Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 41(12): 2943-2960, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34670407

RESUMO

OBJECTIVE: Cerebral cavernous malformations (CCMs) can happen anywhere in the body, although they most commonly produce symptoms in the brain. The role of CCM genes in other vascular beds outside the brain and retina is not well-examined, although the 3 CCM-associated genes (CCM1, CCM2, and CCM3) are ubiquitously expressed in all tissues. We aimed to determine the role of CCM gene in lymphatics. Approach and Results: Mice with an inducible pan-endothelial cell (EC) or lymphatic EC deletion of Ccm3 (Pdcd10ECKO or Pdcd10LECKO) exhibit dilated lymphatic capillaries and collecting vessels with abnormal valve structure. Morphological alterations were correlated with lymphatic dysfunction in Pdcd10LECKO mice as determined by Evans blue dye and fluorescein isothiocyanate(FITC)-dextran transport assays. Pdcd10LECKO lymphatics had increased VEGFR3 (vascular endothelial growth factor receptor-3)-ERK1/2 (extracellular signal-regulated kinase 1/2) signaling with lymphatic hyperplasia. Mechanistic studies suggested that VEGFR3 is primarily regulated at a transcriptional level in Ccm3-deficient lymphatic ECs, in an NF-κB (nuclear factor κB)-dependent manner. CCM3 binds to importin alpha 2/KPNA2 (karyopherin subunit alpha 2), and a CCM3 deletion releases KPNA2 to activate NF-κB P65 by facilitating its nuclear translocation and P65-dependent VEGFR3 transcription. Moreover, increased VEGFR3 in lymphatic EC preferentially activates ERK1/2 signaling, which is critical for lymphatic EC proliferation. Importantly, inhibition of VEGFR3 or ERK1/2 rescued the lymphatic defects in structure and function. CONCLUSIONS: Our data demonstrate that CCM3 deletion augments the VEGFR3-ERK1/2 signaling in lymphatic EC that drives lymphatic hyperplasia and malformation and warrant further investigation on the potential clinical relevance of lymphatic dysfunction in patients with CCM.


Assuntos
Endotélio Linfático/fisiopatologia , Hemangioma Cavernoso do Sistema Nervoso Central/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Células Cultivadas , Células Endoteliais/fisiologia , Endotélio Linfático/patologia , Feminino , Deleção de Genes , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Hiperplasia , Masculino , Camundongos Endogâmicos , Modelos Animais , NF-kappa B/genética , Translocação Genética
2.
Circ Res ; 120(9): 1426-1439, 2017 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-28167653

RESUMO

RATIONALE: Lymphatic vessels function to drain interstitial fluid from a variety of tissues. Although shear stress generated by fluid flow is known to trigger lymphatic expansion and remodeling, the molecular basis underlying flow-induced lymphatic growth is unknown. OBJECTIVE: We aimed to gain a better understanding of the mechanism by which laminar shear stress activates lymphatic proliferation. METHODS AND RESULTS: Primary endothelial cells from dermal blood and lymphatic vessels (blood vascular endothelial cells and lymphatic endothelial cells [LECs]) were exposed to low-rate steady laminar flow. Shear stress-induced molecular and cellular responses were defined and verified using various mutant mouse models. Steady laminar flow induced the classic shear stress responses commonly in blood vascular endothelial cells and LECs. Surprisingly, however, only LECs showed enhanced cell proliferation by regulating the vascular endothelial growth factor (VEGF)-A, VEGF-C, FGFR3, and p57/CDKN1C genes. As an early signal mediator, ORAI1, a pore subunit of the calcium release-activated calcium channel, was identified to induce the shear stress phenotypes and cell proliferation in LECs responding to the fluid flow. Mechanistically, ORAI1 induced upregulation of Krüppel-like factor (KLF)-2 and KLF4 in the flow-activated LECs, and the 2 KLF proteins cooperate to regulate VEGF-A, VEGF-C, FGFR3, and p57 by binding to the regulatory regions of the genes. Consistently, freshly isolated LECs from Orai1 knockout embryos displayed reduced expression of KLF2, KLF4, VEGF-A, VEGF-C, and FGFR3 and elevated expression of p57. Accordingly, mouse embryos deficient in Orai1, Klf2, or Klf4 showed a significantly reduced lymphatic density and impaired lymphatic development. CONCLUSIONS: Our study identified a molecular mechanism for laminar flow-activated LEC proliferation.


Assuntos
Proliferação de Células , Células Endoteliais/metabolismo , Endotélio Linfático/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Linfangiogênese , Mecanotransdução Celular , Proteína ORAI1/metabolismo , Animais , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Endotélio Linfático/patologia , Endotélio Linfático/fisiopatologia , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Genótipo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/deficiência , Fatores de Transcrição Kruppel-Like/genética , Camundongos Knockout , Proteína ORAI1/deficiência , Proteína ORAI1/genética , Fenótipo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Estresse Mecânico , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo
3.
Curr Opin Gastroenterol ; 29(6): 608-13, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24100721

RESUMO

PURPOSE OF REVIEW: The review summarizes the current knowledge of the roles played by the vascular and lymphatic endothelium throughout the gut in the pathogenesis of inflammatory bowel disease (IBD) and gives an update on emerging strategies targeting both vasculatures. RECENT FINDINGS: Enormous efforts have been made to understand the mechanisms underlining the origin, development and maintenance of intestinal chronic inflammation. In particular, new studies focused their attention on the role played by the microvascular and lymphatic endothelium in the pathogenesis of IBD. During inflammation, whereas the microvasculature is responsible for the entry and distribution of immune cells in the mucosa, the lymphatic system controls leukocyte exit, bacterial clearance and edema absorption. The study of these events, which are aberrant during chronic inflammation, has resulted in the identification and validation of several targets for the treatment of experimental colitis, some of which have translated into effective treatments for patients with IBD. SUMMARY: Although much attention has been paid to the microvascular endothelium and to antiangiogenic therapies, specific studies on the lymphatic vasculature and its functions in IBD are still at the initial stage, and other molecular mechanisms, genes, molecules and new pathways must definitely be explored.


Assuntos
Endotélio Linfático/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Endotélio Linfático/fisiopatologia , Endotélio Vascular/fisiopatologia , Humanos , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/fisiopatologia , Intestinos/irrigação sanguínea , Linfangiogênese/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/etiologia
4.
Life Sci ; 92(2): 101-7, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23178150

RESUMO

Tumor angiogenesis and lymphangiogenesis are key features of tumor progression and metastasis. The role of tumor cells-derived factors in the promotion of associated angiogenesis and lymphangiogenesis is much studied and, no doubt, very important for the understanding of cancer progression. This review aims to present and discuss the work done on the pro-angiogenic and lymphangiogenic cellular interactions within the tumor microenvironment and the signaling pathways that regulate this crosstalk. Such multifactor studies are critical for the development of future therapeutic approaches for cancer because they take into account the complexities of cellular interactions within the tumor microenvironment.


Assuntos
Linfangiogênese/fisiologia , Neoplasias/irrigação sanguínea , Neovascularização Patológica/fisiopatologia , Transdução de Sinais/fisiologia , Animais , Comunicação Celular/fisiologia , Endotélio Linfático/fisiopatologia , Endotélio Vascular/fisiopatologia , Fibroblastos/fisiologia , Humanos , Macrófagos/fisiologia , Neoplasias/fisiopatologia
5.
Lymphat Res Biol ; 10(4): 198-207, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23240958

RESUMO

BACKGROUND: Lymphatic and blood microvascular systems play a coordinated role in the regulation of interstitial fluid balance and immune cell trafficking during inflammation. The objective of this study was to characterize the temporal and spatial relationships between lymphatic and blood vessel growth in the adult rat mesentery following an inflammatory stimulus. METHODS AND RESULTS: Mesenteric tissues were harvested from unstimulated adult male Wistar rats and at 3, 10, and 30 days post compound 48/80 stimulation. Tissues were immunolabeled for PECAM, LYVE-1, Prox1, podoplanin, CD11b, and class III ß-tubulin. Vascular area, capillary blind end density, and vascular length density were quantified for each vessel system per time point. Blood vascular area increased compared to unstimulated tissues by day 10 and remained increased at day 30. Following the peak in blood capillary sprouting at day 3, blood vascular area and density increased at day 10. The number of blind-ended lymphatic vessels and lymphatic density did not significantly increase until day 10, and lymphatic vascular area was not increased compared to the unstimulated level until day 30. Lymphangiogenesis correlated with the upregulation of class III ß-tubulin expression by endothelial cells along lymphatic blind-ended vessels and increased lymphatic/blood endothelial cell connections. In local tissue regions containing both blood and lymphatic vessels, the presence of lymphatics attenuated blood capillary sprouting. CONCLUSIONS: Our work suggests that lymphangiogenesis lags angiogenesis during inflammation and motivates the need for future investigations aimed at understanding lymphatic/blood endothelial cell interactions. The results also indicate that lymphatic endothelial cells undergo phenotypic changes during lymphangiogenesis.


Assuntos
Inflamação/fisiopatologia , Linfangiogênese , Mesentério/irrigação sanguínea , Microvasos/fisiopatologia , Neovascularização Patológica/fisiopatologia , Animais , Biomarcadores/metabolismo , Antígeno CD11b/metabolismo , Células Endoteliais/patologia , Endotélio Linfático/patologia , Endotélio Linfático/fisiopatologia , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Inflamação/induzido quimicamente , Sistema Linfático/irrigação sanguínea , Sistema Linfático/fisiopatologia , Vasos Linfáticos/fisiopatologia , Masculino , Mesentério/química , Microscopia Confocal , Microvasos/química , Neovascularização Patológica/induzido quimicamente , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Ratos , Ratos Wistar , Fatores de Tempo , Tubulina (Proteína)/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Transporte Vesicular/metabolismo , p-Metoxi-N-metilfenetilamina
6.
Am J Physiol Heart Circ Physiol ; 302(1): H215-23, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22058148

RESUMO

Angiopoietin (Ang)-2, a ligand of the receptor tyrosine kinase Tie2, is known to be involved in the regulation of embryonic lymphangiogenesis. However, the role of Ang-2 in postnatal pathological lymphangiogenesis, such as inflammation, is largely unknown. We used a combination of imaging, molecular, and cellular approaches to investigate whether Ang-2 is involved in inflammatory lymphangiogenesis. We observed strong and continuous expression of Ang-2 on newly generated lymphatic vessels for 2 wk in sutured corneas of BALB/c mice. This expression was concurrent with an increased number of lymphatic vessels. TNF-α expression also increased, with peak TNF-α expression occurring before peak Ang-2 expression was reached. In vitro experiments showed that TNF-α stimulates Ang-2 and Tie2 and ICAM-1 expression on human lymphatic endothelial cells (LECs) and blood vascular endothelial cells (BECs). Ang-2 alone did not affect the biological behavior of LECs, whereas Ang-2 combined with TNF-α significantly promoted the proliferation of LECs but not BECs. In mouse models, blockade of Ang-2 with L1-10, an Ang-2-specific inhibitor, significantly inhibited lymphangiogenesis but promoted angiogenesis. These results clearly indicate that Ang-2 acts as a crucial regulator of inflammatory lymphangiogenesis by sensitizing the lymphatic vasculature to inflammatory stimuli, thereby directly promoting lymphangiogenesis. The involvement of Ang-2 in inflammatory lymphangiogenesis provides a strong rationale for the exploitation of anti-Ang-2 treatment in the prevention and treatment of tumor metastasis and transplant rejection.


Assuntos
Angiopoietina-2/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Córnea/efeitos dos fármacos , Neovascularização da Córnea/prevenção & controle , Endotélio Linfático/efeitos dos fármacos , Inflamação/prevenção & controle , Linfangiogênese/efeitos dos fármacos , Angiopoietina-2/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Córnea/irrigação sanguínea , Córnea/imunologia , Córnea/metabolismo , Neovascularização da Córnea/imunologia , Neovascularização da Córnea/metabolismo , Neovascularização da Córnea/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Endotélio Linfático/imunologia , Endotélio Linfático/metabolismo , Endotélio Linfático/fisiopatologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
7.
Int J Oral Sci ; 2(1): 5-14, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20690413

RESUMO

Lymphatic metastasis is a continuous and complicated process. The detailed mechanisms of lymphatic metastasis are still not very clear, despite considerable research efforts in recent years. Previously, it was commonly accepted that there were no lymphatic vessels in the primary tumor. However, recent studies have demonstrated that lymphatic vessels are detectable in certain types of cancer, and more and more evidence has shown that cancer cells invade into local lymph nodes mainly via peritumoral lymphatic vessels. Moreover, activated endothelial cells may also be important, having an influence on lymphatic metastasis of cancer cells. This article, based on recent research findings, provides an in-depth discussion of the relationship between lymphangiogenesis, tumor-derived lymphatic endothelial cells and lymphatic metastasis in head and neck cancer.


Assuntos
Carcinoma de Células Escamosas/secundário , Células Endoteliais/patologia , Endotélio Linfático/patologia , Neoplasias de Cabeça e Pescoço/patologia , Linfangiogênese/fisiologia , Metástase Linfática/patologia , Carcinoma de Células Escamosas/patologia , Células Endoteliais/fisiologia , Endotélio Linfático/fisiopatologia , Humanos , Invasividade Neoplásica
8.
Am J Physiol Heart Circ Physiol ; 295(5): H2113-27, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18849330

RESUMO

Although clinical studies have identified scarring/fibrosis as significant risk factors for lymphedema, the mechanisms by which lymphatic repair is impaired remain unknown. Transforming growth factor -beta1 (TGF-beta1) is a critical regulator of tissue fibrosis/scarring and may therefore also play a role in the regulation of lymphatic regeneration. The purpose of this study was therefore to assess the role of TGF-beta1 on scarring/fibrosis and lymphatic regeneration in a mouse tail model. Acute lymphedema was induced in mouse tails by full-thickness skin excision and lymphatic ligation. TGF-beta1 expression and scarring were modulated by repairing the wounds with or without a topical collagen gel. Lymphatic function and histological analyses were performed at various time points. Finally, the effects of TGF-beta1 on lymphatic endothelial cells (LECs) in vitro were evaluated. As a result, the wound repair with collagen gel significantly reduced the expression of TGF-beta1, decreased scarring/fibrosis, and significantly accelerated lymphatic regeneration. The addition of recombinant TGF-beta1 to the collagen gel negated these effects. The improved lymphatic regeneration secondary to TGF-beta1 inhibition was associated with increased infiltration and proliferation of LECs and macrophages. TGF-beta1 caused a dose-dependent significant decrease in cellular proliferation and tubule formation of isolated LECs without changes in the expression of VEGF-C/D. Finally, the increased expression of TGF-beta1 during wound repair resulted in lymphatic fibrosis and the coexpression of alpha-smooth muscle actin and lymphatic vessel endothelial receptor-1 in regenerated lymphatics. In conclusion, the inhibition of TGF-beta1 expression significantly accelerates lymphatic regeneration during wound healing. An increased TGF-beta1 expression inhibits LEC proliferation and function and promotes lymphatic fibrosis. These findings imply that the clinical interventions that diminish TGF-beta1 expression may be useful in promoting more rapid lymphatic regeneration.


Assuntos
Linfangiogênese , Vasos Linfáticos/fisiopatologia , Linfedema/fisiopatologia , Pele/fisiopatologia , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização , Administração Cutânea , Animais , Movimento Celular , Proliferação de Células , Cicatriz/metabolismo , Cicatriz/fisiopatologia , Colágeno/administração & dosagem , Procedimentos Cirúrgicos Dermatológicos , Endotélio Linfático/metabolismo , Endotélio Linfático/fisiopatologia , Feminino , Fibroblastos/metabolismo , Fibrose , Géis , Ligadura , Linfangiogênese/efeitos dos fármacos , Vasos Linfáticos/efeitos dos fármacos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Vasos Linfáticos/cirurgia , Linfedema/metabolismo , Linfedema/patologia , Linfedema/prevenção & controle , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/metabolismo , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Cauda , Fatores de Tempo , Cicatrização/efeitos dos fármacos
9.
Histochem Cell Biol ; 130(6): 1063-78, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18946678

RESUMO

The lymphatic vascular system, the body's second vascular system present in vertebrates, has emerged in recent years as a crucial player in normal and pathological processes. It participates in the maintenance of normal tissue fluid balance, the immune functions of cellular and antigen trafficking and absorption of fatty acids and lipid-soluble vitamins in the gut. Recent scientific discoveries have highlighted the role of lymphatic system in a number of pathologic conditions, including lymphedema, inflammatory diseases, and tumor metastasis. Development of genetically modified animal models, identification of lymphatic endothelial specific markers and regulators coupled with technological advances such as high-resolution imaging and genome-wide approaches have been instrumental in understanding the major steps controlling growth and remodeling of lymphatic vessels. This review highlights the recent insights and developments in the field of lymphatic vascular biology.


Assuntos
Inflamação/fisiopatologia , Linfangiogênese , Vasos Linfáticos/fisiopatologia , Linfedema/fisiopatologia , Neoplasias/fisiopatologia , Animais , Diferenciação Celular , Proliferação de Células , Modelos Animais de Doenças , Endotélio Linfático/fisiopatologia , Humanos , Vasos Linfáticos/embriologia , Metástase Neoplásica , Neoplasias/patologia , Transdução de Sinais
10.
Ann N Y Acad Sci ; 1131: 1-12, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18519955

RESUMO

Imaging of lymphangiogenesis and angiogenesis requires robust and unambiguous markers of lymphatic and blood vessels. Although much progress has been made in recent years in identifying molecules specifically expressed on lymphatic and blood vessels, no perfect marker has been found that works reliably in all species, tissues, vascular beds, and in all physiological and pathologic conditions. The heterogeneity of expression of markers in both blood and lymphatic vessels reflects underlying differences in the phenotype of endothelial cells. Use of only one marker can lead to misleading interpretations, but these pitfalls can usually be avoided by use of multiple markers and three-dimensional whole-mount preparations. LYVE-1, VEGFR-3, Prox1, and podoplanin are among the most useful markers for microscopic imaging of lymphatic vessels, but, depending on histologic location, each marker can be expressed by other cell types, including vascular endothelial cells. Other markers, including CD31, junctional proteins, and receptors, such as VEGF-2, are shared by lymphatic and blood vessels.


Assuntos
Biomarcadores/sangue , Imageamento Tridimensional , Linfangiogênese , Endotélio Linfático/metabolismo , Endotélio Linfático/fisiopatologia , Proteínas de Homeodomínio/fisiologia , Vasos Linfáticos/irrigação sanguínea , Vasos Linfáticos/fisiopatologia , Glicoproteínas de Membrana/fisiologia , Neovascularização Patológica , Proteínas Supressoras de Tumor/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Proteínas de Transporte Vesicular/fisiologia
11.
Virchows Arch ; 453(1): 1-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18500536

RESUMO

Based on various hypotheses concerning lymphangiogenesis published in the literature, different putative mechanisms of lymphangioma development are discussed including failure of the lymphatic system to connect with or separate from the venous system, abnormal budding of the lymphatic system from the cardinal vein, or acquired processes such as traumata, infections, chronic inflammations, and obstructions. Increasingly, the possible influence of lymphangiogenic growth factors on the development of lymphangiomas is discussed. The proved expression of different growth factors in the endothelium of lymphangiomas leads to new hypotheses regarding the pathogenesis of lymphangiomas. Thus, further studies on the lymphangiogenesis and the development of lymphangiomas will have to clarify as to whether lymphangiomas are true malformations or neoplastic in nature.


Assuntos
Linfangioma/etiologia , Linfoma/etiologia , Endotélio Linfático/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Linfangioma/patologia , Linfangioma/fisiopatologia , Sistema Linfático/embriologia , Sistema Linfático/fisiopatologia , Vasos Linfáticos/embriologia , Vasos Linfáticos/fisiopatologia , Linfoma/patologia , Linfoma/fisiopatologia
12.
J Gastroenterol Hepatol ; 23(7 Pt 2): e88-95, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18005011

RESUMO

BACKGROUND AND AIM: Vascular endothelial growth factor receptor 3 (VEGFR3) and LYVE-1 are specifically expressed in the endothelium of the lymphatic systems. VEGF-C, D, FOXC2, Prox 1, and SOX18 are known to play central roles in lymphatic development. We investigated the expression of regulatory molecules for lymphangiogenesis in the duodenal mucosa of idiopathic intestinal lymphangiectasia. METHODS: Biopsy samples were obtained from duodenal biopsies in patients with intestinal lymphangiectasia complicated with protein-losing from white spot lesions in which lymphangiectasia was histologically confirmed. Immunohistochemical analysis for VEGFR3 and LYVE-1 was performed. mRNA expression of VEGF-C, VEGF-D, VEGFR3, and transcription factors was determined by the quantitative reverse transcription-polymerase chain reaction method. RESULTS: In the control mucosa, VEGFR3 was weakly expressed on the central lymphatic vessels in the lamina propria and LYVE-1 was expressed mainly on the lymphatic vessels in the submucosa. In intestinal lymphangiectasia, VEGFR3 and LYVE-1 expression levels were increased on the mucosal surface corresponding to widely dilated lymphatic vessels, while they were decreased in the deeper mucosa. mRNA expression study showed a significant increase in the expression level of VEGFR3 in lymphangiectasia, but the expression of VEGF-C and -D mRNA was significantly suppressed compared with that in controls despite the presence of lymphangiectasia. The mRNA expression levels of FOXC2 and SOX18 were also decreased, whereas Prox 1 was not altered. CONCLUSIONS: There is an altered expression of regulatory molecules for lymphangiogenesis in the duodenal mucosa in these patients.


Assuntos
Duodeno/química , Endotélio Linfático/química , Mucosa Intestinal/química , Peptídeos e Proteínas de Sinalização Intracelular/análise , Linfangiectasia Intestinal/metabolismo , Linfangiogênese , Enteropatias Perdedoras de Proteínas/etiologia , Fatores de Transcrição/análise , Adulto , Idoso , Estudos de Casos e Controles , Duodenoscopia , Duodeno/patologia , Duodeno/fisiopatologia , Endotélio Linfático/patologia , Endotélio Linfático/fisiopatologia , Feminino , Fatores de Transcrição Forkhead/análise , Proteínas de Grupo de Alta Mobilidade/análise , Proteínas de Homeodomínio/análise , Humanos , Imuno-Histoquímica , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Linfangiectasia Intestinal/complicações , Linfangiectasia Intestinal/fisiopatologia , Masculino , Pessoa de Meia-Idade , Enteropatias Perdedoras de Proteínas/metabolismo , Enteropatias Perdedoras de Proteínas/fisiopatologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXF , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/análise , Fator C de Crescimento do Endotélio Vascular/análise , Fator D de Crescimento do Endotélio Vascular/análise , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/análise , Proteínas de Transporte Vesicular/análise
13.
Microsc Res Tech ; 60(2): 171-80, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12539171

RESUMO

Lymphangiogenesis, the growth of new lymphatic vessels, has long been regarded as a putative efficient pathway to neoplastic metastization. However, until recently consistent data regarding reliable lymphatic endothelial cell markers were lacking. Moreover, the presence of new formed lymphatic vessels was considered a largely disputable concept. Now, this scenario has changed significantly, owing to consistent reports describing novel lymphatic endothelial cell (LEC) markers, the demonstration of new formed lymphatic vessels within the bulk of the tumor in animal models and human neoplasms, and the characterization of the VEGF-C/VEGFR-3 pathway. We herein review the major breakthroughs in the field of lymphangiogenesis, with special emphasis on novel and reliable LEC markers, such as prox-1, LYVE-1, and podoplanin, as well as on the pathological assessment of lymphangiogenesis as a putative prognostic factor for human neoplasms.


Assuntos
Biomarcadores Tumorais/metabolismo , Endotélio Linfático/metabolismo , Sistema Linfático/fisiologia , Metástase Neoplásica/fisiopatologia , Animais , Endotélio Linfático/fisiopatologia , Glicoproteínas/fisiologia , Humanos , Glicoproteínas de Membrana/fisiologia , Neovascularização Patológica , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/fisiologia , Proteínas de Transporte Vesicular
14.
Microsc Res Tech ; 55(2): 108-21, 2001 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11596156

RESUMO

Three different growth factor systems have been described acting via endothelial cell-specific receptor tyrosine kinases (RTKs). These are vascular endothelial growth factors (VEGFs), angiopoietins, and ephrins. Recent studies on gene targeting suggest that they play critical roles in embryonic development and contribute to the integrity and responses to environmental factors in the adult vasculature. Coagulation, inflammation, immune response regulation, vascular tone, stromal component synthesis, and angiogenesis are all dependent on the physiological and pathological events that affect endothelial cells in the heart, arteries, veins, and lymphatic vessels. Angiogenesis, the formation of new blood vessels from preexisting ones, takes place in adults only during hormonal control of female reproduction. All other activation of angiogenesis in adulthood occurs in response to injury or pathological processes such as tumorigenesis, diabetes, or inflammatory conditions. Insufficient growth of collateral vessels is a major problem in atherosclerotic cardiovascular disease. Controlled stimulation of angiogenesis would be of therapeutic value. Lymphangiogenesis, the mechanisms involved in the development of lymphatic vessels, was studied intensively nearly a century ago, although since then it has been neglected, perhaps because, unlike the disorders of blood vessels, those of the lymphatic vessels are seldom life-threatening. Interrupting this one-way system can cause severe disorders, including liver dysfunction, genetic disease (e.g., Milroys disease), and degenerative disease (e.g., primary lymphangiosclerosis). Recently, novel growth factors, receptors, cell surface proteins, and transcription factors have been found which play a role in the lymphatic endothelium. These are VEGF-C, VEGF-D, VEGFR-3, LYVE-1, podoplanin, and Prox-1. Until recently lymphatic vessels have been difficult to study due to a lack of appropriate tools. Monoclonal antibodies raised against VEGFR-3 and against its ligands, VEGF-C and VEGF-D, have offered an insight into expression studies in tissues. In this review, we summarize the recent data on VEGFs in the human vasculature.


Assuntos
Vasos Sanguíneos/fisiopatologia , Fatores de Crescimento Endotelial/fisiologia , Sistema Linfático/fisiopatologia , Linfocinas/fisiologia , Receptores Proteína Tirosina Quinases/fisiologia , Receptores de Fatores de Crescimento/fisiologia , Receptores Mitogênicos/fisiologia , Biomarcadores/sangue , Fatores de Crescimento Endotelial/metabolismo , Endotélio Linfático/metabolismo , Endotélio Linfático/fisiopatologia , Humanos , Metástase Linfática , Sistema Linfático/irrigação sanguínea , Linfocinas/metabolismo , Neovascularização Patológica , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Receptores Mitogênicos/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular , Doenças Vasculares/sangue , Doenças Vasculares/fisiopatologia , Fator A de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
15.
Microsc Res Tech ; 55(2): 122-45, 2001 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-11596157

RESUMO

The lymph vascular system parallels the blood vasculature and as one of its key functions returns liquid and solutes to the bloodstream, including macromolecules that have escaped from blood capillaries and entered the interstitium. In conjunction with interspersed lymph nodes and lymphoid organs, the lymphatic vasculature also acts as a conduit for trafficking immune cell populations. Echoing the explosion of knowledge about blood vessel angiogenesis (properly termed "hemangiogenesis"), the past two decades have also witnessed a series of significant, yet less-noticed discoveries bearing on "lymphangiogenesis," along with delineation of the spectrum of lymphedema-angiodysplasia syndromes. Failure of lymph transport promotes a brawny proteinaceous edema of the affected limb, organ, or serous space that is disfiguring, disabling, and on occasion even life-threatening. Key members of the vascular endothelial growth factor (VEGF) and angiopoietin families of vascular growth factors (and their corresponding tyrosine kinase endothelial receptors) have been identified which preferentially influence lymphatic growth and, when manipulated in genetically engineered murine models, produce aberrant "lymphatic phenotypes." Moreover, mutations in VEGF receptor and forkhead family developmental genes have now been linked and implicated in the pathogenesis of two familial lymphedema-angiodysplasia syndromes. Thus, recent advances in "molecular lymphology" are elucidating the poorly understood development, physiology, and pathophysiology of the neglected lymphatic vasculature. In combination with fresh insights and refined tools in "clinical lymphology," these advances should lead not only to earlier detection and more rational classification of lymphatic disease but also to better therapeutic approaches, including designer drugs for lymphangiostimulation and lymphangioinhibition and gene therapy to modulate lymphatic growth.


Assuntos
Angiodisplasia/fisiopatologia , Doenças Linfáticas/fisiopatologia , Sistema Linfático/fisiologia , Neovascularização Patológica , Angiodisplasia/genética , Animais , Modelos Animais de Doenças , Endotélio Linfático/fisiopatologia , Humanos , Doenças Linfáticas/genética , Sistema Linfático/fisiopatologia , Linfedema/fisiopatologia , Neoplasias/irrigação sanguínea , Neoplasias/fisiopatologia , Neovascularização Fisiológica , Regeneração , Síndrome
16.
Cancer Res ; 60(16): 4324-7, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10969769

RESUMO

Despite a clinically recognized association between the lymphatics and metastasis, the biology of tumor-lymphatic interaction is not clearly understood. We report here that functional lymphatic capillaries are absent from the interior of a solid tumor, despite the presence within the tumor of the lymphangiogenic molecule vascular endothelial growth factor (VEGF)-C and endothelial cells bearing its receptor, VEGF receptor 3. Functional lymphatics, enlarged and VEGF receptor 3 positive, were detected in some tumors only at the tumor periphery (within 100 microm of the interface with normal tissue). We conclude that although lymphangiogenic factors are present, formation of functional lymphatic vessels is prevented, possibly due to collapse by the solid stress exerted by growing cancer cells.


Assuntos
Sistema Linfático/fisiopatologia , Sarcoma Experimental/fisiopatologia , Animais , Fatores de Crescimento Endotelial/metabolismo , Endotélio Linfático/metabolismo , Endotélio Linfático/patologia , Endotélio Linfático/fisiopatologia , Feminino , Fluorescência , Hibridização In Situ , Sistema Linfático/anatomia & histologia , Sistema Linfático/metabolismo , Linfografia/métodos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular , Sarcoma Experimental/patologia , Fator C de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular
17.
Curr Opin Cell Biol ; 10(2): 159-64, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9561839

RESUMO

Exciting progress has been made in elucidating the complex network of receptor-ligand interactions that regulate blood vessel growth. Understanding these control mechanisms is of interest not only because of their role in developmental biology, but because they provide potential therapeutic strategies for disease processes involving angiogenesis, such as tumor growth.


Assuntos
Endotélio Linfático/fisiologia , Neovascularização Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Animais , Endotélio Linfático/embriologia , Endotélio Linfático/fisiopatologia , Humanos , Modelos Biológicos
18.
Lymphology ; 20(4): 257-66, 1987 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-2451095

RESUMO

The past 15 years have witnessed an explosion of knowledge about blood vascular endothelium due in large part to in vitro growth of endothelial cells from both large blood vessels and capillaries. In contrast, little comparable information has accumulated on endothelium of lymphatics, which lie in intimate contact with parenchymal cells and drain excess fluid, macromolecules, particles, and immunocompetent cells in a continuous recirculation between tissues and bloodstream. While structural and functional differences between the two vascular systems have been described in vivo, in tissue sections, and in isolated preparations, similarities are notable in ultra-structure, biochemistry, physiology, and pharmacologic responsiveness, and these may predominate under pathologic conditions. In 1984, three separate groups described in vitro culture of lymphatic endothelial cells from collecting ducts and cavernous lymphangiomas. Lymphatic, like blood vascular, endothelium grows in confluent monolayers, "sprouts", synthesizes Factor VIII-associated antigen and fibronectin, and ultrastructurally shows Weibel-Palade bodies; overlapping intercellular junctions and anchoring filaments typical of lymphatic endothelium are also found. Genetic, congenital, and acquired disorders such as strangulating fetal nuchal cystic hygromas (Down and Turner syndromes), vascular tumors and dysmorphogenesis (Maffucci and Klippel-Trenaunay syndromes), Kaposi's sarcoma, lymphogenous and hematogenous spread of cancer, and parasitic infestations such as filariasis, share overlapping abnormalities in formation, growth, and/or neoplasia of lymphatics and blood vessels. In these and similar clinical disorders, confusion often exists as to the nature of the cell or tissue of origin, and insight into the role and control of hemangiogenesis and lymphangiogenesis is still in its infancy. Nonetheless, with the ever widening array of investigative techniques, it is not only timely but imperative to explore the endothelial biology underlying these inborn and acquired disorders.


Assuntos
Endotélio Linfático/fisiopatologia , Endotélio Vascular/fisiopatologia , Endotélio/fisiopatologia , Neovascularização Patológica/fisiopatologia , Animais , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA