Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Anim Reprod Sci ; 266: 107513, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843662

RESUMO

Escherichia coli (E. coli), a Gram-negative bacterium, is the primary pathogen responsible for endometritis in dairy cattle. The outer membrane components of E. coli, namely lipopolysaccharide (LPS) and bacterial lipoprotein, have the capacity to trigger the host's innate immune response through pattern recognition receptors (PRRs). Tolerance to bacterial cell wall components, including LPS, may play a crucial role as an essential regulatory mechanism during bacterial infection. However, the precise role of Braun lipoprotein (BLP) tolerance in E. coli-induced endometritis in dairy cattle remains unclear. In this study, we aimed to investigate the impact of BLP on the regulation of E. coli infection-induced endometritis in dairy cattle. The presence of BLP was found to diminish the expression and release of proinflammatory cytokines (IL-8 and IL-6), while concurrently promoting the expression and release of the anti-inflammatory cytokine IL-10 in endometrial epithelial cells (EECs). Furthermore, BLP demonstrated the ability to impede the activation of MAPK (ERK and p38) and NF-κB (p65) signaling pathways, while simultaneously enhancing signaling through the STAT3 pathway in EECs. Notably, BLP exhibited a dual role, acting both as an activator of TLR2 and as a regulator of TLR2 activation in LPS- and E. coli-treated EECs. In E. coli-infected endometrial explants, the presence of BLP was noted to decrease the release of proinflammatory cytokines and the expression of HMGB1, while simultaneously enhancing the release of anti-inflammatory cytokines. Collectively, our findings provide evidence that the bacterial component BLP plays a protective role in E. coli-induced endometritis in dairy cattle.


Assuntos
Doenças dos Bovinos , Endométrio , Infecções por Escherichia coli , Escherichia coli , Animais , Feminino , Bovinos , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/imunologia , Endométrio/metabolismo , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/imunologia , Lipoproteínas/metabolismo , Endometrite/veterinária , Endometrite/microbiologia , Endometrite/metabolismo , Endometrite/imunologia , Citocinas/metabolismo , Citocinas/genética , Tolerância Imunológica
2.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928020

RESUMO

Endometritis is a common disease in animals, leading to disruption of reproductive processes and economic losses. Noradrenergic control of prostaglandin (PG)I2 formation by inflamed endometrium is unknown. We determined the involvement of α1-, α2- and ß-adrenoreceptors (ARs) in noradrenaline-influenced PGI synthase (PGIS) protein abundance and PGI2 release from porcine (1) endometrial explants with Escherichia coli (E. coli)-induced inflammation in vivo, and (2) E. coli lipopolysaccharide (LPS)-treated endometrial epithelial cells. Experiment 1. E. coli suspension (E. coli group) or saline (CON group) was injected into the uterine horns. In both groups, noradrenaline increased endometrial PGIS abundance and PGI2 release versus the control values, and it was higher in the E. coli group than in the CON group. In the CON group, a noradrenaline stimulating effect on both parameters takes place through α1D-, α2C- and ß2-ARs. In the E. coli group, noradrenaline increased PGIS abundance and PGI2 release via α1A-, α2(B,C)- and ß(1,2)-ARs, and PGI2 release also by α2A-ARs. Experiment 2. LPS and noradrenaline augmented the examined parameters in endometrial epithelial cells versus the control value. In LPS-treated cells, ß(1,2)-ARs mediate in noradrenaline excitatory action on PGIS protein abundance and PGI2 release. ß3-ARs also contribute to PGI2 release. Under inflammatory conditions, noradrenaline via ARs increases PGI2 synthesis and release from the porcine endometrium, including epithelial cells. Our findings suggest that noradrenaline may indirectly affect processes regulated by PGI2 in the inflamed uterus.


Assuntos
Endométrio , Epoprostenol , Norepinefrina , Animais , Feminino , Norepinefrina/metabolismo , Endométrio/metabolismo , Endométrio/patologia , Suínos , Epoprostenol/metabolismo , Receptores Adrenérgicos/metabolismo , Lipopolissacarídeos , Inflamação/metabolismo , Inflamação/patologia , Escherichia coli , Endometrite/metabolismo , Endometrite/patologia , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Oxirredutases Intramoleculares/metabolismo , Sistema Enzimático do Citocromo P-450
3.
Anim Reprod Sci ; 264: 107460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564886

RESUMO

The incidence of bovine endometritis, which has a negative impact on the reproduction of dairy cows, has been recently increasing. In this study, the differential markers and metabolites of healthy cows and cows with endometritis were analyzed by measuring blood biochemical indicators and immune factors using biochemical and enzyme-linked immunosorbent assay kits combined with nontargeted metabolomics. The LC-QTOF platform was used to evaluate the serum metabolomics of healthy cows and cows with endometritis after 21-27 days of calving. The results showed that glucose, free fatty acid, calcium, sodium, albumin, and alanine aminotransferase levels were significantly lower in the serum of cows with endometritis than in healthy cows (P < 0.05). However, the serum potassium, interleukin-1, interleukin-6, and tumor necrosis factor levels were significantly higher in cows with endometritis (P < 0.05). In addition, the serum metabolome data analysis of the two groups showed that the expression of 468 metabolites was significantly different (P < 0.05), of which 291 were upregulated and 177 were downregulated. These metabolites were involved in 78 metabolic pathways, including amino acid, nucleotide, carbohydrate, lipid, and vitamin metabolism pathways; signal transduction pathways, and other biological pathways. Taken together, negative energy balance and immune activation, which are related to local abnormalities in amino acid, lipid, and carbohydrate metabolism, were the important causes of endometritis in dairy cows. Metabolites such as glucose, carnosine, dehydroascorbic acid, L-malic acid, tetrahydrofolic acid, and UDP-glucose may be used as key indicators in the hematological diagnosis and treatment of endometritis in dairy cows.


Assuntos
Doenças dos Bovinos , Endometrite , Metabolômica , Feminino , Bovinos , Animais , Endometrite/veterinária , Endometrite/sangue , Endometrite/metabolismo , Doenças dos Bovinos/sangue , Doenças dos Bovinos/metabolismo , Biomarcadores/sangue
4.
Equine Vet J ; 56(4): 670-677, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38430069

RESUMO

BACKGROUND: Endometritis is a major cause of subfertility in mares. Multiparous old mares are more susceptible to developing endometritis given that ageing is associated with an altered immune response and with inadequate physiological uterine clearance after breeding, which can lead to degenerative changes in the endometrium. Molecules such as antimicrobial peptides (AMPs) have been proposed as endometritis markers in the equine species. STUDY DESIGN: Cross-sectional. OBJECTIVES: To investigate the endometrial expression of defensin-beta 4B (DEFB4B), lysozyme (LYZ) and secretory leukocyte peptidase inhibitor (SLPI) genes in mares either affected or not by subclinical endometritis, due to the role of these AMPs in the immune response to bacteria and inflammatory reactions. METHODS: Endometrial biopsy for histopathological and gene expression examinations was performed on 26 mares. The inclusion criteria for the normal mare group (NM, N = 7) were 2-4 years of age, maiden status, no clinical signs of endometritis and a uterine biopsy score of I, while for mares affected by subclinical endometritis (EM, N = 19) the inclusion criteria were 10-22 years of age, barren status for 1-3 years, no clinical signs of endometritis and a uterine biopsy score between IIA and III. RESULTS: A significantly higher expression of LYZ (NM: 0.76 [1.84-0.37] vs. EM: 2.78 [5.53-1.44], p = 0.0255) and DEFB4B (NM: 0.06 [0.11-0.01] vs. EM: 0.15 [0.99-0.08], p = 0.0457) genes was found in endometritis mares versus normal mares. Statistically significant moderate positive correlations were found between the level of expression of LYZ gene and both the age (r = 0.4071, p = 0.039) and the biopsy grade (r = 0.4831, p = 0.0124) of the mares. MAIN LIMITATIONS: The study investigated a limited number of genes and mares, and the presence/location of the proteins coded by these genes was not confirmed within the endometrium by IHC. CONCLUSIONS: If the results of this study are confirmed, LYZ and DEFB4B genes can be used as markers to identify mares that are affected by subclinical endometritis.


Assuntos
Peptídeos Antimicrobianos , Biomarcadores , Endometrite , Endométrio , Regulação da Expressão Gênica , Doenças dos Cavalos , Animais , Feminino , Cavalos , Doenças dos Cavalos/metabolismo , Endometrite/veterinária , Endometrite/metabolismo , Endometrite/patologia , Endométrio/metabolismo , Endométrio/patologia , Biomarcadores/metabolismo , Peptídeos Antimicrobianos/genética , Estudos Transversais , beta-Defensinas/genética , beta-Defensinas/metabolismo
5.
Syst Biol Reprod Med ; 70(1): 3-19, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38323586

RESUMO

Endometritis is an inflammatory and histopathologic disease in uterine tissues that interferes with the proper decidualization and implantation of the embryo. In this study, rosmarinic acid (RA) is used as an anti-inflammatory agent that encapsulates in exosomes and is used to attenuate lipopolysaccharide (LPS)-induced endometritis and improve implantation. For this purpose, exosomes were loaded with RA and then administrated into the animal groups, including RA, exosome, RA plus exosome (RA + Exo), and RA-loaded exosomes (RALExo) groups. The concentrations of RA or exosomes used in this study were 10 mg/kg, and the compounds were injected into the uterine horn 24 h following the induction of endometritis. Upon the presence of inflammation detected by the histopathological method, the most proper groups were mated with male mice. The effect of the treatment group on the implantation rate, progesterone levels, and gene expressions were assessed by Chicago Blue staining, enzyme-linked immunosorbent assay (ELISA), and Quantitative PCR (qPCR), respectively. Results showed RALExo10 and RA10 + Exo10 groups improved pathological alterations, enhanced progesterone levels, increased implantation rate, as well as heightened expression levels of Leukemia inhibitory factor (LIF) and Mucin-16 (MUC-16) genes. Besides, the expression levels of inflammatory cytokines, including Transforming growth factor-ß (TGF-ß), Interlukine-10 (IL-10), Interlukine-15 (IL-15), and Interlukine-18 (IL-18), were regulated. Our findings indicated that the expression of LIF, Muc-16 genes as well as IL-18, were significantly correlated with serum progesterone concentrations and the implantation rate in the treatment groups. The RALExo10 and RA10 + Exo10 groups showed ameliorated implantation rates in experimental groups.


Assuntos
Endometrite , Exossomos , Humanos , Feminino , Masculino , Animais , Camundongos , Endometrite/genética , Endometrite/metabolismo , Interleucina-18 , Ácido Rosmarínico , Progesterona , Exossomos/metabolismo
6.
J Cell Physiol ; 239(1): 166-179, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991438

RESUMO

Abnormal function and fibrosis of endometrium caused by cows' endometritis pose difficult implantation of embryos and uterine cavity adhesions. 17ß-Estradiol (E2) serves as the most effective aromatized estrogen, and its synthetase and receptors have been detected in the endometrium. Studies have demonstrated the positive role of estrogen in combating pathological fibrosis in diverse diseases. However, it is still unknown whether E2 regulates endometrium fibrosis in bovine endometritis. Herein, we evaluated the expression patterns of transforming growth factor-ß1 (TGF-ß1), epithelial-mesenchymal transformation (EMT)-related proteins (α-SMA, vimentin N-cadherin and E-cadherin), cytochrome P450 19A1 (CYP19A1), and G protein-coupled estrogen receptor (GPER) in bovine healthy endometrium and Inflammatory endometrium. Our data showed that the inflamed endometrium presented low CYP19A1 and GPER expression, and significantly higher EMT process versus the normal tissue. Moreover, we established a TGF-ß1-induced fibrosis model in BEND cells, and found that E2 inhibited the EMT process of BEND cells in a dose-dependent manner. The anti-fibrotic effect of E2 was blocked by the GPER inhibitor G15, but not the estrogen nuclear receptors (ERs) inhibitor ICI182780. Moreover, the GPER agonist G1 inhibited fibrosis and Smad2/3 phosphorylation but increased the expression of TGFBR3 in BEND cells. Transfection with TGFBR3 small interfering RNA blocked the effect of G1 on fibrosis of BEND cells and upregulated the expression of P-Smad2/3. Our in vivo data also showed that E2 and G1 affected uterus fibrosis in mice endometritis model caused by LPS, which was associated with the inhibition of TGFBR3/Smad2/3 signaling. In conclusion, our data implied that E2 alleviates the fibrosis of TGF-ß1-induced BEND cells, which is associated with the GPER mediation of TGFBR3/Smad2/3 signaling.


Assuntos
Endometrite , Estradiol , Proteoglicanas , Receptores de Fatores de Crescimento Transformadores beta , Fator de Crescimento Transformador beta1 , Animais , Bovinos , Feminino , Camundongos , Endometrite/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Estradiol/farmacologia , Estrogênios/metabolismo , Fibrose , Receptores Acoplados a Proteínas G/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo
7.
Immun Inflamm Dis ; 11(10): e970, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37904691

RESUMO

BACKGROUND: Endometritis seriously affects the health of women, and it is important to identify new targets for its treatment. OBJECTIVE: This study aimed to explore the role of TNFAIP3 interacting protein 2 (TNIP2) in endometritis through human endometrial epithelial cells (hEECs) stimulated by lipopolysaccharide (LPS). METHODS: hEECs were induced with LPS to build a cellular model of endometritis. Cell growth and apoptosis were detected by cell counting kit-8 and flow cytometry. The TNIP2 mRNA and protein levels were measured using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis, respectively. The caspase3 activity was calculated using a Caspase3 activity kit. Interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha (TNF-α) levels were determined by enzyme-linked-immunosorbent-assay. The reactive oxygen species (ROS), lactate dehydrogenase (LDH), catalase (CAT), and superoxide dismutase (SOD) levels were determined using the corresponding kits. Nuclear factor-kappaB (NF-κB) pathway was determined by western blot assay. RESULTS: TNIP2 was downregulated in the LPS-induced endometritis cell model. Cell viability was reduced, apoptosis was enhanced, and IL-6, IL-1ß, and TNF-α levels increased in LPS-induced hEECs. Additionally, LDH activity and ROS concentration were upregulated, whereas CAT and SOD activities were downregulated in LPS-induced hEECs. These results were reversed by TNIP2 overexpression. Moreover, the results hinted that NF-κB was involved in the effects of TNIP2 on the LPS-induced endometritis cell model. CONCLUSION: TNIP2 alleviated endometritis by inhibiting the NF-κB pathway, suggesting a potential therapeutic target for endometritis.


Assuntos
Endometrite , NF-kappa B , Humanos , Feminino , NF-kappa B/metabolismo , Endometrite/induzido quimicamente , Endometrite/metabolismo , Lipopolissacarídeos/toxicidade , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/efeitos adversos , Superóxido Dismutase/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
8.
Int J Mol Sci ; 24(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37834087

RESUMO

Seminal plasma (SP) accounts for more than 90% of semen volume. It induces inflammation, regulates immune tolerance, and facilitates embryonic development and implantation in the female reproductive tract. In the physiological state, SP promotes endometrial decidualization and causes changes in immune cells such as macrophages, natural killer cells, regulatory T cells, and dendritic cells. This leads to the secretion of cytokines and chemokines and also results in the alteration of miRNA profiles and the expression of genes related to endometrial tolerance and angiogenesis. Together, these changes modulate the endometrial immune microenvironment and contribute to implantation and pregnancy. However, in pathological situations, abnormal alterations in SP due to advanced age or poor diet in men can interfere with a woman's immune adaptation to pregnancy, negatively affecting embryo implantation and even the health of the offspring. Uterine pathologies such as endometriosis and endometritis can cause the endometrium to respond negatively to SP, which can further contribute to pathological progress and interfere with conception. The research on the mechanism of SP in the endometrium is conducive to the development of new targets for intervention to improve reproductive outcomes and may also provide new ideas for semen-assisted treatment of clinical infertility.


Assuntos
Endometrite , Sêmen , Gravidez , Masculino , Humanos , Feminino , Endométrio/metabolismo , Útero/metabolismo , Implantação do Embrião , Endometrite/metabolismo
9.
Int Immunopharmacol ; 123: 110706, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541110

RESUMO

BACKGROUND: Chronic endometritis (CE) reflects the local imbalance in the endometrial immune microenvironment after inflammation. High mobility group box 1 (HMGB1) is highly involved in both immunity and inflammation. In this study, we aimed to explore the roles of HMGB1 in the endometrium of patients with CE. METHODS: Endometrium and uterine fluid HMGB1 were tested in a cohort of infertile patients with or without CE. Expression levels of the pyroptosis marker, gasdermin D (GSDMD)-N-terminal (NT), in the human endometrium of patients with CE and controls were determined. Next, the role of HMGB1 as a driver of macrophage pyroptosis was investigated using human THP-1 cells in vitro and a CE mouse model in vivo. RESULTS: High expression levels of HMGB1 in biopsied endometrial tissue and uterine fluid were confirmed in a cohort of patients with CE. Positive correlation between the number of CD138+ cells and HMGB1 mRNA expression level were detected (rs = 0.592, P < 0.001). Meanwhile, we found that GSDMD-NT expression was significantly increased in the CE endometrium at both the transcriptional and translational levels. Moreover, co-localization of GSDMD-NT and macrophages was confirmed via the double immunostaining of GSDMD-NT and CD68. In vitro experiments revealed that macrophage pyroptosis was induced by HMGB1 in human THP-1-derived macrophages. Treatment with glycyrrhizic acid, an inhibitor of HMGB1, significantly suppressed endometrial pyroptosis and inflammation in the CE mouse model. CONCLUSIONS: HMGB1 effectively induced macrophage pyroptosis in the human endometrium, suggesting that its inhibition may serve as a novel treatment option for CE.


Assuntos
Endometrite , Proteína HMGB1 , Piroptose , Animais , Feminino , Humanos , Camundongos , Doença Crônica , Endometrite/genética , Endometrite/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Piroptose/genética
10.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446399

RESUMO

Endometritis in high-yield dairy cows adversely affects lactation length, milk quality, and the economics of dairy products. Endoplasmic reticulum stress (ERS) in bovine endometrial epithelial cells (BEECs) occurs as a consequence of diverse post-natal stressors, and plays a key role in a variety of inflammatory diseases. Nuclear-factor-erythroid-2-related factor 2 (Nrf2) is an important protective regulatory factor in numerous inflammatory responses. However, the mechanism by which Nrf2 modulates inflammation by participating in ERS remains unclear. The objective of the present study was to explore the role of Nrf2 in lipopolysaccharide (LPS)-induced injury to BEECs and to decipher the underlying molecular mechanisms of this injury. The expression of Nrf2- and ERS-related genes increased significantly in bovine uteri with endometritis. Isolated BEECs were treated with LPS to stimulate the inflammatory response. The expression of Nrf2 was significantly higher in cells exposed to LPS, which also induced ERS in BEECs. Activation of Nrf2 led to enhanced expression of the genes for the inflammation markers TNF-α, p65, IL-6, and IL-8 in BEECs. Moreover, stimulation of Nrf2 was accompanied by activation of ERS. In contrast, Nrf2 knockdown reduced the expression of TNF-α, p65, IL-6, and IL-8. Additionally, Nrf2 knockdown decreased expression of ERS-related genes for the GRP78, PERK, eIF2α, ATF4, and CHOP proteins. Collectively, our findings demonstrate that Nrf2 and ERS are activated during inflammation in BEECs. Furthermore, Nrf2 promotes the inflammatory response by activating the PERK pathway in ERS and inducing apoptosis in BEECs.


Assuntos
Endometrite , Humanos , Feminino , Bovinos , Animais , Endometrite/induzido quimicamente , Endometrite/metabolismo , Lipopolissacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Células Epiteliais/metabolismo , Estresse do Retículo Endoplasmático
11.
Anim Reprod Sci ; 255: 107292, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406563

RESUMO

Dihydrotestosterone (DHT) is a potent nonaromatizable 5α-reduced androgen with both positive and negative effect on inflammation process. However, it remains unknown whether DHT can regulate Lipopolysaccharides (LPS)-induced inflammation in bovine endometrial epithelial cells (bEECs). Here, we demonstrated that the DHT biosynthesis ability and androgen receptors (AR) expression is defective in bovine endometrial with endometritis, which aggravates endometrial inflammation. In vitro study, we established a LPS-induced inflammation model in bEECs, and found that DHT inhibited the TLR4 and MyD88 protein as well as TNF-α, IL-1ß, and IL-6 mRNA of bEECs in a dose-dependent manner. Moreover, the anti-inflammation effect of DHT was blocked by AR inhibitor flutamide. Together, we demonstrated that supplementing DHT can alleviate the inflammation response of bEECs caused by LPS, which is associated with AR regulating the inhibition of TLR4/MyD88 signaling pathway.


Assuntos
Doenças dos Bovinos , Endometrite , Feminino , Animais , Bovinos , Lipopolissacarídeos/toxicidade , Di-Hidrotestosterona/farmacologia , Di-Hidrotestosterona/metabolismo , Receptores Androgênicos/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/veterinária , Transdução de Sinais , Endometrite/induzido quimicamente , Endometrite/veterinária , Endometrite/metabolismo , Células Epiteliais , Doenças dos Bovinos/metabolismo
12.
Cell Transplant ; 32: 9636897231173736, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37191253

RESUMO

Chronic endometritis (CE) is closely linked to the reproductive failure. Exosome (Exo)-based therapy is proposed as an encouraging strategy in inflammation-related disorders; however, little work has been devoted to its usage in CE therapy. An in vitro CE was established by administration of lipopolysaccharide (LPS) in human endometrial stromal cells (HESCs). The cell proliferation, cell apoptosis, and inflammatory cytokine assays were performed in vitro, and the efficacy of Exos derived from adipose tissue-derived stem cells (ADSCs) was evaluated in a mouse model of CE. We found that Exos isolated from ADSCs could be taken up by HESCs. Exos elevated the proliferation and inhibited apoptosis in LPS-treated HESCs. Administration of Exos to HESCs suppressed the content of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß). Moreover, Exos exposure repressed the inflammation stimulated by LPS in vivo. Mechanistically, we demonstrated that Exos exerted their ant-inflammatory effect via miR-21/TLR4/NF-kB signaling pathway in endometrial cells. Our findings suggest that ADSC-Exo-based therapy might serve as an attractive strategy for the treatment of CE.


Assuntos
Endometrite , Exossomos , MicroRNAs , Camundongos , Animais , Feminino , Humanos , Endometrite/terapia , Endometrite/metabolismo , Exossomos/metabolismo , Lipopolissacarídeos/farmacologia , Células-Tronco/metabolismo , Inflamação/terapia , Inflamação/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
13.
Biomater Sci ; 11(4): 1422-1436, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36602019

RESUMO

Chronic endometritis is a common gynecological disease resulting from various long-term recurrent infections, and is closely related to myositis, miscarriage, and even infertility. There is still no satisfactory treatment method currently in clinical therapy. Mesenchymal stem cell (MSC)-derived exosomes, an important kind of paracrine product, have been used to treat inflammatory diseases due to their promising immunomodulatory function and tissue repair ability similar to MSCs. Considering that the exosome contents and functions are regulated by the MSC status and the MSC status is significantly influenced by its surrounding microenvironment, we propose a hypothesis that exosomes derived from inflammation-simulated MSCs will possess stronger inhibition ability for inflammation. Herein, we used IL-1ß to activate rat bone MSCs for obtaining ß-exo and constructed an injectable polypeptide hydrogel scaffold by loading ß-exo (ß-exo@pep) for an in situ slow release of ß-exo. The results showed that the polypeptide hydrogel can provide a sustained release of exosomes in 14 days. The ß-exo@pep composite hydrogel can more effectively inhibit the production of inflammatory factors such as TNF-α, IL-1ß, and IFN-γ, while it can promote the production of anti-inflammatory factors such as Arg-1, IL-6, and IL-10. The ß-exo@pep composite hydrogel significantly promoted cell migration, invasion, and vessel tube formation in vitro. The experiments in a rat model of endometritis proved that the ß-exo@pep composite scaffold possessed excellent ability towards anti-inflammation and endometrial regeneration. The research studies on the molecular mechanism revealed that the protein expressions of HMGB1 and phosphorylated IKB-α and p65 are down-regulated in the cells treated with ß-exo@pep, indicating the involvement of the NF-κB signaling pathway. This study provides an effective method for the treatment of chronic endometritis, which is promising for clinical use.


Assuntos
Endometrite , Exossomos , Células-Tronco Mesenquimais , Animais , Feminino , Humanos , Ratos , Endometrite/terapia , Endometrite/metabolismo , Exossomos/metabolismo , Hidrogéis/farmacologia , Inflamação/metabolismo , Interleucina-1beta/farmacologia
14.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674716

RESUMO

The demand for economic benefits has led to an increase in the proportion of high-concentrate (HC) feed in the ruminant diet, resulting in an increased incidence of subacute ruminal acidosis (SARA). During SARA, a high concentration of lipopolysaccharide (LPS) translocated in the rumen induces a systemic inflammatory response. Inflammatory diseases, such as endometritis and mastitis, are often associated with SARA; however, in sheep, the mechanism of the effect of SARA on the endometrium has rarely been reported. Therefore, the aim of this study was to investigate, for the first time, the influence of LPS translocation on endometrial tight junctions (TJs) during SARA in sheep. The results showed that LPS and TNFα levels in the ruminal fluid, serum, and endometrial tissue supernatant during SARA increased, transcription levels of TLR4, NFκB, and TNFα in the endometrium increased, the protein expression level of claudin-1 in the endometrium increased, and the protein expression level of occludin decreased. 17ß-estradiol (E2) inhibits claudin-1 protein expression and promotes occludin expression, and progesterone (P4) promotes claudin-1 protein expression and inhibits occludin protein expression. E2 and P4 regulate claudin-1 and occludin protein expression through their receptor pathways. Here, we found that LPS hindered the regulatory effect of E2 and P4 on endometrial TJs by inhibiting their receptor expression. The results of this study indicate that HC feeding can cause SARA-induced LPS translocation in sheep, increase susceptibility to systemic inflammation, induce the endometrial inflammatory response, and cause endometrial epithelial TJ damage directly and/or by obstructing E2 and P4 function. LPS translocation caused by SARA has also been suggested to induce an endometrial inflammatory response, resulting in endometrial epithelial barrier damage and physiological dysfunction, which seriously affects ruminant production. Therefore, this study provides new evidence that SARA is a potential factor that induces systemic inflammation in ruminants. It provides theoretical support for research on the prevention of endometritis in ruminants.


Assuntos
Acidose , Endometrite , Feminino , Humanos , Ovinos , Animais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Rúmen , Endometrite/veterinária , Endometrite/metabolismo , Lipopolissacarídeos/metabolismo , Claudina-1/metabolismo , Ocludina/metabolismo , Dieta/veterinária , Inflamação/metabolismo , Endométrio/metabolismo , Acidose/metabolismo , Concentração de Íons de Hidrogênio
15.
Reprod Biol ; 23(1): 100710, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36470010

RESUMO

Postpartum endometritis is known to be associated with ovarian dysfunction in cows. Lipopolysaccharide (LPS) generated by Gram-negative bacteria is recognized by toll-like receptor 4 (TLR4), which leads to an inflammatory response by the generation of cytokines such as tumor necrosis factor-α (TNF-α) and interleukins. In this study, we investigated the effect of endometrial LPS on granulosa cell functions during early follicular development in cows. Uteri and follicles were obtained from a slaughterhouse and classified into either clinical endometritis (CE) or normal groups by vaginal mucus test. TLR4 mRNA and protein in normal cows were expressed in granulosa cells collected from follicles measuring 1-3 and 4-7 mm in a diameter, respectively. LPS content in endometrium and follicular fluid of CE cows was significantly higher than that in normal cows. Compared to normal cows, CE cows showed lower expression of follicular development markers (FSHR, CYP19A1, CCND2, and LHCGR) in granulosa cells, lower estradiol-17ß concentrations in follicular fluid, and lower granulosa cell proliferation. CE contraction significantly increased cytokine expressions (TNF, IL-1A, and IL-1B) in granulosa cells and suppressed apoptosis of granulosa cells compared to normal cows. LPS significantly suppressed the expression of follicular development markers and the production of estradiol-17ß in granulosa cells and reduced granulosa cells proliferation compared to cells cultured without LPS. LPS significantly increased cytokine expressions and suppressed granulosa cell apoptosis. Thus, the present results suggest that the existence of LPS in developing follicles is one of the causes of ovarian quiescence in cows.


Assuntos
Endometrite , Lipopolissacarídeos , Feminino , Humanos , Bovinos , Animais , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Citocinas/metabolismo , Endometrite/metabolismo , Células da Granulosa , Estradiol/metabolismo , Proliferação de Células
16.
Front Endocrinol (Lausanne) ; 13: 1001437, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531509

RESUMO

Objective: Chronic endometritis (CE) contributes to impaired endometrial receptivity and is closely associated with poor in vitro fertilization (IVF) outcomes. However, the mechanisms underlying CE are unclear. Here, we investigated the role of the hypoxic microenvironment and endometrial vascularization in the peri-implantation endometrium of infertile women with CE. Methods: This retrospective study involved 15 fertile women and 77 infertile patients diagnosed with CE based on CD138+ ≥1/10 high-power fields (HPFs). The CE patients were divided into Group 1 (CD138+ 1-4/10 HPFs, 53 cases) and Group 2 (CD138+ ≥5/10 HPFs, 24 cases). The expression levels of hypoxia-inducible factor 1α (HIF1α), vascular endothelial growth factor A (VEGFA), and vascular endothelial growth factor receptor 2 (VEGFR2) in peri-implantation endometrium were assessed by qRT-PCR and western blot analyses. Spatial levels of HIF1α, VEGFA, and VEGFR2 in various endometrial compartments was determined using immunohistochemistry and H-score analysis. Microvascular density (MVD) was determined using CD34 staining and scored using Image J. Finally, we used qRT-PCR to assess changes in the expression of HIF1α, VEGFA, and VEGFR2 in CE patients after treatment with first-line antibiotics. Results: Relative to Group 1 and control group, during the implantation window, protein and mRNA levels of HIF1α, VEGFA, and VEGFR2 were markedly high in Group 2 (P<0.05). H-score analysis showed that HIF1α, VEGFA, and VEGFR2 in the luminal, glandular epithelium, and stromal compartments were markedly elevated in Group 2, comparing to control group and Group 1 (P<0.05). Moreover, markedly elevated MVD levels were observed in Group 2. Notably, the above indexes did not differ significantly in the control group versus Group 1. Treatment with antibiotics significantly suppressed the endometrial HIF1α and VEGFA levels in CE-cured patients. Conclusions: Here, we for the first time report the upregulation of HIF1α, VEGFA, and VEGFR2, as well as excessive endometrial vascularization in the peri-implantation endometrium of CE patients. Our findings offer new insights into reduced endometrial receptivity in CE-associated infertility.


Assuntos
Endometrite , Infertilidade Feminina , Humanos , Feminino , Endometrite/complicações , Endometrite/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Infertilidade Feminina/metabolismo , Estudos Retrospectivos , Endométrio , Doença Crônica , Neovascularização Patológica/metabolismo , Antibacterianos , Hipóxia/metabolismo
17.
Int J Mol Sci ; 23(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35628275

RESUMO

Uterine inflammation is a common pathology in animals, leading to disturbances in reproductive processes and reduced production profitability. Pituitary adenylate cyclase-activating peptide (PACAP) effects at the uterine level during inflammation are not known. In the current study, we analyzed the relative PACAP type 1 receptor (PAC1R) mRNA transcript and protein abundances in the myometrium (MYO), as well s PACAP and PAC1R involvement in the contractile function of inflamed pig uterus. To that end, E. coli suspension (E. coli group) or saline (SAL group) was injected into the uterine horns or laparotomy was performed (CON group). Eight days after the bacteria injections, severe acute endometritis and a reduced relative abundance of PAC1R protein in the MYO were observed. Compared to the period before PACAP in vitro administration, PACAP (10-7 M) in the CON and SAL groups decreased in amplitude in the MYO and endometrium (ENDO)/MYO, whereas in the E. coli group, increased amplitude in the MYO and reduced amplitude in the ENDO/MYO were observed. In the E. coli group, PACAP enhanced the amplitude in the MYO (10-7 M) and decreased the amplitude in the ENDO/MYO (10-8 M) compared with other groups. PACAP (10-7 M) increased the frequency of both kinds of strips in the CON and SAL groups compared with the pretreatment period. PACAP (both doses) did not significantly change the frequency in the E. coli group, whereas in response to PACAP (10-7 M), the frequency was reduced compared to other groups. In the MYO, PAC1R antagonist decreased the amplitude reduction (CON and SAL groups) and reversed a rise in PACAP (10-7 M)-evoked amplitude (E. coli group). PAC1R blocking reversed (MYO) and abolished (ENDO/MYO) the stimulatory effect of PACAP (10-7 M) on the frequency (CON and SAL groups). PAC1R antagonist and PACAP (10-7 M) evoked the appearance of frequency depression in both kinds of strips (E. coli group). In summary, in pigs, severe acute endometritis reduces the relative abundance of PAC1R protein in the MYO, and PAC1R mediates the influence of PACAP on inflamed uterus contractility.


Assuntos
Endometrite , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Adenilil Ciclases/metabolismo , Animais , Endometrite/metabolismo , Feminino , Inflamação , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Suínos , Útero/metabolismo
18.
Toxicol Appl Pharmacol ; 438: 115907, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123988

RESUMO

Endometritis is a serious reproductive disease in mammals that commonly results in reproductive loss and even permanent infertility. Kynurenic acid (KYNA) is the main bioactive metabolite of tryptophan degradation and exhibits neuroprotective and anticonvulsant properties. However, little is known about the role of KYNA in achieving endometritis remission. This study investigated the protective effects and mechanisms of KYNA using a mouse model of against lipopolysaccharide (LPS)-induced endometritis. The endometritis model was induced by an intrauterine injection of LPS, and KYNA was intraperitoneally injected before and two hours after LPS treatment. Twenty-four hours after LPS administration, pathological changes in uterine tissues were observed by hematoxylin- and eosin (H&E) staining. The levels of the inflammatory factors, TNF-α and IL-1ß, were measured by ELISA. The myeloperoxidase (MPO) activity in uterine tissues was detected using MPO kits and immunohistochemistry. Furthermore, the expression of signaling pathway proteins and tight junction proteins occludin and ZO-1 in uterine tissues was detected by western blot. KYNA prominently inhibited uterine pathological injury and neutrophil infiltration and restricted the secretion of TNF-α and IL-1ß in the uteri of subjects with endometritis. Furthermore, KYNA upregulated the levels of the tight junction proteins (TJPs)occludin and ZO-1 in the uterus. In vitro, KYNA inhibited LPS-induced TNF-α and IL-1ß production, and NF-κB activation in mouse endometrial epithelial cells (mEECs). In addition, KYNA increased the expression of G protein-coupled receptor 35 (GPR35) and inhibition of GPR35 reversed the anti-inflammatory effects of KYNA. In conclusion, KYNA protected against LPS-induced endometritis by maintaining epithelial barrier permeability and suppressing proinflammatory responses via the GRP35/NF-κB signaling pathway.


Assuntos
Endometrite/tratamento farmacológico , Endometrite/metabolismo , Ácido Cinurênico/farmacologia , NF-kappa B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Citocinas/metabolismo , Endometrite/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Peroxidase/metabolismo , Útero/efeitos dos fármacos , Útero/metabolismo
19.
Bioengineered ; 13(2): 3609-3619, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35100093

RESUMO

Triggering receptor expressed on myeloid cells 1 (TREM1) participates in the development of endometritis. This study aims at identifying the effects and interaction of TREM1 and upstream stimulatory factor 2 (USF2) in endometritis by using a model of lipopolysaccharide (LPS)-induced human endometrial epithelial cells (HEnEpCs). ELISA was performed to determine the levels of interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF-α) after LPS stimulation. TREM1 and USF2 expression was examined with RT-qPCR and Western blot. The JASPAR database was employed to predict the binding site between USF2 and TREM1, which was confirmed by luciferase reporter and chromatin immunoprecipitation assays. After TREM1 overexpression, IL-6, IL-1ß, and TNF-α expression was detected by ELISA. Next, the binding of TREM1 to toll-like receptor (TLR) 2/4 was examined with co-immunoprecipitation. Then, proteins in TLR2/4-nuclear factor-kappaB (NF-κB) signaling in HEnEpCs under LPS condition were assessed by Western blot or immunofluorescence before and after TREM1 knockdown. Finally, TLR2 or TLR4 was silenced to explore whether intervene TLR2/4-NF-κB signaling pathway could rescue TREM1-overexpression-induced inflammation in LPS-induced HEnEpCs. Results revealed that upregulated TREM1 was observed in LPS-challenged HEnEpCs. Next, USF2 was found to have transcriptionally active TREM1 expression. Additionally, USF2 knockdown decreased the levels of IL-6, IL-1ß, and TNF-α, whereas this effect was rescued after TREM1 overexpression. Besides, TREM1 could bind to TLR2/4 to regulate NF-κB signaling. Moreover, the intervention of TLR2/4-NF-κB signaling pathway rescued TREM1-overexpression-induced inflammation in LPS-stimulated HEnEpCs. Collectively, USF2 promotes endometritis by upregulating TREM1, thereby activating TLR2/4-NF-κB pathway.


Assuntos
Endometrite/metabolismo , Endométrio/metabolismo , Células Epiteliais/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/biossíntese , Regulação para Cima , Fatores Estimuladores Upstream/metabolismo , Feminino , Humanos
20.
Front Immunol ; 12: 791606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970270

RESUMO

Decidua basalis, the endometrium of pregnancy, is an important interface between maternal and fetal tissues, made up of both maternal and fetal cells. Acute atherosis is a uteroplacental spiral artery lesion. These patchy arterial wall lesions containing foam cells are predominantly found in the decidua basalis, at the tips of the maternal arteries, where they feed into the placental intervillous space. Acute atherosis is prevalent in preeclampsia and other obstetric syndromes such as fetal growth restriction. Causal factors and effects of acute atherosis remain uncertain. This is in part because decidua basalis is challenging to sample systematically and in large amounts following delivery. We summarize our decidua basalis vacuum suction method, which facilitates tissue-based studies of acute atherosis. We also describe our evidence-based research definition of acute atherosis. Here, we comprehensively review the existing literature on acute atherosis, its underlying mechanisms and possible short- and long-term effects. We propose that multiple pathways leading to decidual vascular inflammation may promote acute atherosis formation, with or without poor spiral artery remodeling and/or preeclampsia. These include maternal alloreactivity, ischemia-reperfusion injury, preexisting systemic inflammation, and microbial infection. The concept of acute atherosis as an inflammatory lesion is not novel. The lesions themselves have an inflammatory phenotype and resemble other arterial lesions of more extensively studied etiology. We discuss findings of concurrently dysregulated proteins involved in immune regulation and cardiovascular function in women with acute atherosis. We also propose a novel hypothesis linking cellular fetal microchimerism, which is prevalent in women with preeclampsia, with acute atherosis in pregnancy and future cardiovascular and neurovascular disease. Finally, women with a history of preeclampsia have an increased risk of premature cardiovascular disease. We review whether presence of acute atherosis may identify women at especially high risk for premature cardiovascular disease.


Assuntos
Aterosclerose/etiologia , Aterosclerose/patologia , Suscetibilidade a Doenças , Placenta/patologia , Artérias/metabolismo , Artérias/patologia , Biomarcadores , Biópsia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Decídua/irrigação sanguínea , Decídua/metabolismo , Decídua/patologia , Suscetibilidade a Doenças/imunologia , Endometrite/genética , Endometrite/metabolismo , Endometrite/patologia , Feminino , Humanos , Imuno-Histoquímica , Isoantígenos/imunologia , Especificidade de Órgãos , Placenta/imunologia , Placenta/metabolismo , Período Pós-Parto , Gravidez , Pesquisa Translacional Biomédica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA