicillium/química , Penicillium/isolamento & purificação , Compostos Fitoquímicos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Pseudomonas/química , Pseudomonas/isolamento & purificação , Compostos Orgânicos Voláteis/análise
13.
Arch Microbiol ; 203(3): 1131-1148, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33206216

RESUMO

This research aims to isolate and identify Zn- and Cd-tolerant endophytic bacteria from Murdannia spectabilis, identify their properties with and without Zn and Cd stress, and to investigate the effect of bacterial inoculation in an in vitro system. Twenty-four isolates could survive on trypticase soya agar (TSA) supplemented with Zn (250-500 mg L-1) and/or Cd (20-50 mg L-1) that belonged to the genera Bacillus, Pantoea, Microbacterium, Curtobacterium, Chryseobacterium, Cupriavidus, Siphonobacter, and Pseudomonas. Each strain had different indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and siderophore production, nitrogen fixation, phosphate solubilization, and lignocellulosic enzyme characteristics. Cupriavidus plantarum MDR5 and Chryseobacterium sp. MDR7 were selected for inoculation into plantlets that were already occupied by Curtobacterium sp. TMIL due to them have a high tolerance for Zn and Cd while showing no pathogenicity. As determined via an in vitro system, Cupriavidus plantarum MDR5 remained in the plants to a greater extent than Chryseobacterium sp. MDR7, while Curtobacterium sp. TMIL was the dominant species. The Zn plus Cd treatment supported the persistence of Cupriavidus plantarum MDR5. Dual and mixed cultivation showed no antagonistic effects between the endophytes. Although the plant growth and Zn/Cd accumulation were not significantly affected by the Zn-/Cd-tolerant endophytes, the inoculation did not weaken the plants. Therefore, Cupriavidus plantarum MDR5 could be applied in a bioaugmentation process.


Assuntos
Actinomycetales/efeitos dos fármacos , Actinomycetales/fisiologia , Cádmio/farmacologia , Commelinaceae/microbiologia , Cupriavidus/efeitos dos fármacos , Cupriavidus/fisiologia , Zinco/farmacologia , Antibiose , Biodegradação Ambiental , Carbono-Carbono Liases/metabolismo , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/microbiologia , Sideróforos/metabolismo , Poluentes do Solo/farmacologia
14.
Antonie Van Leeuwenhoek ; 113(11): 1617-1632, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32949307

RESUMO

In this study, two endophytic bacterial strains designated JS21-1T and S6-262T isolated from leaves of Elaeis guineensis and stem tissues of Jatropha curcas respectively, were subjected for polyphasic taxonomic approach. On R2A medium, colonies of strains JS21-1T and S6-262T are orange and yellow, respectively. Phylogenetic analyses using 16S rRNA gene sequencing and whole-genome sequences placed the strains in distinct clades but within the genus Sphingomonas. The DNA G + C content of JS21-1T and S6-262T were 67.31 and 66.95%, respectively. Furthermore, the average nucleotide identity and digital DNA-DNA hybridization values of strains JS21-1T and S6-262T with phylogenetically related Sphingomonas species were lower than 95% and 70% respectively. The chemotaxonomic studies indicated that the major cellular fatty acids of the strain JS21-1T were summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C16:0, and C14:0 2OH; strain S6-262T possessed summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH) and summed feature 8 (C18:1 ω6c and/or C18:1 ω7c). The major quinone was Q10, and the unique polyamine observed was homospermidine. The polar lipid profile comprised of mixture of sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and certain uncharacterised phospholipids and lipids. Based on this polyphasic evidence, strains JS21-1T and S6-262T represent two novel species of the genus Sphingomonas, for which the names Sphingomonas palmae sp. nov. and Sphingomonas gellani sp. nov. are proposed, respectively. The type strain of Sphingomonas palmae sp. nov. is JS21-1T (= DSM 27348T = KACC 17591T) and the type strain of Sphingomonas gellani sp. nov. is S6-262T (= DSM 27346T =  KACC 17594T).


Assuntos
Produtos Agrícolas/microbiologia , Endófitos/classificação , Endófitos/isolamento & purificação , Sphingomonas/classificação , Sphingomonas/isolamento & purificação , Técnicas de Tipagem Bacteriana , Benzoquinonas/análise , DNA Bacteriano/genética , Endófitos/genética , Ácidos Graxos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espermidina/análogos & derivados , Espermidina/análise , Sphingomonas/genética
15.
Arch Microbiol ; 202(10): 2771-2778, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32737542

RESUMO

A bacterial strain designated NYYP31T was isolated from the leaves of an annual halophytes, Suaeda corniculata Bunge, collected from the southern edge of the Gurbantunggut desert, north-west China. Strain NYYP31T was Gram-staining negative, strictly aerobic, rod-shaped, non-motile, and non-spore-forming. Growth was observed at 4-42 °C, at pH 5.0-10.0, in the presence of up to 8% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences and coding sequences of 92 protein clusters showed that strain NYYP31T should be assigned to the genus Sphingobacterium. 16S rRNA gene sequence similarity analysis showed that strain NYYP31T was most closely related to the type strain of Sphingobacterium daejeonense (97.9%) and Sphingobacterium lactis (97.7%). The predominant isoprenoid quinone was MK-7. The major fatty acids were identified as iso-C15:0, iso-C17:0 3-OH and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The polar lipids were phosphatidylethanolamine, two unidentified phospholipids, three unidentified lipids, three unidentified amino phospholipids, and two unidentified glycolipids. The genomic DNA G + C content was 36.4 mol%. The average nucleotide identity (ANI) values for strain NYYP31T to the type strains of S. daejeonense and S. lactis were 77.9 and 74.1%, respectively, which were below the cut-off level (95-96%) for species delineation. Based on the above results, strain NYYP31T represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium endophyticum sp. nov. is proposed. The type strain is NYYP31T (= CGMCC 1.16979T = NBRC 114258T).


Assuntos
Chenopodiaceae/microbiologia , Plantas Tolerantes a Sal/microbiologia , Sphingobacterium/classificação , Sphingobacterium/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , China , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Filogenia , Folhas de Planta/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo , Sphingobacterium/genética , Vitamina K 2/química
16.
Molecules ; 25(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630044

RESUMO

Endophytic fungi have been considered as a repertoire for bioactive secondary metabolites with potential application in medicine, agriculture and food industry. The biosynthetic pathways by fungal endophytes raise the argument of acquisition of these machineries of such complex metabolites from the plant host. Diterpenoids "Taxol" is the most effective anticancer drug with highest annual sale, since its discovery in 1970 from the Pacific yew tree, Taxus brevifolia. However, the lower yield of Taxol from this natural source (bark of T. brevifolia), availability and vulnerability of this plant to unpredicted fluctuation with the ecological and environmental conditions are the challenges. Endophytic fungi from Taxus spp. opened a new avenue for industrial Taxol production due to their fast growth, cost effectiveness, independence on climatic changes, feasibility of genetic manipulation. However, the anticipation of endophytic fungi for industrial Taxol production has been challenged by the loss of its productivity, due to the metabolic reprograming of cells, downregulating the expression of its encoding genes with subculturing and storage. Thus, the objectives of this review were to (1) Nominate the endophytic fungal isolates with the Taxol producing potency from Taxaceae and Podocarpaceae; (2) Emphasize the different approaches such as molecular manipulation, cultural optimization, co-cultivation for enhancing the Taxol productivities; (3) Accentuate the genome mining of the rate-limiting enzymes for rapid screening the Taxol biosynthetic machinery; (4) Triggering the silenced rate-limiting genes and transcriptional factors to activates the biosynthetic gene cluster of Taxol.


Assuntos
Vias Biossintéticas , Endófitos/metabolismo , Fungos/metabolismo , Paclitaxel/farmacologia , Taxus/microbiologia , Traqueófitas/microbiologia , Endófitos/isolamento & purificação , Fungos/isolamento & purificação , Genômica
17.
Cancer Biomark ; 28(3): 371-379, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508319

RESUMO

OBJECTIVES: The purpose of this study was to isolate the secondary metabolites of endophytic fungi from Ginkgo biloba (SMEFGB) and investigate their anti-cervical cancer activity. METHODS: SMEFGB were cultured. The secondary metabolites of endophytic fungi was extracted, purified and identified. The effects of secondary metabolites on proliferation, apoptosis and migration of human cervical cancer HeLa cells were determined. In addition, the effects of SMEFGB on growth of Hela implanted tumor in mice were investigated. RESULTS: In 9 stains of endophytic fungi successfully isolated from the leaves of Ginkgo biloba, the stain J-1, J-2 and J-3 could produce podophyllotoxin. These 3 stains were identified by molecular biology. The secondary metabolites of stain J-1, J-2 and J-3 markedly inhibited the proliferation of HeLa cells, promoted their apoptosis and blocked their migration. In addition, the secondary metabolites of stain J-1, J-2 and J-3 significantly attenuated the growth of HeLa implanted tumor in mice. CONCLUSIONS: Our results indicated that SMEFGB had obvious anti-cervical cancer activity in vitro and in vivo.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Endófitos/metabolismo , Fungos/metabolismo , Ginkgo biloba/microbiologia , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Produtos Biológicos/uso terapêutico , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Endófitos/isolamento & purificação , Feminino , Fungos/isolamento & purificação , Células HeLa , Humanos , Camundongos , Metabolismo Secundário , Neoplasias do Colo do Útero/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
FEMS Microbiol Lett ; 367(12)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32556312

RESUMO

Wetlands have been proposed as a sink for pollutants such as heavy metals. Wetland plants play a significant role in the phytoremediation of heavy metals. Here, we isolated and characterized three novel nickel (Ni)-resistant endophytic bacteria (NiEB) from the wetland plant Tamarix chinensis. The NiEB were identified as Stenotrophomonas sp. S20, Pseudomonas sp. P21 and Sphingobium sp. S42. All isolates tolerated 50 mg L-1 Ni, with isolates S20 and P21 being more tolerant to Ni at up to 400 mg L-1. Moreover, isolate S42 removed 33.7% of nickel sulfate from the water by forming white precipitates. The three isolates exhibited different plant growth-promoting (PGP) traits related to the production of indole acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Phytotoxicity studies revealed that the growth of the wetland plants in a high Ni concentration (200 mg L-1) recovered after co-incubation with isolate S42. Overall, this study presents the first report of NiEB isolation from wetland plants and provides novel insights into the diverse functions of endophytic bacteria in a plant host with the potential to improve Ni phytoremediation.


Assuntos
Biodegradação Ambiental , Farmacorresistência Bacteriana , Níquel , Proteobactérias/efeitos dos fármacos , Proteobactérias/metabolismo , Tamaricaceae/microbiologia , Endófitos/efeitos dos fármacos , Endófitos/isolamento & purificação , Endófitos/metabolismo , Níquel/toxicidade , Proteobactérias/isolamento & purificação
19.
Int J Syst Evol Microbiol ; 70(3): 1940-1946, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31967956

RESUMO

A Gram-reaction-positive, endospore-forming and rod-shaped bacterial strain, designated py1325T, was isolated from the root of Paris polyphylla Smith var. yunnanensis collected from Yunnan Province, PR China, and subjected to a polyphasic taxonomic characterization. It grew optimally with 0-1 % NaCl (w/v), at pH 7 and at 30 °C. The major respiratory quinone was MK-7 and the diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major cellular fatty acid was anteiso-C15 : 0. The polar lipids consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified phospholipids and two unidentified lipids. The results of 16S rRNA gene sequence analysis revealed the highest levels of sequence similarity with respect to Paenibacillus luteus R-3T (99.0 %), Paenibacillus sinopodophylli CCTCC AB 2016047T (97.9 %), Paenibacillus castaneae DSM 19417T (97.5 %) and Paenibacillus endophyticus LMG 27297T (97.2 %). The digital DNA-DNA hybridization and average nucleotide identity values between py1325T and these species ranged 20.6-53.3 % and 79.9-93.6 %. The G+C content of the genomic DNA was 47.7 mol%. According to the phylogenetic, phenotypic and chemotaxonomic evidence, strain py1325T clearly represents a novel species of the genus Paenibacillus, for which the name Paenibacillus paridis sp. nov. is proposed. The type strain is py1325T (=CCTCC AB 2015220T=LMG 29068T).


Assuntos
Melanthiaceae/microbiologia , Paenibacillus/classificação , Filogenia , Raízes de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Paenibacillus/isolamento & purificação , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Curr Microbiol ; 77(6): 918-923, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31970484

RESUMO

Taxol is a successful anti-cancer drug, which extensively studied in Taxus spp. However, microbial endophytes also reported as taxol producers, and especially fungal endophytes extensively studied for the taxol biosynthesis pathway. Although it was well considered, the taxol biosynthesis pathway remains undisclosed since its discovery in bacteria. To decipher this gap, we isolated and identified the endophytic bacteria such as Bacillus flexus strain DMTMMB08, Bacillus licheniformis strain DMTMMB10, and Oceanobacillus picturae strain DMTMMB24, which are unprecedented for taxol production. Subsequently, the genome annotation of these bacteria exhibited the isoprene biosynthesis pathway and terpene synthase profile. Feasibly, this is the very first report on taxol-producing endophytic bacteria from the non-Taxus host and solitary investigation on its genome analysis. The genomic insight into the bacterial system for taxol biosynthesis leads to understanding the terpene synthesis and evolution. This piece of work could expand our perception of the diversity of terpenes and their related natural products.


Assuntos
Alquil e Aril Transferases/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Paclitaxel/biossíntese , Alga Marinha/microbiologia , Alquil e Aril Transferases/química , Sequência de Aminoácidos , Antineoplásicos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/química , Vias Biossintéticas , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Genoma Bacteriano/genética , Domínios Proteicos , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA