Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Gene Expr Patterns ; 39: 119165, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33373688

RESUMO

Endoglin (ENG) is essential for cardiovascular development and is expressed in the heart from its earliest developmental stages. ENG expression has been reported in the cardiac crescent, endocardium, valve mesenchyme and coronary vascular endothelial cells. However, its expression in these cell types is non-uniform and the dynamic changes in ENG expression during heart development have not been systematically studied. Using immunofluorescent staining we tracked ENG protein expression in mouse embryonic hearts aged from 11.5 to 17.5 days, and in postnatal and adult hearts. ENG is expressed in the endocardium and in venous endothelial cells throughout these developmental stages. ENG protein is down-regulated by approximately two-fold as a subset of early coronary veins reprogram to form arteries within the developing myocardium from E13.5. This two-fold higher ratio of ENG protein in veins versus arteries is maintained throughout cardiac development and in the adult heart. ENG is also down-regulated two-fold following mesenchymal transition of endocardial cells to form cardiac valve mesenchyme, whilst expression of the pan-endothelial marker CD31 is completely lost. A subset of epicardial cells (which do not express ENG protein) delaminate and undergo a similar mesenchymal transition to form epicardially derived cells (EPDCs). This transient intra-myocardial mesenchymal cell population expresses low levels of ENG protein, similar to valve mesenchyme. In conclusion, ENG shows dynamic changes of expression in vascular endothelial cells, endocardial cells and mesenchymal cells in the developing heart that vary according to cardiovascular cell type.


Assuntos
Endoglina/genética , Coração/embriologia , Miócitos Cardíacos/metabolismo , Animais , Vasos Coronários/embriologia , Vasos Coronários/metabolismo , Endocárdio/citologia , Endocárdio/embriologia , Endocárdio/metabolismo , Endoglina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
2.
Sci Rep ; 10(1): 20094, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208886

RESUMO

Protein kinase R-like endoplasmic reticulum kinase (PERK) is one of the endoplasmic reticulum (ER) stress sensors. PERK loss-of-function mutations are known to cause Wolcott-Rallison syndrome. This disease is characterized by early-onset diabetes mellitus, skeletal dysplasia, and cardiac valve malformation. To understand the role of PERK in valve formation in vivo, we used an endothelial-specific PERK conditional knockout mice as well as in vitro PERK inhibition assays. We used ProteoStat dyes to visualize the accumulation of misfolded proteins in the endocardial cushion and valve mesenchymal cells (VMCs). Then, VMCs were isolated from E12.5 fetal mice, by fluorescence assisted cell sorting. Proteomic analysis of PERK-deleted VMCs identified the suppression of proteins related to fatty acid oxidation (FAO), especially carnitine palmitoyltransferase II (CPT2). CPT2 is a critical regulator of endocardial-mesenchymal transformation (EndoMT); however how TGF-ß downstream signaling controls CPT2 expression remains unclear. Here, we showed that PERK inhibition suppressed, not only EndoMT but also CPT2 protein expression in human umbilical vein endothelial cells (HUVECs) under TGF-ß1 stimulation. As a result, PERK inhibition suppressed mitochondrial metabolic activity. Taken together, these results demonstrate that PERK signaling is required for cardiac valve formation via FAO and EndoMT.


Assuntos
Endocárdio/embriologia , Ácidos Graxos/química , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Mesoderma/embriologia , Organogênese , eIF-2 Quinase/fisiologia , Animais , Endocárdio/metabolismo , Ácidos Graxos/metabolismo , Feminino , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução
3.
Artigo em Inglês | MEDLINE | ID: mdl-31988139

RESUMO

Endocardial cells are specialized endothelial cells that, during embryogenesis, form a lining on the inside of the developing heart, which is maintained throughout life. Endocardial cells are an essential source for several lineages of the cardiovascular system including coronary endothelium, endocardial cushion mesenchyme, cardiomyocytes, mural cells, fibroblasts, liver vasculature, adipocytes, and hematopoietic cells. Alterations in the differentiation programs that give rise to these lineages has detrimental effects, including premature lethality or significant structural malformations present at birth. Here, we will review the literature pertaining to the contribution of endocardial cells to valvular, and nonvalvular lineages and highlight critical pathways required for these processes. The lineage differentiation potential of embryonic, and possibly adult, endocardial cells has therapeutic potential in the regeneration of damaged cardiac tissue or treatment of cardiovascular diseases.


Assuntos
Endocárdio/embriologia , Valvas Cardíacas/embriologia , Miocárdio/citologia , Animais , Desenvolvimento Embrionário , Coxins Endocárdicos/embriologia , Valvas Cardíacas/metabolismo , Humanos , Transdução de Sinais
4.
Mol Cell Proteomics ; 18(9): 1782-1795, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31249105

RESUMO

The endocardium is a specialized endothelium that lines the inner surface of the heart. Functional studies in mice and zebrafish have established that the endocardium is a source of instructive signals for the development of cardiac structures, including the heart valves and chambers. Here, we characterized the NOTCH-dependent endocardial secretome by manipulating NOTCH activity in mouse embryonic endocardial cells (MEEC) followed by mass spectrometry-based proteomics. We profiled different sets of soluble factors whose secretion not only responds to NOTCH activation but also shows differential ligand specificity, suggesting that ligand-specific inputs may regulate the expression of secreted proteins involved in different cardiac development processes. NOTCH signaling activation correlates with a transforming growth factor-ß2 (TGFß2)-rich secretome and the delivery of paracrine signals involved in focal adhesion and extracellular matrix (ECM) deposition and remodeling. In contrast, NOTCH inhibition is accompanied by the up-regulation of specific semaphorins that may modulate cell migration. The secretome protein expression data showed a good correlation with gene profiling of RNA expression in embryonic endocardial cells. Additional characterization by in situ hybridization in mouse embryos revealed expression of various NOTCH candidate effector genes (Tgfß2, Loxl2, Ptx3, Timp3, Fbln2, and Dcn) in heart valve endocardium and/or mesenchyme. Validating these results, mice with conditional Dll4 or Jag1 loss-of-function mutations showed gene expression alterations similar to those observed at the protein level in vitro These results provide the first description of the NOTCH-dependent endocardial secretome and validate MEEC as a tool for assaying the endocardial secretome response to a variety of stimuli and the potential use of this system for drug screening.


Assuntos
Endocárdio/embriologia , Endocárdio/metabolismo , Valvas Cardíacas/embriologia , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Benzazepinas/farmacologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Endocárdio/citologia , Endocárdio/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Valvas Cardíacas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Camundongos Mutantes , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , Reprodutibilidade dos Testes
5.
Cell Death Differ ; 25(6): 1118-1130, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358667

RESUMO

Activation of p53-dependent apoptosis is critical for tumor suppression but aberrant activation of p53 also leads to developmental defects and heart failure. Here, we found that Rbm24 RNA-binding protein, a target of p53, regulates p53 mRNA translation. Mechanistically, we found that through binding to p53 mRNA and interaction with translation initiation factor eIF4E, Rbm24 prevents eIF4E from binding to p53 mRNA and inhibits the assembly of translation initiation complex. Importantly, we showed that mice deficient in Rbm24 die in utero due to the endocardial cushion defect in the heart at least in part due to aberrant activation of p53-dependent apoptosis. We also showed that the heart developmental defect in Rbm24-null mice can be partially rescued by p53 deficiency through decreased apoptosis in the heart. Together, we postulate that the p53-Rbm24 loop is critical for the heart development and may be explored for mitigating congenital heart diseases and heart failure.


Assuntos
Endocárdio/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Humanos , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteína Supressora de Tumor p53/genética
6.
Circ Res ; 118(12): 1880-93, 2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27056912

RESUMO

RATIONALE: There is persistent uncertainty regarding the developmental origins of coronary vessels, with 2 principal sources suggested as ventricular endocardium or sinus venosus (SV). These 2 proposed origins implicate fundamentally distinct mechanisms of vessel formation. Resolution of this controversy is critical for deciphering the programs that result in the formation of coronary vessels and has implications for research on therapeutic angiogenesis. OBJECTIVE: To resolve the controversy over the developmental origin of coronary vessels. METHODS AND RESULTS: We first generated nuclear factor of activated T cells (Nfatc1)-Cre and Nfatc1-Dre lineage tracers for endocardium labeling. We found that Nfatc1 recombinases also label a significant portion of SV endothelial cells in addition to endocardium. Therefore, restricted endocardial lineage tracing requires a specific marker that distinguishes endocardium from SV. By single-cell gene expression analysis, we identified a novel endocardial gene natriuretic peptide receptor 3 (Npr3). Npr3 is expressed in the entirety of the endocardium but not in the SV. Genetic lineage tracing based on Npr3-CreER showed that endocardium contributes to a minority of coronary vessels in the free walls of embryonic heart. Intersectional genetic lineage tracing experiments demonstrated that endocardium minimally contributes to coronary endothelium in the embryonic ventricular free walls. CONCLUSIONS: Our study suggested that SV, but not endocardium, is the major origin for coronary endothelium in the embryonic ventricular free walls. This work thus resolves the recent controversy over the developmental origin of coronary endothelium, providing the basis for studying coronary vessel formation and regeneration after injury.


Assuntos
Linhagem da Célula , Vasos Coronários/embriologia , Endocárdio/embriologia , Endotélio Vascular/metabolismo , Ventrículos do Coração/embriologia , Animais , Vasos Coronários/citologia , Vasos Coronários/metabolismo , Endocárdio/citologia , Endocárdio/metabolismo , Endotélio Vascular/citologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Camundongos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo
7.
Nat Genet ; 48(5): 537-43, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27019112

RESUMO

The hepatic vasculature is essential for liver development, homeostasis and regeneration, yet the developmental program of hepatic vessel formation and the embryonic origin of the liver vasculature remain unknown. Here we show in mouse that endocardial cells form a primitive vascular plexus surrounding the liver bud and subsequently contribute to a substantial portion of the liver vasculature. Using intersectional genetics, we demonstrate that the endocardium of the sinus venosus is a source for the hepatic plexus. Inhibition of endocardial angiogenesis results in reduced endocardial contribution to the liver vasculature and defects in liver organogenesis. We conclude that a substantial portion of liver vessels derives from the endocardium and shares a common developmental origin with coronary arteries.


Assuntos
Linhagem da Célula , Endocárdio/embriologia , Fígado/embriologia , Animais , Vasos Coronários/embriologia , Endocárdio/citologia , Endocárdio/metabolismo , Átrios do Coração/embriologia , Átrios do Coração/metabolismo , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Fígado/irrigação sanguínea , Circulação Hepática , Camundongos , Morfogênese , Fatores de Transcrição NFATC/metabolismo , Neovascularização Fisiológica
8.
Development ; 143(3): 473-82, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26674310

RESUMO

The elucidation of mechanisms in semilunar valve development might enable the development of new therapies for congenital heart disorders. Here, we found differences in proliferation-associated genes and genes repressed by VEGF between human semilunar valve leaflets from first and second trimester hearts. The proliferation of valve interstitial cells and ventricular valve endothelial cells (VECs) and cellular density declined from the first to the second trimester. Cytoplasmic expression of NFATC1 was detected in VECs (4 weeks) and, later, cells in the leaflet/annulus junction mesenchyme expressing inactive NFATC1 (5.5-9 weeks) were detected, indicative of endocardial-to-mesenchymal transformation (EndMT) in valvulogenesis. At this leaflet/annulus junction, CD44(+) cells clustered during elongation (11 weeks), extending toward the tip along the fibrosal layer in second trimester leaflets. Differing patterns of maturation in the fibrosa and ventricularis were detected via increased fibrosal periostin content, which tracked the presence of the CD44(+) cells in the second trimester. We revealed that spatiotemporal NFATC1 expression actively regulates EndMT during human valvulogenesis, as early as 4 weeks. Additionally, CD44(+) cells play a role in leaflet maturation toward the trilaminar structure, possibly via migration of VECs undergoing EndMT, which subsequently ascend from the leaflet/annulus junction.


Assuntos
Endocárdio/embriologia , Valvas Cardíacas/citologia , Valvas Cardíacas/embriologia , Mesoderma/citologia , Mesoderma/embriologia , Moléculas de Adesão Celular/metabolismo , Contagem de Células , Diferenciação Celular , Proliferação de Células , Células Endoteliais/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Receptores de Hialuronatos/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Gravidez , Segundo Trimestre da Gravidez , Análise Espaço-Temporal , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Dev Biol ; 407(1): 158-72, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26100917

RESUMO

The formation of intricately organized aortic and pulmonic valves from primitive endocardial cushions of the outflow tract is a remarkable accomplishment of embryonic development. While not always initially pathologic, developmental semilunar valve (SLV) defects, including bicuspid aortic valve, frequently progress to a disease state in adults requiring valve replacement surgery. Disrupted embryonic growth, differentiation, and patterning events that "trigger" SLV disease are coordinated by gene expression changes in endocardial, myocardial, and cushion mesenchymal cells. We explored roles of chromatin regulation in valve gene regulatory networks by conditional inactivation of the Brg1-associated factor (BAF) chromatin remodeling complex in the endocardial lineage. Endocardial Brg1-deficient mouse embryos develop thickened and disorganized SLV cusps that frequently become bicuspid and myxomatous, including in surviving adults. These SLV disease-like phenotypes originate from deficient endocardial-to-mesenchymal transformation (EMT) in the proximal outflow tract (pOFT) cushions. The missing cells are replaced by compensating neural crest or other non-EMT-derived mesenchyme. However, these cells are incompetent to fully pattern the valve interstitium into distinct regions with specialized extracellular matrices. Transcriptomics reveal genes that may promote growth and patterning of SLVs and/or serve as disease-state biomarkers. Mechanistic studies of SLV disease genes should distinguish between disease origins and progression; the latter may reflect secondary responses to a disrupted developmental system.


Assuntos
Valva Aórtica/embriologia , DNA Helicases/fisiologia , Endocárdio/embriologia , Doenças das Valvas Cardíacas/etiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Fatores de Transcrição NFATC/fisiologia
10.
Circ Res ; 116(7): 1216-30, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25814683

RESUMO

Although numerous preclinical investigations have consistently demonstrated salubrious effects of c-kit(pos) cardiac cells administered after myocardial infarction, the mechanism of action remains highly controversial. We and others have found little or no evidence that these cells differentiate into mature functional cardiomyocytes, suggesting paracrine effects. In this review, we propose a new paradigm predicated on a comprehensive analysis of the literature, including studies of cardiac development; we have (facetiously) dubbed this conceptual construct "string theory" of c-kit(pos) cardiac cells because it reconciles multifarious and sometimes apparently discrepant results. There is strong evidence that, during development, the c-kit receptor is expressed in different pools of cardiac progenitors (some capable of robust cardiomyogenesis and others with little or no contribution to myocytes). Accordingly, c-kit positivity, in itself, does not define the embryonic origins, lineage capabilities, or differentiation capacities of specific cardiac progenitors. C-kit(pos) cells derived from the first heart field exhibit cardiomyogenic potential during development, but these cells are likely depleted shortly before or after birth. The residual c-kit(pos) cells found in the adult heart are probably of proepicardial origin, possess a mesenchymal phenotype (resembling bone marrow mesenchymal stem/stromal cells), and are capable of contributing significantly only to nonmyocytic lineages (fibroblasts, smooth muscle cells, and endothelial cells). If these 2 populations (first heart field and proepicardium) express different levels of c-kit, the cardiomyogenic potential of first heart field progenitors might be reconciled with recent results of c-kit(pos) cell lineage tracing studies. The concept that c-kit expression in the adult heart identifies epicardium-derived, noncardiomyogenic precursors with a mesenchymal phenotype helps to explain the beneficial effects of c-kit(pos) cell administration to ischemically damaged hearts despite the observed paucity of cardiomyogenic differentiation of these cells.


Assuntos
Linhagem da Célula , Modelos Cardiovasculares , Infarto do Miocárdio/terapia , Miócitos Cardíacos/transplante , Proteínas Proto-Oncogênicas c-kit , Túnica Adventícia/citologia , Vasos Sanguíneos/citologia , Vasos Sanguíneos/embriologia , Diferenciação Celular , Ensaios Clínicos Fase I como Assunto , Citocinas/fisiologia , Endocárdio/citologia , Endocárdio/embriologia , Transição Epitelial-Mesenquimal , Sobrevivência de Enxerto , Coração/embriologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Músculo Liso/citologia , Miócitos Cardíacos/química , Comunicação Parácrina , Pericárdio/citologia , Pericárdio/embriologia , Células-Tronco/química , Células-Tronco/classificação , Células-Tronco/citologia , Transplante Autólogo
11.
Cell Rep ; 9(6): 2071-83, 2014 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-25497097

RESUMO

The basic-helix-loop-helix (bHLH) transcription factor Hand2 plays critical roles during cardiac morphogenesis via expression and function within myocardial, neural crest, and epicardial cell populations. Here, we show that Hand2 plays two essential Notch-dependent roles within the endocardium. Endocardial ablation of Hand2 results in failure to develop a patent tricuspid valve, intraventricular septum defects, and hypotrabeculated ventricles, which collectively resemble the human congenital defect tricuspid atresia. We show endocardial Hand2 to be an integral downstream component of a Notch endocardium-to-myocardium signaling pathway and a direct transcriptional regulator of Neuregulin1. Additionally, Hand2 participates in endocardium-to-endocardium-based cell signaling, with Hand2 mutant hearts displaying an increased density of coronary lumens. Molecular analyses further reveal dysregulation of several crucial components of Vegf signaling, including VegfA, VegfR2, Nrp1, and VegfR3. Thus, Hand2 functions as a crucial downstream transcriptional effector of endocardial Notch signaling during both cardiogenesis and coronary vasculogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores Notch/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Endocárdio/embriologia , Camundongos , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neuropilina-1/genética , Neuropilina-1/metabolismo , Receptores Notch/genética , Ativação Transcricional , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Dev Cell ; 30(4): 367-77, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25158852

RESUMO

During heart development, the onset of heartbeat and blood flow coincides with a ballooning of the cardiac chambers. Here, we have used the zebrafish as a vertebrate model to characterize chamber ballooning morphogenesis of the endocardium, a specialized population of endothelial cells that line the interior of the heart. By combining functional manipulations, fate mapping studies, and high-resolution imaging, we show that endocardial growth occurs without an influx of external cells. Instead, endocardial cell proliferation is regulated, both by blood flow and by Bmp signaling, in a manner independent of vascular endothelial growth factor (VEGF) signaling. Similar to myocardial cells, endocardial cells obtain distinct chamber-specific and inner- versus outer-curvature-specific surface area sizes. We find that the hemodynamic-sensitive transcription factor Klf2a is involved in regulating endocardial cell morphology. These findings establish the endocardium as the flow-sensitive tissue in the heart with a key role in adapting chamber growth in response to the mechanical stimulus of blood flow.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Endocárdio/embriologia , Hemodinâmica , Fatores de Transcrição Kruppel-Like/metabolismo , Morfogênese , Proteínas de Peixe-Zebra/metabolismo , Animais , Movimento Celular , Proliferação de Células , Endocárdio/citologia , Endocárdio/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
13.
Development ; 141(15): 2959-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25053429

RESUMO

A complex regulatory network of morphogens and transcription factors is essential for normal cardiac development. Nkx2-5 is among the earliest known markers of cardiac mesoderm that is central to the regulatory pathways mediating second heart field (SHF) development. Here, we have examined the specific requirements for Nkx2-5 in the SHF progenitors. We show that Nkx2-5 potentiates Wnt signaling by regulating the expression of the R-spondin3 (Rspo3) gene during cardiogenesis. R-spondins are secreted factors and potent Wnt agonists that in part regulate stem cell proliferation. Our data show that Rspo3 is markedly downregulated in Nkx2-5 mutants and that Rspo3 expression is regulated by Nkx2-5. Conditional inactivation of Rspo3 in the Isl1 lineage resulted in embryonic lethality secondary to impaired development of SHF. More importantly, we find that Wnt signaling is significantly attenuated in Nkx2-5 mutants and that enhancing Wnt/ß-catenin signaling by pharmacological treatment or by transgenic expression of Rspo3 rescues the SHF defects in the conditional Nkx2-5(+/-) mutants. We have identified a previously unrecognized genetic link between Nkx2-5 and Wnt signaling that supports continued cardiac growth and proliferation during development. Identification of Rspo3 in cardiac development provides a new paradigm in temporal regulation of Wnt signaling by cardiac-specific transcription factors.


Assuntos
Coração/embriologia , Proteínas de Homeodomínio/fisiologia , Trombospondinas/fisiologia , Fatores de Transcrição/fisiologia , Via de Sinalização Wnt , Animais , Sequência de Bases , Linhagem da Célula , Proliferação de Células , Endocárdio/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas , Homologia de Sequência do Ácido Nucleico , Células-Tronco/citologia , Trombospondinas/genética , Fatores de Transcrição/genética , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
14.
Dev Biol ; 383(2): 214-26, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24075907

RESUMO

The endocardium forms the inner lining of the heart tube, where it enables blood flow and also interacts with the myocardium during the formation of valves and trabeculae. Although a number of studies have identified regulators in the morphogenesis of the myocardium, relatively little is known about the molecules that control endocardial morphogenesis. Prior work has implicated the bHLH transcription factor Tal1 in endocardial tube formation: in zebrafish embryos lacking Tal1, endocardial cells form a disorganized mass within the ventricle and do not populate the atrium. Through blastomere transplantation, we find that tal1 plays a cell-autonomous role in regulating endocardial extension, suggesting that Tal1 activity influences the behavior of individual endocardial cells. The defects in endocardial behavior in tal1-deficient embryos originate during the earliest steps of endocardial morphogenesis: tal1-deficient endocardial cells fail to generate a cohesive monolayer at the midline and instead pack tightly together into a multi-layered aggregate. Moreover, the tight junction protein ZO-1 is mislocalized in the tal1-deficient endocardium, indicating a defect in intercellular junction formation. In addition, we find that the tal1-deficient endocardium fails to maintain its identity; over time, a progressively increasing number of tal1-deficient endocardial cells initiate myocardial gene expression. However, the onset of defects in intercellular junction formation precedes the onset of ectopic myocardial gene expression in the tal1-deficient endocardium. We therefore propose a model in which Tal1 has distinct roles in regulating the formation of endocardial intercellular junctions and maintaining endocardial identity.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Endocárdio/embriologia , Endocárdio/metabolismo , Junções Intercelulares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero/metabolismo , Endocárdio/patologia , Endocárdio/transplante , Regulação da Expressão Gênica no Desenvolvimento , Átrios do Coração/embriologia , Átrios do Coração/metabolismo , Morfogênese , Miocárdio/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Peixe-Zebra/embriologia
15.
Dev Cell ; 26(1): 45-58, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23830865

RESUMO

Vegf signaling specifies arterial fate during early vascular development by inducing the transcription of Delta-like 4 (Dll4), the earliest Notch ligand gene expressed in arterial precursor cells. Dll4 expression precedes that of Notch receptors in arteries, and factors that direct its arterial-specific expression are not known. To identify the transcriptional program that initiates arterial Dll4 expression, we characterized an arterial-specific and Vegf-responsive enhancer of Dll4. Our findings demonstrate that Notch signaling is not required for initiation of Dll4 expression in arteries and suggest that Notch instead functions as a maintenance factor. Importantly, we find that Vegf signaling activates MAP kinase (MAPK)-dependent E26 transformation-specific sequence (ETS) factors in the arterial endothelium to drive expression of Dll4 and Notch4. These findings identify a Vegf/MAPK-dependent transcriptional pathway that specifies arterial identity by activating Notch signaling components and illustrate how signaling cascades can modulate broadly expressed transcription factors to achieve tissue-specific transcriptional outputs.


Assuntos
Aorta/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Geneticamente Modificados/embriologia , Animais Geneticamente Modificados/metabolismo , Aorta/metabolismo , Sítios de Ligação , Proteínas de Ligação ao Cálcio , Endocárdio/embriologia , Endocárdio/metabolismo , Elementos Facilitadores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Especificidade de Órgãos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptor Notch4 , Receptores Notch/genética , Receptores Notch/metabolismo , Transativadores/genética , Transativadores/metabolismo , Transcrição Gênica , Regulador Transcricional ERG , Fator A de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
16.
PLoS One ; 8(7): e70570, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894673

RESUMO

During mouse heart development, ventricular endocardial cells give rise to the coronary arteries by angiogenesis. Myocardially-derived vascular endothelial growth factor-a (Vegfa) regulates embryonic coronary angiogenesis through vascular endothelial growth factor-receptor 2 (Vegfr2) expressed in the endocardium. In this study, we investigated the role of endocardially-produced soluble Vegfr1 (sVegfr1) in the coronary angiogenesis. We deleted sVegfr1 in the endocardium of the developing mouse heart and found that this deletion resulted in a precocious formation of coronary plexuses. Using an ex vivo coronary angiogenesis assay, we showed that the Vegfr1-null ventricular endocardial cells underwent excessive angiogenesis and generated extensive endothelial tubular networks. We also revealed by qPCR analysis that expression of genes involved in the Vegf-Notch pathway was augmented in the Vegfr1-null hearts. We further showed that inhibition of Notch signaling blocked the formation of coronary plexuses by the ventricular endocardial cells. These results establish that Vegfr1 produced in the endocardium negatively regulates embryonic coronary angiogenesis, possibly by limiting the Vegf-Notch signaling.


Assuntos
Endocárdio/metabolismo , Neovascularização Patológica/fisiopatologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Endocárdio/citologia , Endocárdio/embriologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Neovascularização Patológica/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
17.
Cancer Lett ; 341(1): 9-15, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23462225

RESUMO

Carcinomas, cancers of epithelial origin, constitute the majority of all cancers. Loss of epithelial characteristics is an early step in carcinoma progression. Malignant transformation and metastasis involve additional loss of cell-cycle control and gain of migratory behaviors. Understanding the relationships among epithelial homeostasis, cell proliferation, and cell migration is therefore fundamental in understanding cancer. Interestingly, these cellular events also occur frequently during animal development, but without leading to tumor formation. Can we learn anything about carcinomas from developmental biology? In this review, we focus on one aspect of carcinoma progression, the Epithelial-Mesenchymal Transition (EMT), and provide an overview of how the EMT is involved in normal amniote development. We discuss 12 developmental and morphogenetic processes that clearly involve the EMT. We conclude by emphasizing the diversity of EMT processes both in terms of their developmental context and of their cellular morphogenesis. We propose that there is comparable diversity in cancer microenvironment and molecular regulation of cancer EMTs.


Assuntos
Desenvolvimento Embrionário/fisiologia , Transição Epitelial-Mesenquimal , Morfogênese/fisiologia , Neoplasias/patologia , Animais , Blastocisto/fisiologia , Transformação Celular Neoplásica/patologia , Endocárdio/embriologia , Células Epiteliais/citologia , Células Epiteliais/patologia , Epitélio/fisiologia , Feminino , Gastrulação/fisiologia , Humanos , Rim/citologia , Rim/embriologia , Fígado/citologia , Fígado/embriologia , Masculino , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Crista Neural/embriologia , Crista Neural/crescimento & desenvolvimento , Pâncreas/citologia , Pâncreas/embriologia , Próstata/citologia , Próstata/embriologia , Somitos/embriologia , Trofoblastos/patologia
18.
Nat Commun ; 4: 1564, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23463007

RESUMO

Haematopoietic cells arise from spatiotemporally restricted domains in the developing embryo. Although studies of non-mammalian animal and in vitro embryonic stem cell models suggest a close relationship among cardiac, endocardial and haematopoietic lineages, it remains unknown whether the mammalian heart tube serves as a haemogenic organ akin to the dorsal aorta. Here we examine the haemogenic activity of the developing endocardium. Mouse heart explants generate myeloid and erythroid colonies in the absence of circulation. Haemogenic activity arises from a subset of endocardial cells in the outflow cushion and atria earlier than in the aorta-gonad-mesonephros region, and is transient and definitive in nature. Interestingly, key cardiac transcription factors, Nkx2-5 and Isl1, are expressed in and required for the haemogenic population of the endocardium. Together, these data suggest that a subset of endocardial/endothelial cells serve as a de novo source for transient definitive haematopoietic progenitors.


Assuntos
Endocárdio/fisiologia , Hematopoese/fisiologia , Animais , Endocárdio/citologia , Endocárdio/embriologia , Endocárdio/ultraestrutura , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Células Eritroides/citologia , Imunofluorescência , Átrios do Coração/citologia , Átrios do Coração/ultraestrutura , Sistema Hematopoético/citologia , Sistema Hematopoético/fisiologia , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fígado/metabolismo , Camundongos , Células Mieloides/citologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Fatores de Transcrição/metabolismo
19.
PLoS One ; 8(2): e57032, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437302

RESUMO

Jun is a highly conserved member of the multimeric activator protein 1 transcription factor complex and plays an important role in human cancer where it is known to be critical for proliferation, cell cycle regulation, differentiation, and cell death. All of these biological functions are also crucial for embryonic development. Although all Jun null mouse embryos die at mid-gestation with persistent truncus arteriosus, a severe cardiac outflow tract defect also seen in human congenital heart disease, the developmental mechanisms are poorly understood. Here we show that murine Jun is expressed in a restricted pattern in several cell populations important for cardiovascular development, including the second heart field, pharyngeal endoderm, outflow tract and atrioventricular endocardial cushions and post-migratory neural crest derivatives. Several genes, including Isl1, molecularly mark the second heart field. Isl1 lineages include myocardium, smooth muscle, neural crest, endocardium, and endothelium. We demonstrate that conditional knockout mouse embryos lacking Jun in Isl1-expressing progenitors display ventricular septal defects, double outlet right ventricle, semilunar valve hyperplasia and aortic arch artery patterning defects. In contrast, we show that conditional deletion of Jun in Tie2-expressing endothelial and endocardial precursors does not result in aortic arch artery patterning defects or embryonic death, but does result in ventricular septal defects and a low incidence of semilunar valve defects, atrioventricular valve defects and double outlet right ventricle. Our results demonstrate that Jun is required in Isl1-expressing progenitors and, to a lesser extent, in endothelial cells and endothelial-derived endocardium for cardiovascular development but is dispensable in both cell types for embryonic survival. These data provide a cellular framework for understanding the role of Jun in the pathogenesis of congenital heart disease.


Assuntos
Sistema Cardiovascular/embriologia , Sistema Cardiovascular/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Desenvolvimento Embrionário/genética , Endocárdio/embriologia , Endocárdio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genótipo , Cardiopatias Congênitas/embriologia , Cardiopatias Congênitas/genética , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Proteínas com Homeodomínio LIM/genética , Camundongos , Camundongos Knockout , Mutação , Proteínas Proto-Oncogênicas c-jun/genética , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Fatores de Transcrição/genética , Septo Interventricular/enzimologia , Septo Interventricular/metabolismo
20.
Dev Dyn ; 242(5): 456-68, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23361844

RESUMO

BACKGROUND: Heart morphogenesis involves sequential anatomical changes from a linear tube of a single channel peristaltic pump to a four-chamber structure with two channels controlled by one-way valves. The developing heart undergoes continuous remodeling, including septation. RESULTS: Pitx2-null mice are characterized by cardiac septational defects of the atria, ventricles, and outflow tract. Pitx2-null mice also exhibited a short outflow tract, including unseptated conus and deformed endocardial cushions. Cushions were characterized with a jelly-like structure, rather than the distinct membrane-looking leaflets, indicating that endothelial mesenchymal transition was impaired in Pitx2(-/-) embryos. Mesoderm cells from the branchial arches and neural crest cells from the otic region contribute to the development of the endocardial cushions, and both were reduced in number. Members of the Fgf and Bmp families exhibited altered expression levels in the mutants. CONCLUSIONS: We suggest that Pitx2 is involved in the cardiac outflow tract septation by promoting and/or maintaining the number and the remodeling process of the mesoderm progenitor cells. Pitx2 influences the expression of transcription factors and signaling molecules involved in the differentiation of the cushion mesenchyme during heart development.


Assuntos
Coração/embriologia , Proteínas de Homeodomínio/fisiologia , Organogênese/genética , Fatores de Transcrição/fisiologia , Animais , Morte Celular/genética , Linhagem da Célula/genética , Proliferação de Células , Embrião de Mamíferos , Comunicação Atrioventricular/genética , Coxins Endocárdicos/embriologia , Coxins Endocárdicos/metabolismo , Endocárdio/citologia , Endocárdio/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Coração/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Knockout , Crista Neural/embriologia , Crista Neural/metabolismo , Organogênese/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA