Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(5): e1011783, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739652

RESUMO

Legionella pneumophila strains harboring wild-type rpsL such as Lp02rpsLWT cannot replicate in mouse bone marrow-derived macrophages (BMDMs) due to induction of extensive lysosome damage and apoptosis. The bacterial factor directly responsible for inducing such cell death and the host factor involved in initiating the signaling cascade that leads to lysosome damage remain unknown. Similarly, host factors that may alleviate cell death induced by these bacterial strains have not yet been investigated. Using a genome-wide CRISPR/Cas9 screening, we identified Hmg20a and Nol9 as host factors important for restricting strain Lp02rpsLWT in BMDMs. Depletion of Hmg20a protects macrophages from infection-induced lysosomal damage and apoptosis, allowing productive bacterial replication. The restriction imposed by Hmg20a was mediated by repressing the expression of several endo-lysosomal proteins, including the small GTPase Rab7. We found that SUMOylated Rab7 is recruited to the bacterial phagosome via SulF, a Dot/Icm effector that harbors a SUMO-interacting motif (SIM). Moreover, overexpression of Rab7 rescues intracellular growth of strain Lp02rpsLWT in BMDMs. Our results establish that L. pneumophila exploits the lysosomal network for the biogenesis of its phagosome in BMDMs.


Assuntos
Legionella pneumophila , Lisossomos , Macrófagos , Fagossomos , Proteínas rab de Ligação ao GTP , proteínas de unión al GTP Rab7 , Legionella pneumophila/metabolismo , Legionella pneumophila/genética , Animais , Proteínas rab de Ligação ao GTP/metabolismo , Camundongos , Fagossomos/metabolismo , Fagossomos/microbiologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Macrófagos/microbiologia , Macrófagos/metabolismo , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Sumoilação , Camundongos Endogâmicos C57BL , Endossomos/metabolismo , Endossomos/microbiologia
2.
Vet Microbiol ; 293: 110091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626624

RESUMO

Mastitis in dairy cows is mainly caused by bacteria, in which Staphylococcus aureus appears frequently. Epithelial cells, as a major physical barrier of mammary gland, play an important role in preventing mastitis in dairy cows. Our previous study reported that Rab11fip4 (an effector of Rab11) was significantly changed in response to stimulation by S. aureus. So, in this study, the role of Rab11A in phagocytosis of bovine mammary epithelial cells (MAC-T) against S. aureus was evaluated. First, changes of Rab11A and Rab11fip4 were analyzed in response to S. aureus by immunofluorescence and western blotting. Subsequently, the effects of Rab11A and Rab11fip4 on proliferation of S. aureus, as well as formation and function of late endosomes (LEs) and lysosomes (LYSs) were investigated. The results showed that, after infection, Rab11A and Rab11fip4 were recruited to phagosomes containing S. aureus. Rab11A promoted bacterial clearance and rescues the destruction of LEs and LYSs by S. aureus, whereas Rab11fip4 did the opposite. These findings provide new insights into phagocytosis and control of S. aureus in host cells, thus lay the foundation to elucidate the pathogenesis of S. aureus in bovine mastitis.


Assuntos
Células Epiteliais , Mastite Bovina , Fagocitose , Infecções Estafilocócicas , Staphylococcus aureus , Proteínas rab de Ligação ao GTP , Animais , Bovinos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Staphylococcus aureus/fisiologia , Feminino , Células Epiteliais/microbiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Mastite Bovina/microbiologia , Glândulas Mamárias Animais/microbiologia , Endossomos/metabolismo , Endossomos/microbiologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Linhagem Celular , Fagossomos/microbiologia
3.
Nature ; 623(7989): 1062-1069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37968398

RESUMO

Endomembrane damage represents a form of stress that is detrimental for eukaryotic cells1,2. To cope with this threat, cells possess mechanisms that repair the damage and restore cellular homeostasis3-7. Endomembrane damage also results in organelle instability and the mechanisms by which cells stabilize damaged endomembranes to enable membrane repair remains unknown. Here, by combining in vitro and in cellulo studies with computational modelling we uncover a biological function for stress granules whereby these biomolecular condensates form rapidly at endomembrane damage sites and act as a plug that stabilizes the ruptured membrane. Functionally, we demonstrate that stress granule formation and membrane stabilization enable efficient repair of damaged endolysosomes, through both ESCRT (endosomal sorting complex required for transport)-dependent and independent mechanisms. We also show that blocking stress granule formation in human macrophages creates a permissive environment for Mycobacterium tuberculosis, a human pathogen that exploits endomembrane damage to survive within the host.


Assuntos
Endossomos , Membranas Intracelulares , Lisossomos , Macrófagos , Grânulos de Estresse , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Endossomos/microbiologia , Endossomos/patologia , Membranas Intracelulares/metabolismo , Membranas Intracelulares/microbiologia , Membranas Intracelulares/patologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Lisossomos/patologia , Mycobacterium tuberculosis/metabolismo , Grânulos de Estresse/metabolismo , Técnicas In Vitro , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia
4.
Cell Rep ; 37(5): 109894, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731604

RESUMO

Legionella pneumophila grows intracellularly within a replication vacuole via action of Icm/Dot-secreted proteins. One such protein, SdhA, maintains the integrity of the vacuolar membrane, thereby preventing cytoplasmic degradation of bacteria. We show here that SdhA binds and blocks the action of OCRL (OculoCerebroRenal syndrome of Lowe), an inositol 5-phosphatase pivotal for controlling endosomal dynamics. OCRL depletion results in enhanced vacuole integrity and intracellular growth of a sdhA mutant, consistent with OCRL participating in vacuole disruption. Overexpressed SdhA alters OCRL function, enlarging endosomes, driving endosomal accumulation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and interfering with endosomal trafficking. SdhA interrupts Rab guanosine triphosphatase (GTPase)-OCRL interactions by binding to the OCRL ASPM-SPD2-Hydin (ASH) domain, without directly altering OCRL 5-phosphatase activity. The Legionella vacuole encompassing the sdhA mutant accumulates OCRL and endosomal antigen EEA1 (Early Endosome Antigen 1), consistent with SdhA blocking accumulation of OCRL-containing endosomal vesicles. Therefore, SdhA hijacking of OCRL is associated with blocking trafficking events that disrupt the pathogen vacuole.


Assuntos
Proteínas de Bactérias/metabolismo , Endossomos/enzimologia , Flavoproteínas/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/enzimologia , Macrófagos/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Vacúolos/enzimologia , Animais , Proteínas de Bactérias/genética , Células COS , Chlorocebus aethiops , Endocitose , Endossomos/genética , Endossomos/microbiologia , Evolução Molecular , Feminino , Flavoproteínas/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Doença dos Legionários/microbiologia , Macrófagos/microbiologia , Camundongos , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/genética , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Células U937 , Vacúolos/genética , Vacúolos/microbiologia , Proteínas rab de Ligação ao GTP/metabolismo
5.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937921

RESUMO

The antimicrobial peptide LL-37 inhibits the growth of the major human pathogen Mycobacterium tuberculosis (Mtb), but the mechanism of the peptide-pathogen interaction inside human macrophages remains unclear. Super-resolution imaging techniques provide a novel opportunity to visualize these interactions on a molecular level. Here, we adapt the super-resolution technique of stimulated emission depletion (STED) microscopy to study the uptake, intracellular localization and interaction of LL-37 with macrophages and virulent Mtb. We demonstrate that LL-37 is internalized by both uninfected and Mtb infected primary human macrophages. The peptide localizes in the membrane of early endosomes and lysosomes, the compartment in which mycobacteria reside. Functionally, LL-37 disrupts the cell wall of intra- and extracellular Mtb, resulting in the killing of the pathogen. In conclusion, we introduce STED microscopy as an innovative and informative tool for studying host-pathogen-peptide interactions, clearly extending the possibilities of conventional confocal microscopy.


Assuntos
Catelicidinas/metabolismo , Catelicidinas/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos , Parede Celular/microbiologia , Células Cultivadas , Endossomos/microbiologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Lisossomos/microbiologia , Macrófagos/microbiologia , Microscopia
6.
Trends Microbiol ; 28(8): 644-654, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32345466

RESUMO

Salmonella enterica is an important gastrointestinal and facultative intracellular pathogen. After invasion of host cells, it resides in a specialized, replication-permissive compartment, the Salmonella-containing vacuole (SCV). During maturation of the SCV, Salmonella remodels the host endosomal system to form a variety of membranous extensions from the SCV, one type designated Salmonella-induced filaments (SIFs). It was long unclear how Salmonella is able to sustain replication within the SCV, thought to be a nutrient-poor environment. Recent studies started to characterize the metabolic pathways used by intracellular Salmonella. Besides, new insights into the ultrastructure and biogenesis of SIFs and their essential role in nutrition were obtained lately. Here, we review the recent progress with focus on observations gained by various cellular models.


Assuntos
Metabolismo Energético/fisiologia , Salmonella typhimurium/metabolismo , Vacúolos/microbiologia , Proteínas de Bactérias/metabolismo , Microambiente Celular/fisiologia , Endossomos/microbiologia , Células Epiteliais/microbiologia , Humanos , Macrófagos/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Sistemas de Secreção Tipo III/metabolismo
7.
Cell Microbiol ; 22(5): e13196, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32083802

RESUMO

Uropathogenic E. coli (UPEC) infection in vivo is characterized by invasion of bladder umbrella epithelial cells followed by endosomal escape and proliferation in the cytoplasm to form intracellular bacterial communities. By contrast, UPEC infection in tissue culture models results in bacteria being trapped within Lamp1-positive endosomes where proliferation is limited. Pharmacological disruption of the actin cytoskeleton has been shown to facilitate UPEC endosomal escape in vitro and extracellular matrix stiffness is a well-characterized physiological regulator of actin dynamics; therefore, we hypothesized that substrate stiffness may play a role in UPEC endosomal escape. Using functionalized polyacrylamide substrates, we found that at physiological stiffness, UPEC escaped the endosome and proliferated rapidly in the cytoplasm of bladder epithelial cells. Dissection of the cytoskeletal signaling pathway demonstrated that inhibition of the Rho GTPase RhoB or its effector PRK1 was sufficient to increase cytoplasmic bacterial growth and that RhoB protein level was significantly reduced at physiological stiffness. Our data suggest that tissue stiffness is a critical regulator of intracellular bacterial growth. Due to the ease of doing genetic and pharmacological manipulations in cell culture, this model system may provide a useful tool for performing mechanistic studies on the intracellular life cycle of uropathogens.


Assuntos
Endossomos/microbiologia , Endossomos/fisiologia , Escherichia coli Uropatogênica/fisiologia , Actinas/metabolismo , Animais , Técnicas de Cultura de Células , Proliferação de Células , Citoesqueleto/fisiologia , Células Epiteliais/microbiologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Feminino , Humanos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Bexiga Urinária , Proteínas rho de Ligação ao GTP/metabolismo
8.
Immunology ; 158(3): 230-239, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31408534

RESUMO

Immune evasion is a critical survival mechanism for bacterial colonization of deeper tissues and may lead to life-threatening conditions such as endotoxaemia and sepsis. Understanding these immune evasion pathways would be an important step for the development of novel anti-microbial therapeutics. Here, we report a hitherto unknown mechanism by which Salmonella exploits an anti-inflammatory pathway in human immune cells to obtain survival advantage. We show that Salmonella enterica serovar Typhimurium strain 4/74 significantly (P < 0·05) increased expression of mRNA and surface protein of the type 1 receptor (VPAC1) for anti-inflammatory vasoactive intestinal peptide (VIP) in human monocytes. However, we also show that S. Typhimurium induced retrograde recycling of VPAC1 from early endosomes to Rab11a-containing sorting endosomes, associated with the Golgi apparatus, and anterograde trafficking via Rab3a and calmodulin 1. Expression of Rab3a and calmodulin 1 were significantly increased by S. Typhimurium infection and W-7 (calmodulin antagonist) decreased VPAC1 expression on the cell membrane while CALP-1 (calmodulin agonist) increased VPAC1 expression (P < 0·05). When infected monocytes were co-cultured with VIP, a significantly higher number of S. Typhimurium were recovered from these monocytes, compared with S. Typhimurium recovered from monocytes cultured only in cell media. We conclude that S. Typhimurium infection exploits host VPAC1/VIP to gain survival advantage in human monocytes.


Assuntos
Regulação da Expressão Gênica/imunologia , Evasão da Resposta Imune , Monócitos , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Endossomos/imunologia , Endossomos/microbiologia , Endossomos/patologia , Humanos , Monócitos/imunologia , Monócitos/microbiologia , Monócitos/patologia , Infecções por Salmonella/patologia , Proteínas rab de Ligação ao GTP/imunologia , Proteína rab3A de Ligação ao GTP/imunologia
9.
Sci Rep ; 9(1): 9019, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227743

RESUMO

AIP56 (apoptosis inducing protein of 56 kDa) is a key virulence factor secreted by virulent strains of Photobacterium damselae subsp. piscicida (Phdp), a Gram-negative bacterium that causes septicemic infections in several warm water marine fish species. AIP56 is systemically disseminated during infection and induces massive apoptosis of host macrophages and neutrophils, playing a decisive role in the disease outcome. AIP56 is a single-chain AB-type toxin, being composed by a metalloprotease A domain located at the N-terminal region connected to a C-terminal B domain, required for internalization of the toxin into susceptible cells. After binding to a still unidentified surface receptor, AIP56 is internalised through clathrin-mediated endocytosis, reaches early endosomes and translocates into the cytosol through a mechanism requiring endosomal acidification and involving low pH-induced unfolding of the toxin. At the cytosol, the catalytic domain of AIP56 cleaves NF-κB p65, leading to the apoptotic death of the intoxicated cells. It has been reported that host cytosolic factors, including host cell chaperones such as heat shock protein 90 (Hsp90) and peptidyl-prolyl cis/trans isomerases (PPIases), namely cyclophilin A/D (Cyp) and FK506-binding proteins (FKBP) are involved in the uptake of several bacterial AB toxins with ADP-ribosylating activity, but are dispensable for the uptake of other AB toxins with different enzymatic activities, such as Bacillus anthracis lethal toxin (a metalloprotease) or the large glycosylating toxins A and B of Clostridium difficile. Based on these findings, it has been proposed that the requirement for Hsp90/PPIases is a common and specific characteristic of ADP-ribosylating toxins. In the present work, we demonstrate that Hsp90 and the PPIases cyclophilin A/D are required for efficient intoxication by the metalloprotease toxin AIP56. We further show that those host cell factors interact with AIP56 in vitro and that the interactions increase when AIP56 is unfolded. The interaction with Hsp90 was also demonstrated in intact cells, at 30 min post-treatment with AIP56, suggesting that it occurs during or shortly after translocation of the toxin from endosomes into the cytosol. Based on these findings, we propose that the participation of Hsp90 and Cyp in bacterial toxin entry may be more disseminated than initially expected, and may include toxins with different catalytic activities.


Assuntos
Toxinas Bacterianas/metabolismo , Ciclofilina A/metabolismo , Infecções por Bactérias Gram-Negativas/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Metaloproteases/metabolismo , Peptidil-Prolil Isomerase F/metabolismo , Photobacterium/metabolismo , Animais , Células Cultivadas , Endocitose , Endossomos/metabolismo , Endossomos/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Photobacterium/patogenicidade , Virulência
10.
Proc Natl Acad Sci U S A ; 116(26): 12958-12963, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189603

RESUMO

Macrophages can internalize the invading pathogens by raft/caveolae and/or clathrin-dependent endocytosis and elicit an immune response against infection. However, the molecular mechanism for macrophage endocytosis remains elusive. Here we report that LAPF (lysosome-associated and apoptosis-inducing protein containing PH and FYVE domains) is required for caveolae-mediated endocytosis. Lapf-deficient macrophages have impaired capacity to endocytose and eliminate bacteria. Macrophage-specific Lapf-deficient mice are more susceptible to Escherichia coli (E. coli) infection with higher bacterial loads. Moreover, Lapf deficiency impairs TLR4 endocytosis, resulting in attenuated production of TLR-triggered proinflammatory cytokines. LAPF is localized to early endosomes and interacts with caveolin-1. Phosphorylation of LAPF by the tyrosine kinase Src is required for LAPF-Src-Caveolin complex formation and endocytosis and elimination of bacteria. Collectively, our work demonstrates that LAPF is critical for endocytosis of bacteria and induction of inflammatory responses, suggesting that LAPF and Src could be potential targets for the control of infectious diseases.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Caveolina 1/metabolismo , Endocitose/imunologia , Infecções por Escherichia coli/imunologia , Macrófagos/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/imunologia , Caveolina 1/imunologia , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Endossomos/imunologia , Endossomos/metabolismo , Endossomos/microbiologia , Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Imunidade Inata , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , Cultura Primária de Células , Quinases da Família src/imunologia , Quinases da Família src/metabolismo
11.
Sci Rep ; 8(1): 17697, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30523267

RESUMO

Enzootic pneumonia incurs major economic losses to pork production globally. The primary pathogen and causative agent, Mycoplasma hyopneumoniae, colonises ciliated epithelium and disrupts mucociliary function predisposing the upper respiratory tract to secondary pathogens. Alleviation of disease is reliant on antibiotics, vaccination, and sound animal husbandry, but none are effective at eliminating M. hyopneumoniae from large production systems. Sustainable pork production systems strive to lower reliance on antibiotics but lack of a detailed understanding of the pathobiology of M. hyopneumoniae has curtailed efforts to develop effective mitigation strategies. M. hyopneumoniae is considered an extracellular pathogen. Here we show that M. hyopneumoniae associates with integrin ß1 on the surface of epithelial cells via interactions with surface-bound fibronectin and initiates signalling events that stimulate pathogen uptake into clathrin-coated vesicles (CCVs) and caveosomes. These early events allow M. hyopneumoniae to exploit an intracellular lifestyle by commandeering the endosomal pathway. Specifically, we show: (i) using a modified gentamicin protection assay that approximately 8% of M. hyopneumoniae cells reside intracellularly; (ii) integrin ß1 expression specifically co-localises with the deposition of fibronectin precisely where M. hyopneumoniae cells assemble extracellularly; (iii) anti-integrin ß1 antibodies block entry of M. hyopneumoniae into porcine cells; and (iv) M. hyopneumoniae survives phagolysosomal fusion, and resides within recycling endosomes that are trafficked to the cell membrane. Our data creates a paradigm shift by challenging the long-held view that M. hyopneumoniae is a strict extracellular pathogen and calls for in vivo studies to determine if M. hyopneumoniae can traffic to extrapulmonary sites in commercially-reared pigs.


Assuntos
Células Epiteliais/microbiologia , Mycoplasma hyopneumoniae/patogenicidade , Pneumonia Suína Micoplasmática/microbiologia , Animais , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Endossomos/metabolismo , Endossomos/microbiologia , Células Epiteliais/metabolismo , Fibronectinas/metabolismo , Integrina beta1/metabolismo , Pneumonia Suína Micoplasmática/metabolismo , Suínos
12.
Pathog Dis ; 76(8)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445439

RESUMO

Listeria monocytogenes is a pathogenic bacterium that invades epithelial cells by activating host signaling cascades, which promote bacterial engulfment within a phagosome. The pore-forming toxin listeriolysin O (LLO), which is required for bacteria phagosomal escape, has also been associated with the activation of several signaling pathways when secreted by extracellular bacteria, including Ca2+ influx and promotion of L. monocytogenes entry. Quantitative host surfaceome analysis revealed significant quantitative remodeling of a defined set of cell surface glycoproteins upon LLO treatment, including a subset previously identified to play a role in the L. monocytogenes infection process. Our data further shows that the lysosomal-associated membrane proteins LAMP-1 and LAMP-2 are translocated to the cellular surface and those LLO-induced Ca2+ fluxes are required to trigger the surface relocalization of LAMP-1. Finally, we identify late endosomes/lysosomes as the major donor compartments of LAMP-1 upon LLO treatment and by perturbing their function, we suggest that these organelles participate in L. monocytogenes invasion.


Assuntos
Toxinas Bacterianas/metabolismo , Endocitose , Células Epiteliais/microbiologia , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Patógeno , Listeria monocytogenes/fisiologia , Proteínas de Membrana/análise , Proteoma/análise , Endossomos/metabolismo , Endossomos/microbiologia , Células HeLa , Humanos , Listeria monocytogenes/metabolismo , Lisossomos/metabolismo , Lisossomos/microbiologia
13.
Cell Host Microbe ; 24(2): 285-295.e8, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30057173

RESUMO

Many pathogenic intracellular bacteria manipulate the host phago-endosomal system to establish and maintain a permissive niche. The fate and identity of these intracellular compartments is controlled by phosphoinositide lipids. By mechanisms that have remained undefined, a Francisella pathogenicity island-encoded secretion system allows phagosomal escape and replication of bacteria within host cell cytoplasm. Here we report the discovery that a substrate of this system, outside pathogenicity island A (OpiA), represents a family of wortmannin-resistant bacterial phosphatidylinositol (PI) 3-kinase enzymes with members found in a wide range of intracellular pathogens, including Rickettsia and Legionella spp. We show that OpiA acts on the Francisella-containing phagosome and promotes bacterial escape into the cytoplasm. Furthermore, we demonstrate that the phenotypic consequences of OpiA inactivation are mitigated by endosomal maturation arrest. Our findings suggest that Francisella, and likely other intracellular bacteria, override the finely tuned dynamics of phagosomal PI(3)P in order to promote intracellular survival and pathogenesis.


Assuntos
Francisella/crescimento & desenvolvimento , Francisella/patogenicidade , Interações Hospedeiro-Patógeno/fisiologia , Fagossomos/metabolismo , Fagossomos/microbiologia , Fosfatidilinositol 3-Quinase/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Citoplasma/microbiologia , Replicação do DNA , Modelos Animais de Doenças , Endossomos/microbiologia , Feminino , Francisella/genética , Genes Bacterianos/genética , Ilhas Genômicas , Células HEK293 , Células HeLa , Humanos , Metabolismo dos Lipídeos , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositóis/metabolismo , Células RAW 264.7 , Sistemas de Secreção Tipo VI/metabolismo , Fatores de Virulência/metabolismo
14.
J Cell Biol ; 217(4): 1411-1429, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29440514

RESUMO

Signaling lymphocytic activation molecule family 1 (SLAMF1) is an Ig-like receptor and a costimulatory molecule that initiates signal transduction networks in a variety of immune cells. In this study, we report that SLAMF1 is required for Toll-like receptor 4 (TLR4)-mediated induction of interferon ß (IFNß) and for killing of Gram-negative bacteria by human macrophages. We found that SLAMF1 controls trafficking of the Toll receptor-associated molecule (TRAM) from the endocytic recycling compartment (ERC) to Escherichia coli phagosomes. In resting macrophages, SLAMF1 is localized to ERC, but upon addition of E. coli, it is trafficked together with TRAM from ERC to E. coli phagosomes in a Rab11-dependent manner. We found that endogenous SLAMF1 protein interacted with TRAM and defined key interaction domains as amino acids 68 to 95 of TRAM as well as 15 C-terminal amino acids of SLAMF1. Interestingly, the SLAMF1-TRAM interaction was observed for human but not mouse proteins. Overall, our observations suggest that SLAMF1 is a new target for modulation of TLR4-TRAM-TRIF inflammatory signaling in human cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Endossomos/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/imunologia , Animais , Endossomos/efeitos dos fármacos , Endossomos/imunologia , Endossomos/microbiologia , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagossomos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Transdução de Sinais , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Células THP-1 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
15.
PLoS Pathog ; 13(6): e1006459, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28650977

RESUMO

Several intracellular pathogens arrest the phagosome maturation in the host cells to avoid transport to lysosomes. In contrast, the Leishmania containing parasitophorous vacuole (PV) is shown to recruit lysosomal markers and thus Leishmania is postulated to be residing in the phagolysosomes in macrophages. Here, we report that Leishmania donovani specifically upregulates the expression of Rab5a by degrading c-Jun via their metalloprotease gp63 to downregulate the expression of miR-494 in THP-1 differentiated human macrophages. Our results also show that miR-494 negatively regulates the expression of Rab5a in cells. Subsequently, L. donovani recruits and retains Rab5a and EEA1 on PV to reside in early endosomes and inhibits transport to lysosomes in human macrophages. Similarly, we have also observed that Leishmania PV also recruits Rab5a by upregulating its expression in human PBMC differentiated macrophages. However, the parasite modulates the endosome by recruiting Lamp1 and inactive pro-CathepsinD on PV via the overexpression of Rab5a in infected cells. Furthermore, siRNA knockdown of Rab5a or overexpression of miR-494 in human macrophages significantly inhibits the survival of the parasites. These results provide the first mechanistic insights of parasite-mediated remodeling of endo-lysosomal trafficking to reside in a specialized early endocytic compartment.


Assuntos
Endossomos/parasitologia , Leishmania donovani/fisiologia , Leucócitos Mononucleares/parasitologia , Macrófagos/parasitologia , MicroRNAs/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Regulação para Baixo , Endossomos/microbiologia , Humanos , Lisossomos/metabolismo , Fagossomos/microbiologia , Ativação Transcricional/genética , Regulação para Cima , Vacúolos/parasitologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-28293541

RESUMO

Coxiella burnetii is an obligate intracellular pathogen and the causative agent of human Q fever. Replication of the bacterium within a large parasitophorous vacuole (PV) resembling a host phagolysosome is required for pathogenesis. PV biogenesis is a pathogen driven process that requires engagement of several host cell vesicular trafficking pathways to acquire vacuole components. The goal of this study was to determine if infection by C. burnetii modulates endolysosomal flux to potentially benefit PV formation. HeLa cells, infected with C. burnetii or left uninfected, were incubated with fluorescent transferrin (Tf) for 0-30 min, and the amount of Tf internalized by cells quantitated by high-content imaging. At 3 and 5 days, but not 1 day post-infection, the maximal amounts of fluorescent Tf internalized by infected cells were significantly greater than uninfected cells. The rates of Tf uptake and recycling were the same for infected and uninfected cells; however, residual Tf persisted in EEA.1 positive compartments adjacent to large PV after 30 min of recycling in the absence of labeled Tf. On average, C. burnetii-infected cells contained significantly more CD63-positive endosomes than uninfected cells. In contrast, cells containing large vacuoles generated by Chlamydia trachomatis exhibited increased rates of Tf internalization without increased CD63 expression. Our results suggest that C. burnetii infection expands the endosomal system to increase capacity for endocytic material. Furthermore, this study demonstrates the power of high-content imaging for measurement of cellular responses to infection by intracellular pathogens.


Assuntos
Coxiella burnetii/crescimento & desenvolvimento , Coxiella burnetii/metabolismo , Endossomos/microbiologia , Endossomos/ultraestrutura , Vacúolos/microbiologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/citologia , Chlamydia trachomatis/fisiologia , Coxiella burnetii/citologia , Coxiella burnetii/patogenicidade , Endocitose , Endossomos/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Lisossomos , Microscopia de Fluorescência , Fagossomos/microbiologia , Tetraspanina 30/metabolismo , Vacúolos/metabolismo
17.
mBio ; 7(6)2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27899503

RESUMO

Brucella abortus, the bacterial agent of the worldwide zoonosis brucellosis, primarily infects host phagocytes, where it undergoes an intracellular cycle within a dedicated membrane-bound vacuole, the Brucella-containing vacuole (BCV). Initially of endosomal origin (eBCV), BCVs are remodeled into replication-permissive organelles (rBCV) derived from the host endoplasmic reticulum, a process that requires modulation of host secretory functions via delivery of effector proteins by the Brucella VirB type IV secretion system (T4SS). Following replication, rBCVs are converted into autophagic vacuoles (aBCVs) that facilitate bacterial egress and subsequent infections, arguing that the bacterium sequentially manipulates multiple cellular pathways to complete its cycle. The VirB T4SS is essential for rBCV biogenesis, as VirB-deficient mutants are stalled in eBCVs and cannot mediate rBCV biogenesis. This has precluded analysis of whether the VirB apparatus also drives subsequent stages of the Brucella intracellular cycle. To address this issue, we have generated a B. abortus strain in which VirB T4SS function is conditionally controlled via anhydrotetracycline (ATc)-dependent complementation of a deletion of the virB11 gene encoding the VirB11 ATPase. We show in murine bone marrow-derived macrophages (BMMs) that early VirB production is essential for optimal rBCV biogenesis and bacterial replication. Transient expression of virB11 prior to infection was sufficient to mediate normal rBCV biogenesis and bacterial replication but led to T4SS inactivation and decreased aBCV formation and bacterial release, indicating that these postreplication stages are also T4SS dependent. Hence, our findings support the hypothesis of additional, postreplication roles of type IV secretion in the Brucella intracellular cycle. IMPORTANCE: Many intracellular bacterial pathogens encode specialized secretion systems that deliver effector proteins into host cells to mediate the multiple stages of their intracellular cycles. Because these intracellular events occur sequentially, classical genetic approaches cannot address the late roles that these apparatuses play, as secretion-deficient mutants cannot proceed past their initial defect. Here we have designed a functionally controllable VirB type IV secretion system (T4SS) in the bacterial pathogen Brucella abortus to decipher its temporal requirements during the bacterium's intracellular cycle in macrophages. By controlling production of the VirB11 ATPase, which energizes the T4SS, we show not only that this apparatus is required early to generate the Brucella replicative organelle but also that it contributes to completion of the bacterium's cycle and bacterial egress. Our findings expand upon the pathogenic functions of the Brucella VirB T4SS and illustrate targeting of secretion ATPases as a useful strategy to manipulate the activity of bacterial secretion systems.


Assuntos
Adenosina Trifosfatases/metabolismo , Brucella abortus/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Sistemas de Secreção Tipo IV/metabolismo , Adenosina Trifosfatases/genética , Animais , Autofagossomos/metabolismo , Autofagossomos/microbiologia , Brucella abortus/genética , Células Cultivadas , Endossomos/metabolismo , Endossomos/microbiologia , Deleção de Genes , Teste de Complementação Genética , Camundongos , Biogênese de Organelas , Sistemas de Secreção Tipo IV/genética
18.
BMC Microbiol ; 16(1): 174, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27484084

RESUMO

BACKGROUND: The opportunistic bacterial pathogen Legionella pneumophila uses substrate effectors of Dot/Icm type IVB secretion system (T4BSS) to accomplish survival and replication in amoebae cells and mammalian alveolar macrophages. During the conversion between its highly resistant, infectious dormant form and vigorously growing, uninfectious replicative form, L. pneumophila utilizes a complicated regulatory network in which proteolysis may play a significant role. As a highly conserved core protease, ClpP is involved in various cellular processes as well as virulence in bacteria, and has been proved to be required for the expression of transmission traits and cell division of L. pneumophila. RESULTS: The clpP-deficient L. pneumophila strain failed to replicate and was digested in the first 3 h post-infection in mammalian cells J774A.1. Further investigation demonstrates that the clpP deficient mutant strain was unable to escape the endosome-lysosomal pathway in host cells. We also found that the clpP deficient mutant strain still expresses T4BSS components, induces contact-dependent cytotoxicity and translocate effector proteins RalF and LegK2, indicating that its T4BSS was overall functional. Interestingly, we further found that the translocation of several effector proteins is significantly reduced without ClpP. CONCLUSIONS: The data indicate that ClpP plays an important role in regulating the virulence and effector translocation of Legionella pneumophila.


Assuntos
Proteínas de Bactérias/genética , Endopeptidase Clp/genética , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Translocação Bacteriana/efeitos dos fármacos , Linhagem Celular , Endocitose/fisiologia , Endopeptidase Clp/deficiência , Endopeptidase Clp/metabolismo , Endossomos/metabolismo , Endossomos/microbiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Legionella pneumophila/citologia , Legionella pneumophila/enzimologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Macrófagos/microbiologia , Camundongos , Mutação , Fagocitose , Deleção de Sequência , Virulência
19.
Proc Natl Acad Sci U S A ; 113(31): 8807-12, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27436892

RESUMO

Legionella pneumophila, the Gram-negative pathogen causing Legionnaires' disease, infects host cells by hijacking endocytic pathways and forming a Legionella-containing vacuole (LCV) in which the bacteria replicate. To promote LCV expansion and prevent lysosomal targeting, effector proteins are translocated into the host cell where they alter membrane traffic. Here we show that three of these effectors [LegC2 (Legionella eukaryotic-like gene C2)/YlfB (yeast lethal factor B), LegC3, and LegC7/YlfA] functionally mimic glutamine (Q)-SNARE proteins. In infected cells, the three proteins selectively form complexes with the endosomal arginine (R)-SNARE vesicle-associated membrane protein 4 (VAMP4). When reconstituted in proteoliposomes, these proteins avidly fuse with liposomes containing VAMP4, resulting in a stable complex with properties resembling canonical SNARE complexes. Intriguingly, however, the LegC/SNARE hybrid complex cannot be disassembled by N-ethylmaleimide-sensitive factor. We conclude that LegCs use SNARE mimicry to divert VAMP4-containing vesicles for fusion with the LCV, thus promoting its expansion. In addition, the LegC/VAMP4 complex avoids the host's disassembly machinery, thus effectively trapping VAMP4 in an inactive state.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/metabolismo , Fusão de Membrana , Proteínas Q-SNARE/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Endossomos/metabolismo , Endossomos/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Legionella pneumophila/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Ligação Proteica , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Interferência de RNA , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/microbiologia , Vacúolos/metabolismo , Vacúolos/microbiologia
20.
PLoS Pathog ; 12(5): e1005602, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27182929

RESUMO

Intracellular pathogens include all viruses, many bacteria and parasites capable of invading and surviving within host cells. Key to survival is the subversion of host cell pathways by the pathogen for the purpose of propagation and evading the immune system. The intracellular bacterium Shigella flexneri, the causative agent of bacillary dysentery, invades host cells in a vacuole that is subsequently ruptured to allow growth of the pathogen within the host cytoplasm. S. flexneri invasion has been classically described as a macropinocytosis-like process, however the underlying details and the role of macropinosomes in the intracellular bacterial lifestyle have remained elusive. We applied dynamic imaging and advanced large volume correlative light electron microscopy (CLEM) to study the highly transient events of S. flexneri's early invasion into host epithelial cells and elucidate some of its fundamental features. First, we demonstrate a clear distinction between two compartments formed during the first step of invasion: the bacterial containing vacuole and surrounding macropinosomes, often considered identical. Next, we report a functional link between macropinosomes and the process of vacuolar rupture, demonstrating that rupture timing is dependent on the availability of macropinosomes as well as the activity of the small GTPase Rab11 recruited directly to macropinosomes. We go on to reveal that the bacterial containing vacuole and macropinosomes come into direct contact at the onset of vacuolar rupture. Finally, we demonstrate that S. flexneri does not subvert pre-existing host endocytic vesicles during the invasion steps leading to vacuolar rupture, and propose that macropinosomes are the major compartment involved in these events. These results provide the basis for a new model of the early steps of S. flexneri epithelial cell invasion, establishing a different view of the enigmatic process of cytoplasmic access by invasive bacterial pathogens.


Assuntos
Disenteria Bacilar/microbiologia , Endossomos/microbiologia , Células Epiteliais/microbiologia , Shigella flexneri/patogenicidade , Vacúolos/ultraestrutura , Endossomos/ultraestrutura , Células Epiteliais/ultraestrutura , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Microscopia/métodos , Pinocitose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA