Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Cancer Res ; 81(20): 5325-5335, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34548333

RESUMO

The SWI/SNF chromatin-remodeling complex is frequently altered in human cancers. For example, the SWI/SNF component ARID1A is mutated in more than 50% of ovarian clear cell carcinomas (OCCC), for which effective treatments are lacking. Here, we report that ARID1A transcriptionally represses the IRE1α-XBP1 axis of the endoplasmic reticulum (ER) stress response, which confers sensitivity to inhibition of the IRE1α-XBP1 pathway in ARID1A-mutant OCCC. ARID1A mutational status correlated with response to inhibition of the IRE1α-XBP1 pathway. In a conditional Arid1aflox/flox/Pik3caH1047R genetic mouse model, Xbp1 knockout significantly improved survival of mice bearing OCCCs. Furthermore, the IRE1α inhibitor B-I09 suppressed the growth of ARID1A-inactivated OCCCs in vivo in orthotopic xenograft, patient-derived xenograft, and the genetic mouse models. Finally, B-I09 synergized with inhibition of HDAC6, a known regulator of the ER stress response, in suppressing the growth of ARID1A-inactivated OCCCs. These studies define the IRE1α-XBP1 axis of the ER stress response as a targetable vulnerability for ARID1A-mutant OCCCs, revealing a promising therapeutic approach for treating ARID1A-mutant ovarian cancers. SIGNIFICANCE: These findings indicate that pharmacological inhibition of the IRE1α-XBP1 pathway alone or in combination with HDAC6 inhibition represents an urgently needed therapeutic strategy for ARID1A-mutant ovarian cancers.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Ligação a DNA/genética , Estresse do Retículo Endoplasmático , Endorribonucleases/antagonistas & inibidores , Mutação , Neoplasias Ovarianas/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box/antagonistas & inibidores , Adenocarcinoma de Células Claras/tratamento farmacológico , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/metabolismo , Adenocarcinoma de Células Claras/patologia , Animais , Apoptose , Proliferação de Células , Proteínas de Ligação a DNA/fisiologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Endorribonucleases/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica , Desacetilase 6 de Histona/antagonistas & inibidores , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Transcrição/fisiologia , Células Tumorais Cultivadas , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nucleic Acids Res ; 49(6): 3003-3019, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33706375

RESUMO

Many different protein domains are conserved among numerous species, but their function remains obscure. Proteins with DUF1127 domains number >17 000 in current databases, but a biological function has not yet been assigned to any of them. They are mostly found in alpha- and gammaproteobacteria, some of them plant and animal pathogens, symbionts or species used in industrial applications. Bioinformatic analyses revealed similarity of the DUF1127 domain of bacterial proteins to the RNA binding domain of eukaryotic Smaug proteins that are involved in RNA turnover and have a role in development from Drosophila to mammals. This study demonstrates that the 71 amino acid DUF1127 protein CcaF1 from the alphaproteobacterium Rhodobacter sphaeroides participates in maturation of the CcsR sRNAs that are processed from the 3' UTR of the ccaF mRNA and have a role in the oxidative stress defense. CcaF1 binds to many cellular RNAs of different type, several mRNAs with a function in cysteine / methionine / sulfur metabolism. It affects the stability of the CcsR RNAs and other non-coding RNAs and mRNAs. Thus, the widely distributed DUF1127 domain can mediate RNA-binding, affect stability of its binding partners and consequently modulate the bacterial transcriptome, thereby influencing different physiological processes.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/metabolismo , Rhodobacter sphaeroides/genética , Alphaproteobacteria/genética , Proteínas de Bactérias/fisiologia , Simulação por Computador , Endorribonucleases/fisiologia , Estabilidade de RNA , Proteínas de Ligação a RNA/fisiologia , Rhodobacter sphaeroides/metabolismo , Estresse Fisiológico , Transcriptoma
3.
Yi Chuan ; 42(7): 669-679, 2020 Jul 20.
Artigo em Chinês | MEDLINE | ID: mdl-32694106

RESUMO

Long interspersed nuclear element-1 (LINE-1) is the only active autonomous transposon in the human genome. Its transposition frequently induces host genome instability, leading to a variety of genetic diseases, including cancers. The host factors play important roles in inhibiting LINE-1 retrotransposition. As an important component of the immune system, the host factor SLFN14 has antiviral activity. Our laboratory shows that SLFN14 possesses potent inhibitory activity against LINE-1 retrotransposition. To explore the potential mechanism of SLFN14 inhibition, we analyzed its effects on transcription, translation, reverse transcription and insertion in the LINE-1 replication cycle. We confirmed that SLFN14 could suppress the LINE-1 mRNA level by affecting its transcription and degradation, thereby diminishing the protein and cDNA levels of LINE-1, which eventually block the LINE-1 retrotransposition. Further, by mapping the active domains of SLFN14, we found its inhibitory activity on LINE-1 being closely related to its endoribonuclease and ribosome binding domains. These results demonstrate the mechanism of SLFN14 in regulating LINE-1 replication, which further provide new insights for improving the regulation network of host factors for controlling genomic instability caused by LINE-1 replication.


Assuntos
Endorribonucleases , Genoma Humano , Elementos Nucleotídeos Longos e Dispersos , Endorribonucleases/fisiologia , Instabilidade Genômica , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , RNA Mensageiro , Transcrição Reversa
4.
Biomolecules ; 10(6)2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545307

RESUMO

While the role of hypoxia and the induction of the hypoxia inducible factors (HIFs) and the unfolded protein response (UPR) pathways in the cancer microenvironment are well characterized, their roles and relationship in normal human endothelium are less clear. Here, we examined the effects of IRE1 on HIF-1α protein levels during hypoxia in primary human umbilical vein endothelial cells (HUVECs). The results demonstrated that HIF-1α levels peaked at 6 h of hypoxia along with two of their target genes, GLUT1 and VEGFA, whereas at up to 12 h of hypoxia the mRNA levels of markers of the UPR, IRE1, XBP1s, BiP, and CHOP, did not increase, suggesting that the UPR was not activated. Interestingly, the siRNA knockdown of IRE1 or inhibition of IRE1 endonuclease activity with 4µ8C during hypoxia significantly reduced HIF-1α protein without affecting HIF1A mRNA expression. The inhibition of the endonuclease activity with 4µ8C in two other primary endothelial cells during hypoxia, human cardiac microvascular endothelial cells and human aortic endothelial cells showed the same reduction in the HIF-1α protein. Surprisingly, the siRNA knockdown of XBP1s during hypoxia did not decrease the HIF1α protein levels, indicating that the IRE1-mediated effect on stabilizing the HIF1α protein levels was XBP1s-independent. The studies presented here, therefore, provide evidence that IRE1 activity during hypoxia increases the protein levels of HIF1α in an XBP1s-independent manner.


Assuntos
Hipóxia Celular , Endorribonucleases/fisiologia , Células Endoteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Células Cultivadas , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/metabolismo , Células Endoteliais/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
5.
Gastroenterology ; 159(4): 1487-1503.e17, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32574624

RESUMO

BACKGROUND & AIMS: Endoplasmic reticulum to nucleus signaling 1 (ERN1, also called IRE1A) is a sensor of the unfolded protein response that is activated in the livers of patients with nonalcoholic steatohepatitis (NASH). Hepatocytes release ceramide-enriched inflammatory extracellular vesicles (EVs) after activation of IRE1A. We studied the effects of inhibiting IRE1A on release of inflammatory EVs in mice with diet-induced steatohepatitis. METHODS: C57BL/6J mice and mice with hepatocyte-specific disruption of Ire1a (IRE1αΔhep) were fed a diet high in fat, fructose, and cholesterol to induce development of steatohepatitis or a standard chow diet (controls). Some mice were given intraperitoneal injections of the IRE1A inhibitor 4µ8C. Mouse liver and primary hepatocytes were transduced with adenovirus or adeno-associated virus that expressed IRE1A. Livers were collected from mice and analyzed by quantitative polymerase chain reaction and chromatin immunoprecipitation assays; plasma samples were analyzed by enzyme-linked immunosorbent assay. EVs were derived from hepatocytes and injected intravenously into mice. Plasma EVs were characterized by nanoparticle-tracking analysis, electron microscopy, immunoblots, and nanoscale flow cytometry; we used a membrane-tagged reporter mouse to detect hepatocyte-derived EVs. Plasma and liver tissues from patients with NASH and without NASH (controls) were analyzed for EV concentration and by RNAscope and gene expression analyses. RESULTS: Disruption of Ire1a in hepatocytes or inhibition of IRE1A reduced the release of EVs and liver injury, inflammation, and accumulation of macrophages in mice on the diet high in fat, fructose, and cholesterol. Activation of IRE1A, in the livers of mice, stimulated release of hepatocyte-derived EVs, and also from cultured primary hepatocytes. Mice given intravenous injections of IRE1A-stimulated, hepatocyte-derived EVs accumulated monocyte-derived macrophages in the liver. IRE1A-stimulated EVs were enriched in ceramides. Chromatin immunoprecipitation showed that IRE1A activated X-box binding protein 1 (XBP1) to increase transcription of serine palmitoyltransferase genes, which encode the rate-limiting enzyme for ceramide biosynthesis. Administration of a pharmacologic inhibitor of serine palmitoyltransferase to mice reduced the release of EVs. Levels of XBP1 and serine palmitoyltransferase were increased in liver tissues, and numbers of EVs were increased in plasma, from patients with NASH compared with control samples and correlated with the histologic features of inflammation. CONCLUSIONS: In mouse hepatocytes, activated IRE1A promotes transcription of serine palmitoyltransferase genes via XBP1, resulting in ceramide biosynthesis and release of EVs. The EVs recruit monocyte-derived macrophages to the liver, resulting in inflammation and injury in mice with diet-induced steatohepatitis. Levels of XBP1, serine palmitoyltransferase, and EVs are all increased in liver tissues from patients with NASH. Strategies to block this pathway might be developed to reduce liver inflammation in patients with NASH.


Assuntos
Endorribonucleases/fisiologia , Vesículas Extracelulares/patologia , Hepatócitos/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Ceramidas/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
6.
Cancer Lett ; 486: 29-37, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32446861

RESUMO

Estrogen receptor 1 (ESR1, which encodes estrogen receptor-alpha) is a key driver gene for the initiation and progression of hormone receptor-positive breast cancer. Estrogen receptor-alpha (ER) is expressed in up to 70% of cases, and patients are routinely treated with endocrine therapies. However, the development of resistance over time is common and occurs in one-third of ER-positive breast tumors, leading to disease progression and death. X-box binding protein 1 (XBP1), a key component of the unfolded protein response (UPR) and ER signaling pathway, generates a positive feedback regulatory loop that leads to increased expression of XBP1 and ER in luminal breast cancer. In this review, we highlight new insights into the mechanisms of crosstalk between XBP1 and ER signaling and its clinical implications. Next, we describe the key signaling nodes that play an important role in XBP1-mediated endocrine resistance in breast cancer. Further, we discuss XBP1 gene mutations in breast cancer and the role of these mutations in the emergence of endocrine resistance and response to treatment. Finally, we discuss the current state and future directions for targeting XBP1 in combination with standard endocrine therapy to improve clinical outcomes in endocrine-resistant breast cancer patients.


Assuntos
Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Endorribonucleases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteína 1 de Ligação a X-Box/antagonistas & inibidores , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/química , Resistencia a Medicamentos Antineoplásicos , Endorribonucleases/fisiologia , Receptor alfa de Estrogênio/análise , Feminino , Humanos , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Tamoxifeno/uso terapêutico , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/fisiologia
7.
J Virol ; 94(13)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32295917

RESUMO

Virus infection leads to activation of the interferon (IFN)-induced endoribonuclease RNase L, which results in degradation of viral and cellular RNAs. Both cellular and viral RNA cleavage products of RNase L bind pattern recognition receptors (PRRs), like retinoic acid-inducible I (Rig-I) and melanoma differentiation-associated protein 5 (MDA5), to further amplify IFN production and antiviral response. Although much is known about the mechanics of ligand binding and PRR activation, how cells coordinate RNA sensing with signaling response and interferon production remains unclear. We show that RNA cleavage products of RNase L activity induce the formation of antiviral stress granules (avSGs) by regulating activation of double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) and recruit the antiviral proteins Rig-I, PKR, OAS, and RNase L to avSGs. Biochemical analysis of purified avSGs showed interaction of a key stress granule protein, G3BP1, with only PKR and Rig-I and not with OAS or RNase L. AvSG assembly during RNase L activation is required for IRF3-mediated IFN production, but not IFN signaling or proinflammatory cytokine induction. Consequently, cells lacking avSG formation or RNase L signaling produced less IFN and showed higher susceptibility during Sendai virus infection, demonstrating the importance of avSGs in RNase L-mediated host defense. We propose a role during viral infection for RNase L-cleaved RNAs in inducing avSGs containing antiviral proteins to provide a platform for efficient interaction of RNA ligands with pattern recognition receptors to enhance IFN production to mount an effective antiviral response.IMPORTANCE Double-stranded RNAs produced during viral infections serve as pathogen-associated molecular patterns (PAMPs) and bind pattern recognition receptors to stimulate IFN production. RNase L is an IFN-regulated endoribonuclease that is activated in virus-infected cells and cleaves single-stranded viral and cellular RNAs. The RNase L-cleaved dsRNAs signal to Rig-like helicases to amplify IFN production. This study identifies a novel role of antiviral stress granules induced by RNase L as an antiviral signaling hub to coordinate the RNA ligands with cognate receptors to mount an effective host response during viral infections.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Endorribonucleases/metabolismo , eIF-2 Quinase/metabolismo , Linhagem Celular Tumoral , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo , Endorribonucleases/fisiologia , Humanos , Interferon beta/genética , Interferons/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Viral/genética , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais/genética , eIF-2 Quinase/fisiologia
8.
Dis Model Mech ; 12(11)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31636086

RESUMO

Endoplasmic reticulum (ER) stress is a major pathology encountered after hypoxic-ischemic (HI) injury. Accumulation of unfolded proteins triggers the unfolded protein response (UPR), resulting in the activation of pro-apoptotic cascades that lead to cell death. Here, we identified Bax inhibitor 1 (BI-1), an evolutionarily conserved protein encoded by the transmembrane BAX inhibitor motif-containing 6 (TMBIM6) gene, as a novel modulator of ER-stress-induced apoptosis after HI brain injury in a neonatal rat pup. The main objective of our study was to overexpress BI-1, via viral-mediated gene delivery of human adenoviral-TMBIM6 (Ad-TMBIM6) vector, to investigate its anti-apoptotic effects as well as to elucidate its signaling pathways in an in vivo neonatal HI rat model and in vitro oxygen-glucose deprivation (OGD) model. Ten-day-old unsexed Sprague Dawley rat pups underwent right common carotid artery ligation followed by 1.5 h of hypoxia. Rat pups injected with Ad-TMBIM6 vector, 48 h pre-HI, showed a reduction in relative infarcted area size, attenuated neuronal degeneration and improved long-term neurological outcomes. Furthermore, silencing of BI-1 or further activating the IRE1α branch of the UPR, using a CRISPR activation plasmid, was shown to reverse the protective effects of BI-1. Based on our in vivo and in vitro data, the protective effects of BI-1 are mediated via inhibition of IRE1α signaling and in part via inhibition of the second stress sensor receptor, PERK. Overall, this study showed a novel role for BI-1 and ER stress in the pathophysiology of HI and could provide a basis for BI-1 as a potential therapeutic target.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/fisiologia , Hipóxia-Isquemia Encefálica/etiologia , Proteínas de Membrana/fisiologia , Adenoviridae/genética , Animais , Animais Recém-Nascidos , Proteínas Reguladoras de Apoptose/genética , Endorribonucleases/fisiologia , Vetores Genéticos , Hipóxia-Isquemia Encefálica/patologia , Aprendizagem em Labirinto , Proteínas de Membrana/genética , Complexos Multienzimáticos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Transcrição CHOP/fisiologia , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box/fisiologia
9.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462564

RESUMO

In mice, resistance to central nervous system (CNS) disease induced by members of the genus Flavivirus is conferred by an allele of the 2'-5' oligoadenylate synthetase 1b gene that encodes the inactive full-length protein (Oas1b-FL). The susceptibility allele encodes a C-terminally truncated protein (Oas1b-tr). We show that the efficiency of neuron infection in the brains of resistant and susceptible mice is similar after an intracranial inoculation of two flaviviruses, but amplification of viral proteins and double-stranded RNA (dsRNA) is inhibited in infected neurons in resistant mouse brains at later times. Active OAS proteins detect cytoplasmic dsRNA and synthesize short 2'-5'-linked oligoadenylates (2'-5'A) that interact with the latent endonuclease RNase L, causing it to dimerize and cleave single-stranded RNAs. To evaluate the contribution of RNase L to the resistance phenotype in vivo, we created a line of resistant RNase L-/- mice. Evidence of RNase L activation in infected RNase L+/+ mice was indicated by higher levels of viral RNA in the brains of infected RNase L-/- mice. Activation of type I interferon (IFN) signaling was detected in both resistant and susceptible brains, but Oas1a and Oas1b mRNA levels were lower in RNase L+/+ mice of both types, suggesting that activated RNase L also has a proflaviviral effect. Inhibition of virus replication was robust in resistant RNase L-/- mice, indicating that activated RNase L is not a critical factor in mediating this phenotype.IMPORTANCE The mouse genome encodes a family of Oas proteins that synthesize 2'-5'A in response to dsRNA. 2'-5'A activates the endonuclease RNase L to cleave single-stranded viral and cellular RNAs. The inactive, full-length Oas1b protein confers flavivirus-specific disease resistance. Although similar numbers of neurons were infected in resistant and susceptible brains after an intracranial virus infection, viral components amplified only in susceptible brains at later times. A line of resistant RNase L-/- mice was used to evaluate the contribution of RNase L to the resistance phenotype in vivo Activation of RNase L antiviral activity by flavivirus infection was indicated by increased viral RNA levels in the brains of RNase L-/- mice. Oas1a and Oas1b mRNA levels were higher in infected RNase L-/- mice, indicating that activated RNase L also have a proflaviviral affect. However, the resistance phenotype was equally robust in RNase L-/- and RNase L+/+ mice.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Endorribonucleases/metabolismo , Infecções por Flavivirus/metabolismo , 2',5'-Oligoadenilato Sintetase/fisiologia , Nucleotídeos de Adenina/genética , Nucleotídeos de Adenina/metabolismo , Animais , Linhagem Celular , Endorribonucleases/genética , Endorribonucleases/fisiologia , Flavivirus/metabolismo , Infecções por Flavivirus/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , Fenótipo , RNA Viral/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Replicação Viral/efeitos dos fármacos
10.
Sheng Li Xue Bao ; 71(2): 279-286, 2019 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-31008487

RESUMO

The aim of this study was to investigate the role of S100 calcium binding protein A16 (S100A16) in lipid metabolism in hepatocytes and its possible biological mechanism. HepG2 cells (human hepatoma cell line) were cultured with fatty acid to establish fatty acid culture model. The control model was cultured without fatty acid. Each model was divided into three groups and transfected with S100a16 over-expression, shRNA and vector plasmids, respectively. The concentration of triglyceride (TG) in the cells was measured by kit, and the lipid droplets was observed by oil red O staining. Immunoprecipitation and mass spectrometry were used to find the interesting proteins interacting with S100A16, and the interaction was verified by immunoprecipitation. The further mechanism was studied by Western blot and qRT-PCR. The results showed that the intracellular lipid droplet and TG concentrations in the fatty acid culture model were significantly higher than those in the control model. The accumulation of intracellular fat in the S100a16 over-expression group was significantly higher than that in the vector plasmid transfection group. There was an interaction between heat shock protein A5 (HSPA5) and S100A16. Over-expression of S100A16 up-regulated protein expression levels of HSPA5, inositol-requiring enzyme 1α (IRE1α) and pIREα1, which belong to endoplasmic reticulum stress HSPA5/IRE1α-XBP1 pathway. Meanwhile, over-expression of S100A16 up-regulated the mRNA expression levels of adipose synthesis-related gene Srebp1c, Acc and Fas. In the S100a16 shRNA plasmid transfection group, the above-mentioned protein and mRNA levels were lower than those of vector plasmid transfection group. These results suggest that S100A16 may promote lipid synthesis in HepG2 cells through endoplasmic reticulum stress HSPA5/IRE1α-XBP1 pathway.


Assuntos
Estresse do Retículo Endoplasmático , Metabolismo dos Lipídeos , Proteínas S100/fisiologia , Chaperona BiP do Retículo Endoplasmático , Endorribonucleases/fisiologia , Proteínas de Choque Térmico/fisiologia , Células Hep G2 , Humanos , Proteínas Serina-Treonina Quinases/fisiologia , Triglicerídeos/biossíntese , Proteína 1 de Ligação a X-Box/fisiologia
11.
J Biol Chem ; 293(25): 9652-9661, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29769316

RESUMO

Heart failure is associated with induction of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The serine/threonine protein kinase/endoribonuclease IRE1α is a key protein in ER stress signal transduction. IRE1α activity can induce both protective UPR and apoptotic downstream signaling events, but the specific role for IRE1α activity in the heart is unknown. A major aim of this study was to characterize the specific contribution of IRE1α in cardiac physiology and pathogenesis. We used both cultured myocytes and a transgenic mouse line with inducible and cardiomyocyte-specific IRE1α overexpression as experimental models to achieve targeted IRE1α activation. IRE1α expression induced a potent but transient ER stress response in cardiomyocytes and did not cause significant effects in the intact heart under normal physiological conditions. Furthermore, the IRE1α-activated transgenic heart responding to pressure overload exhibited preserved function and reduced fibrotic area, associated with increased adaptive UPR signaling and with blunted inflammatory and pathological gene expression. Therefore, we conclude that IRE1α induces transient ER stress signaling and confers a protective effect against pressure overload-induced pathological remodeling in the heart. To our knowledge, this report provides first direct evidence of a specific and protective role for IRE1α in the heart and reveals an interaction between ER stress signaling and inflammatory regulation in the pathologically stressed heart.


Assuntos
Estresse do Retículo Endoplasmático , Endorribonucleases/fisiologia , Insuficiência Cardíaca/prevenção & controle , Insulinoma/prevenção & controle , Pressão/efeitos adversos , Substâncias Protetoras/farmacologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Apoptose , Células Cultivadas , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/patologia , Insulinoma/metabolismo , Insulinoma/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais , Resposta a Proteínas não Dobradas
12.
Proc Natl Acad Sci U S A ; 115(16): 4246-4251, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610346

RESUMO

Flaviviruses enter host cells through the process of clathrin-mediated endocytosis, and the spectrum of host factors required for this process are incompletely understood. Here we found that lymphocyte antigen 6 locus E (LY6E) promotes the internalization of multiple flaviviruses, including West Nile virus, Zika virus, and dengue virus. Perhaps surprisingly, LY6E is dispensable for the internalization of the endogenous cargo transferrin, which is also dependent on clathrin-mediated endocytosis for uptake. Since viruses are substantially larger than transferrin, we reasoned that LY6E may be required for uptake of larger cargoes and tested this using transferrin-coated beads of similar size as flaviviruses. LY6E was indeed required for the internalization of transferrin-coated beads, suggesting that LY6E is selectively required for large cargo. Cell biological studies found that LY6E forms tubules upon viral infection and bead internalization, and we found that tubule formation was dependent on RNASEK, which is also required for flavivirus internalization, but not transferrin uptake. Indeed, we found that RNASEK is also required for the internalization of transferrin-coated beads, suggesting it functions upstream of LY6E. These LY6E tubules resembled microtubules, and we found that microtubule assembly was required for their formation and flavivirus uptake. Since microtubule end-binding proteins link microtubules to downstream activities, we screened the three end-binding proteins and found that EB3 promotes virus uptake and LY6E tubularization. Taken together, these results highlight a specialized pathway required for the uptake of large clathrin-dependent endocytosis cargoes, including flaviviruses.


Assuntos
Flavivirus/fisiologia , Internalização do Vírus , Antígenos de Superfície/genética , Antígenos de Superfície/fisiologia , Linhagem Celular Tumoral , Vírus da Dengue/fisiologia , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Endorribonucleases/fisiologia , Éteres/farmacologia , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Microesferas , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/efeitos dos fármacos , Microtúbulos/fisiologia , Nocodazol/farmacologia , Compostos de Espiro/farmacologia , Transferrina , Vírus do Nilo Ocidental/fisiologia , Zika virus/fisiologia
13.
PLoS Pathog ; 14(4): e1006989, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29652922

RESUMO

The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler's murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2'-5' oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A.


Assuntos
2',5'-Oligoadenilato Sintetase/metabolismo , Nucleotídeos de Adenina/metabolismo , Endorribonucleases/antagonistas & inibidores , Vírus da Hepatite Murina/fisiologia , Oligorribonucleotídeos/metabolismo , Theilovirus/metabolismo , Proteínas Virais/metabolismo , Animais , Antivirais/metabolismo , Endorribonucleases/fisiologia , Células HeLa , Hepatite Viral Animal/metabolismo , Hepatite Viral Animal/virologia , Interações Hospedeiro-Patógeno , Humanos , Camundongos
14.
Oncogene ; 37(15): 1961-1975, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29367761

RESUMO

It is well documented that hypoxia activates the hypoxia-inducible factor 1-alpha (HIF1α)/vascular endothelial growth factor A (VEGFA) axis to promote angiogenesis in breast cancer. However, it is unclear how this axis is negatively regulated. In this study, we demonstrated that miR-153 directly inhibits expression of HIF1α by binding to the 3'UTR of HIF1A mRNA, as well as suppresses tube formation of primary human umbilical vein endothelial cells (HUVECs) and breast cancer angiogenesis by decreasing the secretion of VEGFA. Importantly, expression of miR-153 was induced by hypoxia-stimulated ER stress, which activates IRE1α and its downstream transcription factor X-box binding protein 1 (XBP1). X-box binding protein 1 directly binds to the promoter of the miR-153 host gene PTPRN and activates transcription. These results indicate that hypoxia induces miR-153 to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis and miR-153 could be used for breast cancer anti-angiogenesis therapy.


Assuntos
Neoplasias da Mama , Endorribonucleases/fisiologia , MicroRNAs/genética , Neovascularização Patológica/genética , Proteínas Serina-Treonina Quinases/fisiologia , Hipóxia Tumoral/genética , Proteína 1 de Ligação a X-Box/fisiologia , Animais , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células Cultivadas , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Transdução de Sinais/genética , Regulação para Cima/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Endocrinology ; 158(10): 3162-3173, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938442

RESUMO

The metabolic syndrome is associated with an increase in the activation of the renin angiotensin system, whose inhibition reduces the incidence of new-onset diabetes. Importantly, angiotensin II (AngII), independently of its vasoconstrictor action, causes ß-cell inflammation and dysfunction, which may be an early step in the development of type 2 diabetes. The aim of this study was to determine how AngII causes ß-cell dysfunction. Islets of Langerhans were isolated from C57BL/6J mice that had been infused with AngII in the presence or absence of taurine-conjugated ursodeoxycholic acid (TUDCA) and effects on endoplasmic reticulum (ER) stress, inflammation, and ß-cell function determined. The mechanism of action of AngII was further investigated using isolated murine islets and clonal ß cells. We show that AngII triggers ER stress, an increase in the messenger RNA expression of proinflammatory cytokines, and promotes ß-cell dysfunction in murine islets of Langerhans both in vivo and ex vivo. These effects were significantly attenuated by TUDCA, an inhibitor of ER stress. We also show that AngII-induced ER stress is required for the increased expression of proinflammatory cytokines and is caused by reactive oxygen species and IP3 receptor activation. These data reveal that the induction of ER stress is critical for AngII-induced ß-cell dysfunction and indicates how therapies that promote ER homeostasis may be beneficial in the prevention of type 2 diabetes.


Assuntos
Angiotensina II/farmacologia , Estresse do Retículo Endoplasmático/fisiologia , Inflamação/fisiopatologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Animais , Linhagem Celular Tumoral , Citocinas/genética , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/prevenção & controle , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/genética , Endorribonucleases/fisiologia , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Glucose/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Insulinoma , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , RNA Interferente Pequeno , Espécies Reativas de Oxigênio/metabolismo , Sistema Renina-Angiotensina/fisiologia , Taurina/farmacologia , Ácido Ursodesoxicólico/farmacologia , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/fisiologia
16.
J Exp Med ; 214(2): 401-422, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28082357

RESUMO

ATG16L1T300A, a major risk polymorphism in Crohn's disease (CD), causes impaired autophagy, but it has remained unclear how this predisposes to CD. In this study, we report that mice with Atg16l1 deletion in intestinal epithelial cells (IECs) spontaneously develop transmural ileitis phenocopying ileal CD in an age-dependent manner, driven by the endoplasmic reticulum (ER) stress sensor IRE1α. IRE1α accumulates in Paneth cells of Atg16l1ΔIEC mice, and humans homozygous for ATG16L1T300A exhibit a corresponding increase of IRE1α in intestinal epithelial crypts. In contrast to a protective role of the IRE1ß isoform, hyperactivated IRE1α also drives a similar ileitis developing earlier in life in Atg16l1;Xbp1ΔIEC mice, in which ER stress is induced by deletion of the unfolded protein response transcription factor XBP1. The selective autophagy receptor optineurin interacts with IRE1α, and optineurin deficiency amplifies IRE1α levels during ER stress. Furthermore, although dysbiosis of the ileal microbiota is present in Atg16l1;Xbp1ΔIEC mice as predicted from impaired Paneth cell antimicrobial function, such structural alteration of the microbiota does not trigger ileitis but, rather, aggravates dextran sodium sulfate-induced colitis. Hence, we conclude that defective autophagy in IECs may predispose to CD ileitis via impaired clearance of IRE1α aggregates during ER stress at this site.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Doença de Crohn/etiologia , Endorribonucleases/fisiologia , Ileíte/etiologia , Proteínas Serina-Treonina Quinases/fisiologia , Fatores Etários , Animais , Autofagia , Estresse do Retículo Endoplasmático , Proteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota
17.
Int J Biol Macromol ; 94(Pt A): 445-450, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27765572

RESUMO

Ribonuclease A family is a group of proteins having similar structures and catalytic mechanism but different functions. Human eosinophil granules contain two ribonucleases belonging to the RNase A family, eosinophil cationic protein (ECP) and eosinophil derived neurotoxin (EDN). In mouse, 15 orthologs of EDN and ECP, called mouse eosinophil associated ribonucleases (mEARs) have been reported which are expressed under different pathophysiological conditions. In this study, we have characterized mEAR2, mEAR5, mEAR7 and mEAR11, and compared them with ECP for their catalytic, cytotoxic, antibacterial and antiparasitic activities. All four mEARs had cytotoxic, antibacterial and antiparasitic activities. Generally, mEAR5 and mEAR2 were more cytotoxic than mEAR7, mEAR11 and ECP. The antimicrobial activities of mEAR7 and mEAR5 were higher than those of mEAR11 and mEAR2. The cytotoxic activity appeared to be associated with the basicity and RNase activity of mEARs, whereas no such correlation was observed for antimicrobial activities. The differential selective expression of mEARs under various pathophysiological conditions may be associated with the different biological activities of various mEARs.


Assuntos
Endorribonucleases/fisiologia , Neurotoxina Derivada de Eosinófilo/fisiologia , Ribonucleases/fisiologia , Sequência de Aminoácidos , Animais , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sequência Conservada , Endorribonucleases/farmacologia , Neurotoxina Derivada de Eosinófilo/farmacologia , Escherichia coli/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Ribonucleases/farmacologia , Tripanossomicidas/farmacologia
18.
Zhongguo Dang Dai Er Ke Za Zhi ; 18(9): 867-873, 2016 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-27655546

RESUMO

OBJECTIVE: To study the association between endoplasmic reticulum stress (ERS) pathway mediated by inositol-requiring kinase 1 (IRE1) and the apoptosis of type II alveolar epithelial cells (AECIIs) exposed to hyperoxia. METHODS: The primarily cultured AECIIs from preterm rats were devided into an air group and a hyperoxia group. The model of hyperoxia-induced cell injury was established. The cells were harvested at 24, 48, and 72 hours after hyperoxia exposure. An inverted phase-contrast microscope was used to observe morphological changes of the cells. Annexin V/PI double staining flow cytometry was performed to measure cell apoptosis. RT-PCR and Western blot were used to measure the mRNA and protein expression of glucose-regulated protein 78 (GRP78), IRE1, X-box binding protein-1 (XBP-1), and C/EBP homologous protein (CHOP). An immunofluorescence assay was performed to measure the expression of CHOP. RESULTS: Over the time of hyperoxia exposure, the hyperoxia group showed irregular spreading and vacuolization of AECIIs. Compared with the air group, the hyperoxia group showed a significantly increased apoptosis rate of AECIIs and significantly increased mRNA and protein expression of GRP78, IRE1, XBP1, and CHOP compared at all time points (P<0.05). The hyperoxia group had significantly greater fluorescence intensity of CHOP than the air group at all time points. In the hyperoxia group, the protein expression of CHOP was positively correlated with the apoptosis rate of AECIIs and the protein expression of IRE1 and XBP1 (r=0.97, 0.85, and 0.88 respectively; P<0.05). CONCLUSIONS: Hyperoxia induces apoptosis of AECIIs possibly through activating the IRE1-XBP1-CHOP pathway.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/fisiologia , Hiperóxia/patologia , Complexos Multienzimáticos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Alvéolos Pulmonares/patologia , Animais , Células Cultivadas , Células Epiteliais/fisiologia , Feminino , Hiperóxia/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Transcrição CHOP/fisiologia , Proteína 1 de Ligação a X-Box/fisiologia
19.
Endocr Regul ; 50(2): 43-54, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27560636

RESUMO

OBJECTIVE: The aim of the present study was to investigate the effect of hypoxia on the expression of genes encoding insulin-like growth factors (IGF1 and IGF2), their receptor (IGF1R), binding protein-4 (IGFBP4), and stanniocalcin 2 (STC2) in U87 glioma cells in relation to inhibition of endoplasmic reticulum stress signaling mediated by IRE1 (inositol requiring enzyme 1) for evaluation of their possible significance in the control of tumor growth. METHODS: The expression of IGF1, IGF2, IGF1R, IGFBP4, and STC2 genes in U87 glioma cells transfected by empty vector pcDNA3.1 (control) and cells without IRE1 signaling enzyme function (transfected by dnIRE1) upon hypoxia was studied by qPCR. RESULTS: The expression of IGF1 and IGF2 genes is down-regulated in glioma cells without IRE1 signaling enzyme function in comparison with the control cells. At the same time, the expression of IGF1R, IGFBP4, and STC2 genes was up-regulated in glioma cells upon inhibition of IRE1, with more significant changes for IGFBP4 and STC2 genes. We also showed that hypoxia does not change significantly the expression of IGF1, IGF2, and IGF1R genes but up-regulated IGFBP4 and STC2 genes expression in control glioma cells. Moreover, the inhibition of both enzymatic activities (kinase and endoribonuclease) of IRE1 in glioma cells does not change significantly the effect of hypoxia on the expression of IGF1, IGF1R, and IGFBP4 genes but introduces sensitivity of IGF2 gene to hypoxic condition. Thus, the expression of IGF2 gene is resistant to hypoxia only in control glioma cells and significantly down-regulated in cells without functional activity of IRE1 signaling enzyme, which is central mediator of the unfolded protein response and an important component of the tumor growth as well as metabolic diseases. CONCLUSIONS: Results of this study demonstrate that the expression of IGF1 and IGF1R genes is resistant to hypoxic condition both in control U87 glioma cells and cells without IRE1 signaling enzyme function. However, hypoxia significantly up-regulates the expression of IGFBP4 gene independently on the inhibition of IRE1 enzyme. These data show that proteins encoded by these genes are resistant to hypoxia except IGFBP4 and participate in the regulation of metabolic and proliferative processes through IRE1 signaling.


Assuntos
Endorribonucleases/fisiologia , Glioma/metabolismo , Glicoproteínas/genética , Proteína 4 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Serina-Treonina Quinases/fisiologia , Somatomedinas/genética , Hipóxia Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Humanos , Receptor IGF Tipo 1/genética , Transdução de Sinais
20.
Biochim Biophys Acta ; 1863(8): 2115-23, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27155082

RESUMO

Unfolded protein response (UPR) triggered as a consequence of ER stress has been shown to be involved in the development of different pathologies, including fibrotic disorders. In the present paper we explore the role played by UPR on a key fibrogenic parameter in the liver: collagen type I levels in activated hepatic stellate cells (HSC). Using Brefeldin A (BFA) as an ER stress inducer we found that UPR correlated with enhanced mRNA and protein levels of collagen type I in a cell line of immortalized non-tumoral rat HSC. Analysis of the three branches of UPR revealed the activation of IRE1α, PERK and ATF6 in response to BFA, although PERK activation was shown not to be involved in the fibrogenic action of BFA. BFA also activated p38 MAPK in an IRE1α-dependent way and the p38 MAPK inhibitor SB203580 prevented the increase in collagen type I mRNA and protein levels caused by BFA, suggesting the involvement of this kinase on this effect. Analysis of Smad activation showed that phosphorylated nuclear levels of Smad2 and 3 were increased in response to BFA treatment. Inhibition of Smad3 phosphorylation by SIS3 prevented the enhancement of collagen type I levels caused by BFA. Pretreatment with IRE1α and p38 MAPK inhibitors also prevented the increased p-Smad3 accumulation in the nucleus, suggesting an IRE1α-p38 MAPK-Smad pathway to be responsible for the fibrogenic action of BFA on HSC.


Assuntos
Brefeldina A/farmacologia , Colágeno Tipo I/biossíntese , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/fisiologia , Células Estreladas do Fígado/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Complexos Multienzimáticos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteína Smad3/fisiologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Linhagem Celular , Colágeno Tipo I/genética , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/antagonistas & inibidores , Fibrose , Regulação da Expressão Gênica/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Imidazóis/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Resposta a Proteínas não Dobradas/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA