Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.666
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 249: 10055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774281

RESUMO

Currently, various functionalized nanocarrier systems are extensively studied for targeted delivery of drugs, peptides, and nucleic acids. Joining the approaches of genetic and chemical engineering may produce novel carriers for precise targeting different cellular proteins, which is important for both therapy and diagnosis of various pathologies. Here we present the novel nanocontainers based on vectorized genetically encoded Myxococcus xanthus (Mx) encapsulin, confining a fluorescent photoactivatable mCherry (PAmCherry) protein. The shells of such encapsulins were modified using chemical conjugation of human transferrin (Tf) prelabeled with a fluorescein-6 (FAM) maleimide acting as a vector. We demonstrate that the vectorized encapsulin specifically binds to transferrin receptors (TfRs) on the membranes of mesenchymal stromal/stem cells (MSCs) followed by internalization into cells. Two spectrally separated fluorescent signals from Tf-FAM and PAmCherry are clearly distinguishable and co-localized. It is shown that Tf-tagged Mx encapsulins are internalized by MSCs much more efficiently than by fibroblasts. It has been also found that unlabeled Tf effectively competes with the conjugated Mx-Tf-FAM formulations. That indicates the conjugate internalization into cells by Tf-TfR endocytosis pathway. The developed nanoplatform can be used as an alternative to conventional nanocarriers for targeted delivery of, e.g., genetic material to MSCs.


Assuntos
Células-Tronco Mesenquimais , Myxococcus xanthus , Transferrina , Células-Tronco Mesenquimais/metabolismo , Transferrina/metabolismo , Humanos , Myxococcus xanthus/metabolismo , Endocitose , Receptores da Transferrina/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética
2.
Cell Mol Life Sci ; 81(1): 227, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775843

RESUMO

Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.


Assuntos
Autofagia , Catepsinas , Lisossomos , Proteólise , Humanos , Lisossomos/metabolismo , Catepsinas/metabolismo , Catepsinas/genética , Células HeLa , Endocitose , Catepsina L/metabolismo , Catepsina L/genética , Linhagem Celular Tumoral , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética
3.
J Cell Sci ; 137(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38770683

RESUMO

Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.


Assuntos
Carcinogênese , Membrana Celular , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Endocitose , Transporte Proteico , Complexo de Golgi/metabolismo
4.
Sci Adv ; 10(19): eadi9156, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38718108

RESUMO

Exosomes are secreted vesicles of ~30 to 150 nm diameter that play important roles in human health and disease. To better understand how cells release these vesicles, we examined the biogenesis of the most highly enriched human exosome marker proteins, the exosomal tetraspanins CD81, CD9, and CD63. We show here that endocytosis inhibits their vesicular secretion and, in the case of CD9 and CD81, triggers their destruction. Furthermore, we show that syntenin, a previously described exosome biogenesis factor, drives the vesicular secretion of CD63 by blocking CD63 endocytosis and that other endocytosis inhibitors also induce the plasma membrane accumulation and vesicular secretion of CD63. Finally, we show that CD63 is an expression-dependent inhibitor of endocytosis that triggers the vesicular secretion of lysosomal proteins and the clathrin adaptor AP-2 mu2. These results suggest that the vesicular secretion of exosome marker proteins in exosome-sized vesicles occurs primarily by an endocytosis-independent pathway.


Assuntos
Endocitose , Exossomos , Tetraspanina 30 , Exossomos/metabolismo , Humanos , Tetraspanina 30/metabolismo , Biomarcadores/metabolismo , Sinteninas/metabolismo , Sinteninas/genética , Tetraspanina 28/metabolismo , Membrana Celular/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Tetraspanina 29/metabolismo
5.
Nat Commun ; 15(1): 4060, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744819

RESUMO

Endocytosis requires a coordinated framework of molecular interactions that ultimately lead to the fission of nascent endocytic structures. How cytosolic proteins such as dynamin concentrate at discrete sites that are sparsely distributed across the plasma membrane remains poorly understood. Two dynamin-1 major splice variants differ by the length of their C-terminal proline-rich region (short-tail and long-tail). Using sptPALM in PC12 cells, neurons and MEF cells, we demonstrate that short-tail dynamin-1 isoforms ab and bb display an activity-dependent recruitment to the membrane, promptly followed by their concentration into nanoclusters. These nanoclusters are sensitive to both Calcineurin and dynamin GTPase inhibitors, and are larger, denser, and more numerous than that of long-tail isoform aa. Spatiotemporal modelling confirms that dynamin-1 isoforms perform distinct search patterns and undergo dimensional reduction to generate endocytic nanoclusters, with short-tail isoforms more robustly exploiting lateral trapping in the generation of nanoclusters compared to the long-tail isoform.


Assuntos
Dinamina I , Endocitose , Isoformas de Proteínas , Animais , Dinamina I/metabolismo , Dinamina I/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Células PC12 , Ratos , Neurônios/metabolismo , Camundongos , Membrana Celular/metabolismo , Calcineurina/metabolismo
6.
Cell Commun Signal ; 22(1): 270, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750548

RESUMO

Fibroblast growth factor receptor 1 (FGFR1) is a N-glycosylated cell surface receptor tyrosine kinase, which upon recognition of specific extracellular ligands, fibroblast growth factors (FGFs), initiates an intracellular signaling. FGFR1 signaling ensures homeostasis of cells by fine-tuning essential cellular processes, like differentiation, division, motility and death. FGFR1 activity is coordinated at multiple steps and unbalanced FGFR1 signaling contributes to developmental diseases and cancers. One of the crucial control mechanisms over FGFR1 signaling is receptor endocytosis, which allows for rapid targeting of FGF-activated FGFR1 to lysosomes for degradation and the signal termination. We have recently demonstrated that N-glycans of FGFR1 are recognized by a precise set of extracellular galectins, secreted and intracellular multivalent lectins implicated in a plethora of cellular processes and altered in immune responses and cancers. Specific galectins trigger FGFR1 clustering, resulting in activation of the receptor and in initiation of intracellular signaling cascades that shape the cell physiology. Although some of galectin family members emerged recently as key players in the clathrin-independent endocytosis of specific cargoes, their impact on endocytosis of FGFR1 was largely unknown.Here we assessed the contribution of extracellular galectins to the cellular uptake of FGFR1. We demonstrate that only galectin-1 induces internalization of FGFR1, whereas the majority of galectins predominantly inhibit endocytosis of the receptor. We focused on three representative galectins: galectin-1, -7 and -8 and we demonstrate that although all these galectins directly activate FGFR1 by the receptor crosslinking mechanism, they exert different effects on FGFR1 endocytosis. Galectin-1-mediated internalization of FGFR1 doesn't require galectin-1 multivalency and occurs via clathrin-mediated endocytosis, resembling in this way the uptake of FGF/FGFR1 complex. In contrast galectin-7 and -8 impede FGFR1 endocytosis, causing stabilization of the receptor on the cell surface and prolonged propagation of the signals. Furthermore, using protein engineering approaches we demonstrate that it is possible to modulate or even fully reverse the endocytic potential of galectins.


Assuntos
Endocitose , Galectina 1 , Galectinas , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Humanos , Galectina 1/metabolismo , Galectina 1/genética , Galectinas/metabolismo , Transdução de Sinais , Animais
7.
Cell Commun Signal ; 22(1): 225, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605348

RESUMO

The endothelial glycocalyx, located at the luminal surface of the endothelium, plays an important role in the regulation of leukocyte adhesion, vascular permeability, and vascular homeostasis. Endomucin (EMCN), a component of the endothelial glycocalyx, is a mucin-like transmembrane glycoprotein selectively expressed by venous and capillary endothelium. We have previously shown that knockdown of EMCN impairs retinal vascular development in vivo and vascular endothelial growth factor 165 isoform (VEGF165)-induced cell migration, proliferation, and tube formation by human retinal endothelial cells in vitro and that EMCN is essential for VEGF165-stimulated clathrin-mediated endocytosis and signaling of VEGF receptor 2 (VEGFR2). Clathrin-mediated endocytosis is an essential step in receptor signaling and is of paramount importance for a number of receptors for growth factors involved in angiogenesis. In this study, we further investigated the molecular mechanism underlying EMCN's involvement in the regulation of VEGF-induced endocytosis. In addition, we examined the specificity of EMCN's role in angiogenesis-related cell surface receptor tyrosine kinase endocytosis and signaling. We identified that EMCN interacts with AP2 complex, which is essential for clathrin-mediated endocytosis. Lack of EMCN did not affect clathrin recruitment to the AP2 complex following VEGF stimulation, but it is necessary for the interaction between VEGFR2 and the AP2 complex during endocytosis. EMCN does not inhibit VEGFR1 and FGFR1 internalization or their downstream activities since EMCN interacts with VEGFR2 but not VEGFR1 or FGFR1. Additionally, EMCN also regulates VEGF121-induced VEGFR2 phosphorylation and internalization.


Assuntos
Células Endoteliais , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Sialomucinas/metabolismo , Endocitose , Clatrina/metabolismo
8.
Toxins (Basel) ; 16(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38668619

RESUMO

Cholera toxoid is an established tool for use in cellular tracing in neuroscience and cell biology. We use a sortase labeling approach to generate site-specific N-terminally modified variants of both the A2-B5 heterohexamer and B5 pentamer forms of the toxoid. Both forms of the toxoid are endocytosed by GM1-positive mammalian cells, and while the heterohexameric toxoid was principally localized in the ER, the B5 pentamer showed an unexpectedly specific localization in the medial/trans-Golgi. This study suggests a future role for specifically labeled cholera toxoids in live-cell imaging beyond their current applications in neuronal tracing and labeling of lipid rafts in fixed cells.


Assuntos
Toxina da Cólera , Cisteína Endopeptidases , Complexo de Golgi , Humanos , Toxina da Cólera/metabolismo , Cisteína Endopeptidases/metabolismo , Complexo de Golgi/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Aminoaciltransferases/metabolismo , Aminoaciltransferases/genética , Endocitose
9.
J Cell Biol ; 223(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38668767

RESUMO

The microtubule cytoskeleton consists of microtubule subsets with distinct compositions of microtubule-associated proteins, which instruct the position and traffic of subcellular organelles. In the endocytic pathway, these microtubule-associated cues are poorly understood. Here, we report that in MDCK cells, endosomes with multivesicular body (MVB) and late endosome (LE) markers localize preferentially to microtubules coated with septin GTPases. Compared with early endosomes, CD63-containing MVBs/LEs are largely immotile on septin-coated microtubules. In vitro reconstitution assays revealed that the motility of isolated GFP-CD63 endosomes is directly inhibited by microtubule-associated septins. Quantification of CD63-positive endosomes containing the early endosome antigen (EEA1), the Rab7 effector and dynein adaptor RILP or Rab27a, showed that intermediary EEA1- and RILP-positive GFP-CD63 preferentially associate with septin-coated microtubules. Septin knockdown enhanced GFP-CD63 motility and decreased the percentage of CD63-positive MVBs/LEs with lysobiphosphatidic acid without impacting the fraction of EEA1-positive CD63. These results suggest that MVB maturation involves immobilization on septin-coated microtubules, which may facilitate multivesiculation and/or organelle-organelle contacts.


Assuntos
Microtúbulos , Corpos Multivesiculares , Septinas , Animais , Cães , Células Madin Darby de Rim Canino , Microtúbulos/química , Microtúbulos/metabolismo , Corpos Multivesiculares/química , Corpos Multivesiculares/metabolismo , Septinas/química , Septinas/metabolismo , Tetraspanina 30/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Endocitose
10.
Nano Lett ; 24(17): 5104-5109, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38640421

RESUMO

mRNA lipid nanoparticles (LNPs) have emerged as powerful modalities for gene therapies to control cancer and infectious and immune diseases. Despite the escalating interest in mRNA-LNPs over the past few decades, endosomal entrapment of delivered mRNAs vastly impedes therapeutic developments. In addition, the molecular mechanism of LNP-mediated mRNA delivery is poorly understood to guide further improvement through rational design. To tackle these challenges, we characterized LNP-mediated mRNA delivery using a library of small molecules targeting endosomal trafficking. We found that the expression of delivered mRNAs is greatly enhanced via inhibition of endocytic recycling in cells and in live mice. One of the most potent small molecules, endosidine 5 (ES5), interferes with recycling endosomes through Annexin A6, thereby promoting the release and expression of mRNA into the cytoplasm. Together, these findings suggest that targeting endosomal trafficking with small molecules is a viable strategy to potentiate the efficacy of mRNA-LNPs.


Assuntos
Endossomos , Lipossomos , Nanopartículas , RNA Mensageiro , Endossomos/metabolismo , Animais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nanopartículas/química , Camundongos , Humanos , Lipídeos/química , Técnicas de Transferência de Genes , Endocitose/efeitos dos fármacos
11.
ACS Biomater Sci Eng ; 10(5): 2911-2924, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38657240

RESUMO

Macrophage uptake of nanoparticles is highly dependent on the physicochemical characteristics of those nanoparticles. Here, we have created a collection of lipid-polymer nanoparticles (LPNPs) varying in size, stiffness, and lipid makeup to determine the effects of these factors on uptake in murine bone marrow-derived macrophages. The LPNPs varied in diameter from 232 to 812 nm, in storage modulus from 21.2 to 287 kPa, and in phosphatidylserine content from 0 to 20%. Stiff, large nanoparticles with a coating containing phosphatidylserine were taken up by macrophages to a much higher degree than any other formulation (between 9.3× and 166× higher than other LPNPs). LPNPs with phosphatidylserine were taken up most by M2-polarized macrophages, while those without were taken up most by M1-polarized macrophages. Differences in total LPNP uptake were not dependent on endocytosis pathway(s) other than phagocytosis. This work acts as a basis for understanding how the interactions between nanoparticle physicochemical characteristics may act synergistically to facilitate particle uptake.


Assuntos
Lipídeos , Macrófagos , Nanopartículas , Polímeros , Nanopartículas/química , Animais , Macrófagos/metabolismo , Camundongos , Polímeros/química , Polímeros/metabolismo , Lipídeos/química , Tamanho da Partícula , Fagocitose , Endocitose , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química
12.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167155, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38579939

RESUMO

Tubular proteinuria is a common feature in COVID-19 patients, even in the absence of established acute kidney injury. SARS-CoV-2 spike protein (S protein) was shown to inhibit megalin-mediated albumin endocytosis in proximal tubule epithelial cells (PTECs). Angiotensin-converting enzyme type 2 (ACE2) was not directly involved. Since Toll-like receptor 4 (TLR4) mediates S protein effects in various cell types, we hypothesized that TLR4 could be participating in the inhibition of PTECs albumin endocytosis elicited by S protein. Two different models of PTECs were used: porcine proximal tubule cells (LLC-PK1) and human embryonic kidney cells (HEK-293). S protein reduced Akt activity by specifically inhibiting of threonine 308 (Thr308) phosphorylation, a process mediated by phosphoinositide-dependent kinase 1 (PDK1). GSK2334470, a PDK1 inhibitor, decreased albumin endocytosis and megalin expression mimicking S protein effect. S protein did not change total TLR4 expression but decreased its surface expression. LPS-RS, a TLR4 antagonist, also counteracted the effects of the S protein on Akt phosphorylation at Thr308, albumin endocytosis, and megalin expression. Conversely, these effects of the S protein were replicated by LPS, an agonist of TLR4. Incubation of PTECs with a pseudovirus containing S protein inhibited albumin endocytosis. Null or VSV-G pseudovirus, used as control, had no effect. LPS-RS prevented the inhibitory impact of pseudovirus containing the S protein on albumin endocytosis but had no influence on virus internalization. Our findings demonstrate that the inhibitory effect of the S protein on albumin endocytosis in PTECs is mediated through TLR4, resulting from a reduction in megalin expression.


Assuntos
Endocitose , Túbulos Renais Proximais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Receptor 4 Toll-Like , Receptor 4 Toll-Like/metabolismo , Endocitose/efeitos dos fármacos , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/virologia , Animais , Glicoproteína da Espícula de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , Células HEK293 , Suínos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosforilação , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , Albuminas/metabolismo , Células LLC-PK1 , Células Epiteliais/metabolismo , Células Epiteliais/virologia
13.
Mol Pharm ; 21(5): 2565-2576, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38635186

RESUMO

Amyloid oligomers and fibrils are protein aggregates that exert a high cell toxicity. Efficient degradation of these protein aggregates can minimize the spread and progression of neurodegeneration. In this study, we investigate the properties of natural killer (NK) cells and macrophages in the degradation of α-synuclein (α-Syn) aggregates grown in a lipid-free environment and in the presence of phosphatidylserine and cholesterol (PS/Cho), which are lipids that are directly associated with the onset and progression of Parkinson's disease. We found that both types of α-Syn aggregates were endocytosed by neurons, which caused strong damage to cell endosomes. Our results also indicated that PS/Cho vesicles drastically increased the toxicity of α-Syn fibrils formed in their presence compared to the toxicity of α-Syn aggregates grown in a lipid-free environment. Both NK cells and macrophages were able to degrade α-Syn and α-Syn/Cho monomers, oligomers, and fibrils. Quantitative analysis of protein degradation showed that macrophages demonstrated substantially more efficient internalization and degradation of amyloid aggregates in comparison to NK cells. We also found that amyloid aggregates induced the proliferation of macrophages and NK cells and significantly changed the expression of their cytokines and chemokines.


Assuntos
Amiloide , Células Matadoras Naturais , Macrófagos , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Humanos , Amiloide/metabolismo , Agregados Proteicos , Animais , Camundongos , Colesterol/metabolismo , Colesterol/química , Fosfatidilserinas/metabolismo , Doença de Parkinson/metabolismo , Neurônios/metabolismo , Endocitose , Proliferação de Células/efeitos dos fármacos , Citocinas/metabolismo
14.
Int J Biol Macromol ; 267(Pt 2): 131674, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641285

RESUMO

Polysaccharide CSTPs extracted from Camellia sinensis tea-leaves possessed unique against oxidative damage by scavenging ROS. Herein, acid tea polysaccharide CSTPs-2 with tightly packed molecular structure was isolated, purified and characterized in this research. Furthermore, the effects of CSTPs-2 on ROS-involved inflammatory responses and its underlying mechanisms were investigated. The results suggest that CSTPs-2 dramatically reduced the inflammatory cytokines overexpression and LPS-stimulated cell damage. CSTPs-2 could trigger the dephosphorylation of downstream AKT/MAPK/NF-κB signaling proteins and inhibit nuclear transfer of p-NF-κB to regulate the synthesis and release of inflammatory mediators in LPS-stimulated cells by ROS scavenging. Importantly, the impact of CSTPs-2 in downregulating pro-inflammatory cytokines and mitigating ROS overproduction is associated with clathrin- or caveolae-mediated endocytosis uptake mechanisms, rather than TLR-4 receptor-mediated endocytosis. This study presents a novel perspective for investigating the cellular uptake mechanism of polysaccharides in the context of anti-inflammatory mechanisms.


Assuntos
Camellia sinensis , Endocitose , Inflamação , NF-kappa B , Polissacarídeos , Espécies Reativas de Oxigênio , Transdução de Sinais , Endocitose/efeitos dos fármacos , Camellia sinensis/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Espécies Reativas de Oxigênio/metabolismo , Animais , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Lipopolissacarídeos/farmacologia , Células RAW 264.7 , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
Sci Signal ; 17(832): eadf4299, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38626007

RESUMO

Cell-to-cell communication through secreted Wnt ligands that bind to members of the Frizzled (Fzd) family of transmembrane receptors is critical for development and homeostasis. Wnt9a signals through Fzd9b, the co-receptor LRP5 or LRP6 (LRP5/6), and the epidermal growth factor receptor (EGFR) to promote early proliferation of zebrafish and human hematopoietic stem cells during development. Here, we developed fluorescently labeled, biologically active Wnt9a and Fzd9b fusion proteins to demonstrate that EGFR-dependent endocytosis of the ligand-receptor complex was required for signaling. In human cells, the Wnt9a-Fzd9b complex was rapidly endocytosed and trafficked through early and late endosomes, lysosomes, and the endoplasmic reticulum. Using small-molecule inhibitors and genetic and knockdown approaches, we found that Wnt9a-Fzd9b endocytosis required EGFR-mediated phosphorylation of the Fzd9b tail, caveolin, and the scaffolding protein EGFR protein substrate 15 (EPS15). LRP5/6 and the downstream signaling component AXIN were required for Wnt9a-Fzd9b signaling but not for endocytosis. Knockdown or loss of EPS15 impaired hematopoietic stem cell development in zebrafish. Other Wnt ligands do not require endocytosis for signaling activity, implying that specific modes of endocytosis and trafficking may represent a method by which Wnt-Fzd specificity is established.


Assuntos
Peixe-Zebra , beta Catenina , Animais , Humanos , beta Catenina/metabolismo , Endocitose , Receptores ErbB/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
16.
Cell Mol Life Sci ; 81(1): 191, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652315

RESUMO

Lipopolysaccharide (LPS) induces a strong pro-inflammatory reaction of macrophages upon activation of Toll-like receptor 4 (TLR4) with the assistance of CD14 protein. Considering a key role of plasma membrane rafts in CD14 and TLR4 activity and the significant impact exerted on that activity by endocytosis and intracellular trafficking of the both LPS acceptors, it seemed likely that the pro-inflammatory reaction could be modulated by flotillins. Flotillin-1 and -2 are scaffolding proteins associated with the plasma membrane and also with endo-membranes, affecting both the plasma membrane dynamics and intracellular protein trafficking. To verify the above hypothesis, a set of shRNA was used to down-regulate flotillin-2 in Raw264 cells, which were found to also become deficient in flotillin-1. The flotillin deficiency inhibited strongly the TRIF-dependent endosomal signaling of LPS-activated TLR4, and to a lower extent also the MyD88-dependent one, without affecting the cellular level of TLR4. The flotillin depletion also inhibited the pro-inflammatory activity of TLR2/TLR1 and TLR2/TLR6 but not TLR3. In agreement with those effects, the depletion of flotillins down-regulated the CD14 mRNA level and the cellular content of CD14 protein, and also inhibited constitutive CD14 endocytosis thereby facilitating its shedding. Ultimately, the cell-surface level of CD14 was markedly diminished. Concomitantly, CD14 recycling was enhanced via EEA1-positive early endosomes and golgin-97-positive trans-Golgi network, likely to compensate for the depletion of the cell-surface CD14. We propose that the paucity of surface CD14 is the reason for the down-regulated signaling of TLR4 and the other TLRs depending on CD14 for ligand binding.


Assuntos
Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Proteínas de Membrana , Transporte Proteico , Transdução de Sinais , Receptor 4 Toll-Like , Receptores de Lipopolissacarídeos/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Animais , Células RAW 264.7 , Endocitose/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , RNA Interferente Pequeno/metabolismo , Endossomos/metabolismo
17.
Biomed Pharmacother ; 174: 116573, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38613996

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by the absence of commonly targeted receptors. Unspecific chemotherapy is currently the main therapeutic option, with poor results. Another major challenge is the frequent appearance of brain metastasis (BM) associated with a significant decrease in patient overall survival. The treatment of BM is even more challenging due to the presence of the blood-brain barrier (BBB). Here, we present a dual-acting peptide (PepH3-vCPP2319) designed to tackle TNBC/BM, in which a TNBC-specific anticancer peptide (ACP) motif (vCPP2319) is joined to a BBB peptide shuttle (BBBpS) motif (PepH3). PepH3-vCPP2319 demonstrated selectivity and efficiency in eliminating TNBC both in monolayers (IC50≈5.0 µM) and in spheroids (IC50≈25.0 µM), with no stringent toxicity toward noncancerous cell lines and red blood cells (RBCs). PepH3-vCPP2319 was also able to cross the BBB in vitro and penetrate the brain in vivo, and was stable in serum with a half-life above 120 min. Tumor cell-peptide interaction is fast, with quick peptide internalization via clathrin-mediated endocytosis without membrane disruption. Upon internalization, the peptide is detected in the nucleus and the cytoplasm, indicating a multi-targeted mechanism of action that ultimately induces irreversible cell damage and apoptosis. In conclusion, we have designed a dual-acting peptide capable of brain penetration and TNBC cell elimination, thus expanding the drug arsenal to fight this BC subtype and its BM.


Assuntos
Barreira Hematoencefálica , Neoplasias Encefálicas , Peptídeos , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/patologia , Feminino , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Peptídeos/farmacologia , Antineoplásicos/farmacologia , Endocitose/efeitos dos fármacos
18.
Sci Adv ; 10(9): eadj3551, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427741

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by its nutrient-scavenging ability, crucial for tumor progression. Here, we investigated the roles of caveolae-mediated endocytosis (CME) in PDAC progression. Analysis of patient data across diverse datasets revealed a strong association of high caveolin-1 (Cav-1) expression with higher histologic grade, the most aggressive PDAC molecular subtypes, and worse clinical outcomes. Cav-1 loss markedly promoted longer overall and tumor-free survival in a genetically engineered mouse model. Cav-1-deficient tumor cell lines exhibited significantly reduced proliferation, particularly under low nutrient conditions. Supplementing cells with albumin rescued the growth of Cav-1-proficient PDAC cells, but not in Cav-1-deficient PDAC cells under low glutamine conditions. In addition, Cav-1 depletion led to significant metabolic defects, including decreased glycolytic and mitochondrial metabolism, and downstream protein translation signaling pathways. These findings highlight the crucial role of Cav-1 and CME in fueling pancreatic tumorigenesis, sustaining tumor growth, and promoting survival through nutrient scavenging.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Cavéolas/metabolismo , Cavéolas/patologia , Neoplasias Pancreáticas/patologia , Endocitose , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
19.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38445557

RESUMO

Multiple endocytic processes operate in cells in tandem to uptake multiple cargoes involved in diverse cellular functions, including cell adhesion and migration. The best-studied clathrin-mediated endocytosis (CME) involves the formation of a well-defined cytoplasmic clathrin coat to facilitate cargo uptake. According to the glycolipid-lectin (GL-Lect) hypothesis, galectin-3 (Gal3) binds to glycosylated membrane receptors and glycosphingolipids (GSLs) to drive membrane bending and tubular membrane invaginations that undergo scission to form a morphologically distinct class of uptake structures, termed clathrin-independent carriers (CLICs). Which components from cytoskeletal machinery are involved in the scission of CLICs remains to be explored. In this study, we propose that dynein is recruited onto Gal3-induced tubular endocytic pits and provides the pulling force for friction-driven scission. The uptake of Gal3 and its cargoes (CD98/CD147) is significantly dependent on dynein activity, whereas only transferrin (CME marker) is slightly affected upon dynein inhibition. Our study reveals that Gal3 and Gal3-dependent (CD98 and CD147) clathrin-independent cargoes require dynein for the clathrin-independent endocytosis.


Assuntos
Endocitose , Galectina 3 , Galectina 3/genética , Endocitose/genética , Transporte Biológico , Clatrina , Dineínas
20.
Microb Pathog ; 190: 106636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556103

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is one of the main causes of diarrhea in children and travelers in low-income regions. The virulence of ETEC is attributed to its heat-labile and heat-stable enterotoxins, as well as its colonization factors (CFs). CFs are essential for ETEC adherence to the intestinal epithelium. However, its invasive capability remains unelucidated. In this study, we demonstrated that the CS6-positive ETEC strain 4266 can invade mammalian epithelial cells. The invasive capability was reduced in the 4266 ΔCS6 mutant but reintroduction of CS6 into this mutant restored the invasiveness. Additionally, the laboratory E. coli strain Top 10, which lacks the invasive capability, was able to invade Caco-2 cells after gaining the CS6-expressing plasmid pCS6. Cytochalasin D inhibited cell invasion in both 4266 and Top10 pCS6 cells, and F-actin accumulation was observed near the bacteria on the cell membrane, indicating that CS6-positive bacteria were internalized via actin polymerization. Other cell signal transduction inhibitors, such as genistein, wortmannin, LY294002, PP1, and Ro 32-0432, inhibited the CS6-mediated invasion of Caco-2 cells. The internalized bacteria of both 4266 and Top10 pCS6 strains were able to survive for up to 48 h, and 4266 cells were able to replicate within Caco-2 cells. Immunofluorescence microscopy revealed that the internalized 4266 cells were present in bacteria-containing vacuoles, which underwent a maturation process indicated by the recruitment of the early endosomal marker EEA-1 and late endosomal marker LAMP-1 throughout the infection process. The autophagy marker LC3 was also observed near these vacuoles, indicating the initiation of LC-3-associated phagocytosis (LAP). However, intracellular bacteria continued to replicate, even after the initiation of LAP. Moreover, intracellular filamentation was observed in 4266 cells at 24 h after infection. Overall, this study shows that CS6, in addition to being a major CF, mediates cell invasion. This demonstrates that once internalized, CS6-positive ETEC is capable of surviving and replicating within host cells. This capability may be a key factor in the extended and recurrent nature of ETEC infections in humans, thus highlighting the critical role of CS6.


Assuntos
Citocalasina D , Escherichia coli Enterotoxigênica , Proteínas de Escherichia coli , Humanos , Células CACO-2 , Escherichia coli Enterotoxigênica/patogenicidade , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Citocalasina D/farmacologia , Actinas/metabolismo , Células Epiteliais/microbiologia , Aderência Bacteriana , Infecções por Escherichia coli/microbiologia , Virulência , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/genética , Morfolinas/farmacologia , Transdução de Sinais , Androstadienos/farmacologia , Wortmanina/farmacologia , Endocitose , Cromonas/farmacologia , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA