Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Basic Res Cardiol ; 116(1): 38, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34089101

RESUMO

Previous studies have underlined the substantial role of nuclear factor of activated T cells (NFAT) in hypertension-induced myocardial hypertrophy ultimately leading to heart failure. Here, we aimed at neutralizing four members of the NFAT family of transcription factors as a therapeutic strategy for myocardial hypertrophy transiting to heart failure through AAV-mediated cardiac expression of a RNA-based decoy oligonucleotide (dON) targeting NFATc1-c4. AAV-mediated dON expression markedly decreased endothelin-1 induced cardiomyocyte hypertrophy in vitro and resulted in efficient expression of these dONs in the heart of adult mice as evidenced by fluorescent in situ hybridization. Cardiomyocyte-specific dON expression both before and after induction of transverse aortic constriction protected mice from development of cardiac hypertrophy, cardiac remodeling, and heart failure. Singular systemic administration of AAVs enabling a cell-specific expression of dONs for selective neutralization of a given transcription factor may thus represent a novel and powerful therapeutic approach.


Assuntos
Dependovirus/genética , Terapia Genética , Insuficiência Cardíaca/prevenção & controle , Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/metabolismo , Fatores de Transcrição NFATC/genética , Oligonucleotídeos/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Endotelina-1/toxicidade , Vetores Genéticos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/metabolismo , Oligonucleotídeos/metabolismo , Ratos Wistar , Função Ventricular Esquerda , Remodelação Ventricular
2.
Cephalalgia ; 40(14): 1585-1604, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32811179

RESUMO

BACKGROUND: Calcitonin gene-related peptide is recognized as a key player in migraine, yet the mechanisms and sites of calcitonin gene-related peptide action remain unknown. The efficacy of calcitonin gene-related peptide-blocking antibodies as preventative migraine drugs supports a peripheral site of action, such as the trigeminovasculature. Given the apparent disconnect between the importance of vasodilatory peptides in migraine and the prevailing opinion that vasodilation is an epiphenomenon, the goal of this study was to test whether vasodilation plays a role in calcitonin gene-related peptide-induced light aversive behavior in mice. METHODS: Systemic mean arterial pressure and light aversive behavior were measured after intraperitoneal administration of calcitonin gene-related peptide and vasoactive intestinal peptide in wild-type CD1 mice. The functional significance of vasodilation was tested by co-administration of a vasoconstrictor (phenylephrine, endothelin-1, or caffeine) with calcitonin gene-related peptide to normalize blood pressure during the light aversion assay. RESULTS: Both calcitonin gene-related peptide and vasoactive intestinal peptide induced light aversion that was associated with their effect on mean arterial pressure. Notably, vasoactive intestinal peptide caused relatively transient vasodilation and light aversion. Calcitonin gene-related peptide-induced light aversion was still observed even with normalized blood pressure. However, two of the agents, endothelin-1 and caffeine, did reduce the magnitude of light aversion. CONCLUSION: We propose that perivascular calcitonin gene-related peptide causes light-aversive behavior in mice by both vasomotor and non-vasomotor mechanisms.


Assuntos
Transtornos de Enxaqueca , Fotofobia , Animais , Cafeína , Peptídeo Relacionado com Gene de Calcitonina , Endotelina-1/toxicidade , Camundongos , Fotofobia/induzido quimicamente , Peptídeo Intestinal Vasoativo
3.
Brain Res Bull ; 161: 127-135, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32439337

RESUMO

BACKGROUND: Ischemic stroke is one of the leading causes of death and disability worldwide. Low-intensity transcranial ultrasound stimulation (LITUS) is a promising neuroprotective treatment for ischemic stroke. Diffusion-weighted imaging (DWI) can be highly sensitive in the detection of ischemic brain injury. Relative apparent diffusion coefficient (rADC) values can be used to evaluate the effect of LITUS on ischemic stroke. PURPOSE: The aim of this study was to determine the neuroprotective effect of LITUS at different time points using endothelin-1-induced middle cerebral artery occlusion in rats as a model of ischemic stroke. METHODS: Endothelin-1 (ET-1) was injected into the cerebral parenchyma near the middle cerebral artery, which induced focal, reversible, low-flow ischemia in rats. After occlusion of the middle cerebral artery for 30 min, 120 min, and 240 min, LITUS stimulation was used respectively. DWI was performed at 1, 3, 6, 12, 18, 24, 48, and 72 h after ischemia using a 3 T scanner. The rADC values were calculated, and functional outcomes assessed using neurobehavioral scores after ischemia. Nissl staining and estimation of Na+-K+-ATPase activity were used to assess the neuropathology after completing the last Magnetic Resonance Imaging (MRI) examination. RESULTS: Endothelin-1-induced occlusion of the middle cerebral artery resulted in significant dysfunction and neuronal damage in rats. Rats that received LITUS exhibited reduced damage of the affected brain tissue after cerebral ischemia. The greatest protective effect was found when LITUS stimulation occurred 30 min after cerebral ischemia. CONCLUSIONS: Imaging, behavioral, and histological results suggested that LITUS stimulation after an ischemic stroke produced significant neuroprotective effects.


Assuntos
Endotelina-1/toxicidade , Infarto da Artéria Cerebral Média/induzido quimicamente , Infarto da Artéria Cerebral Média/terapia , Neuroproteção/fisiologia , Terapia por Ultrassom/métodos , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Ondas Ultrassônicas
4.
Exp Eye Res ; 194: 107996, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32156652

RESUMO

Endothelin-1 (ET-1), a potent vasoconstrictor, plays a significant role in the pathophysiology of ocular conditions like glaucoma. Glaucoma is characterized by apoptotic loss of retinal ganglion cells (RGCs) and loss of visual fields and is a leading cause of irreversible blindness. In glaucomatous eyes, retinal ischemia causes release of pro-inflammatory mediators such as interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α and promotes activation of transcription factors such as nuclear factor kappa B (NFKB) and c-Jun. Magnesium acetyltaurate (MgAT) has previously been shown to protect against ET-1 induced retinal and optic nerve damage. Current study investigated the mechanisms underlying these effects of MgAT, which so far remain unknown. Sprague dawley rats were intravitreally injected with ET-1 with or without pretreatment with MgAT. Seven days post-injection, retinal expression of IL-1ß, IL-6, TNF-α, NFKB and c-Jun protein and genes was determined using multiplex assay, Western blot and PCR. Animals were subjected to retrograde labeling of RGCs to determine the extent of RGC survival. RGC survival was also examined using Brn3A staining. Furthermore, visual functions of rats were determined using Morris water maze. It was observed that pre-treatment with MgAT protects against ET-1 induced increase in the retinal expression of IL-1ß, IL-6 and TNF-α proteins and genes. It also protected against ET-1 induced activation of NFKB and c-Jun. These effects of MgAT were associated with greater RGC survival and preservation of visual functions in rats. In conclusion, MgAT prevents ET-1 induced RGC loss and loss of visual functions by suppressing neuroinflammatory reaction in rat retinas.


Assuntos
Glaucoma/patologia , Doenças Retinianas/prevenção & controle , Células Ganglionares da Retina/efeitos dos fármacos , Taurina/análogos & derivados , Acuidade Visual , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Modelos Animais de Doenças , Endotelina-1/toxicidade , Feminino , Glaucoma/complicações , Injeções Intravítreas , Masculino , Prognóstico , Ratos , Ratos Sprague-Dawley , Doenças Retinianas/etiologia , Doenças Retinianas/patologia , Células Ganglionares da Retina/patologia , Taurina/administração & dosagem
5.
Am J Physiol Cell Physiol ; 318(1): C94-C102, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31618079

RESUMO

Matrix metalloproteinases (MMP) are important for cardiac remodeling. Recently, microRNA (miR)-451a has been found to inhibit the expression of both MMP-2 and MMP-9 in human malignancies, but its role in cardiomyocytes has not been explored. We hypothesized that miR-451a modulates MMP-2 and MMP-9 levels in human cardiomyocytes. The role of miR-451a on regulation of MMP-2 and MMP-9 was evaluated in two separate pathological models using Cor.4U human inducible pluripotent stem cell-derived cardiomyocytes (hiPS-CMs): 1) endothelin-1 (ET-1), and 2) 48-h hypoxia (1% O2). Both models were transfected with synthetic miR-451a mimics or scramble control. Expression of both mRNA and miR was determined by quantitative real-time polymerase chain reaction and protein activity by (MMP-2/9) activity assay. Bioinformatic analyses were performed using Targetscan 7.1 and STRING 10.5. hiPS-CMs stimulated by hypoxia increased both MMP-2 and MMP-9 expression levels compared with normoxia (P < 0.05), whereas ET-1 stimulation only increased the MMP-9 level compared with vehicle controls (P < 0.05). miR-451a mimics prevented the increase of MMP-2 and MMP-9 expression in both models. Protein activity of MMP-2 and MMP-9 was confirmed to be lower following treatment with miR-451a mimic compared with scramble-controls. Six of 28 predicted gene transcripts of miR-451a were linked to MMP-2 and MMP-9; Macrophage migration inhibitory factor (MIF) was the only predicted target of miR-451a that was increased by ET-1 and hypoxia and reduced following miR-451a mimic transfection. miR-451a prevent the increase of MMP-2 and MMP-9 in human cardiomyocytes during pathological stress. The modulation by miR-451a on MMP-2 and MMP-9 is caused by MIF.


Assuntos
Cardiomegalia/enzimologia , Células-Tronco Pluripotentes Induzidas/enzimologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/enzimologia , Cardiomegalia/genética , Cardiomegalia/patologia , Diferenciação Celular , Hipóxia Celular , Linhagem Celular , Endotelina-1/toxicidade , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/patologia , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , MicroRNAs/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Transdução de Sinais
6.
Clin Exp Pharmacol Physiol ; 47(3): 383-392, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31732975

RESUMO

Pharmacological therapies for interrupting biochemical events of the ischaemic cascade and protecting against stroke in humans are as yet unavailable. Up to now, the neuroprotective activity in cerebral ischaemia of phycocyanobilin (PCB), a tetrapyrrolic natural antioxidant, has not been fully examined. Here, we evaluated if PCB protects PC12 neuronal cells against oxygen and glucose deprivation plus reperfusion, and its protective effects in a rat model of endothelin-1-induced focal brain ischaemia. PCB was purified from the cyanobacteria Spirulina platensis and characterized by spectrophotometric, liquid and gas chromatography and mass spectrometry techniques. In Wistar rats, PCB at 50, 100 and 200 µg/kg or phosphate-buffered saline (vehicle) was administered intraperitoneally at equal subdoses in a therapeutic schedule (30 minutes, 1, 3 and 6 hours after the surgery). Brain expression of myelin basic protein (MBP) and the enzyme CNPase was determined by immunoelectron microscopy. PCB was obtained with high purity (>95%) and the absence of solvent contaminants and was able to ameliorate PC12 cell ischaemic injury. PCB treatment significantly decreased brain infarct volume, limited the exploratory behaviour impairment and preserved viable cortical neurons in ischaemic rats in a dose-dependent manner, compared to the vehicle group. Furthermore, PCB at high doses restored the MBP and CNPase expression levels in ischaemic rats. An improved PCB purification method from its natural source is reported, obtaining PCB that is suitable for pharmacological trials showing neuroprotective effects against experimental ischaemic stroke. Therefore, PCB could be a therapeutic pharmacological alternative for ischaemic stroke patients.


Assuntos
Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/induzido quimicamente , Isquemia Encefálica/tratamento farmacológico , Endotelina-1/toxicidade , Ficobilinas/uso terapêutico , Ficocianina/uso terapêutico , Animais , Lesões Encefálicas/patologia , Isquemia Encefálica/patologia , Masculino , Células PC12 , Ratos , Ratos Wistar
7.
J Neuropathol Exp Neurol ; 78(5): 426-435, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30888409

RESUMO

We have previously demonstrated that R18 and its d-enantiomer, R18D, are neuroprotective at 24 hours following intraluminal filament occlusion of the middle cerebral artery (MCAO) in the rat. This study examined R18 and R18D effectiveness in improving functional outcomes at up to 56 days poststroke following endothelin-1-induced MCAO. Peptides were administered intravenously at doses of 100, 300, or 1000 nmol/kg, 60 minutes after MCAO. Functional recovery poststroke was assessed using multiple forelimb placing tests and horizontal ladder test, and NA-1 (TAT-NR2B9c), a neuroprotective currently in phase 3 clinical stroke trials, was used as a benchmark. The study demonstrated that R18 (300 and 1000 nmol/kg) was the most effective peptide in improving functional outcomes, followed by R18D (300 and 1000 nmol/kg), and NA-1 (300 and 100 nmol/kg). Furthermore, R18 at doses of 300 and 1000 nmol/kg was the most effective agent in restoring pre-stroke body weight, while R18 and R18D at doses of 300 and 1000 nmol/kg, but not NA-1 also significantly reduced the number of animals requiring hand feeding 48 hours after stroke. This study confirms that R18 and R18D are effective in improving long-term functional outcomes after stroke, and suggests that R18 may be more effective than NA-1.


Assuntos
Endotelina-1/toxicidade , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Peptídeos/administração & dosagem , Recuperação de Função Fisiológica/fisiologia , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Infusões Intravenosas , Masculino , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/fisiopatologia , Resultado do Tratamento
8.
Physiol Res ; 67(Suppl 1): S215-S225, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29947541

RESUMO

Endothelin-1 (ET-1) and Nerve Growth Factor (NGF) are proteins, released from cancer-ridden tissues, which cause spontaneous pain and hypersensitivity to noxious stimuli. Here we examined the electrophysiological and behavioral effects of these two agents for evidence of their interactions. Individual small-medium cultured DRG sensory neurons responded to both ET-1 (50 nM, n=6) and NGF (100 ng/ml, n=4), with increased numbers of action potentials and decreased slow K(+) currents; pre-exposure to ET-1 potentiated NGF´s actions, but not vice versa. Behaviorally, single intraplantar (i.pl.) injection of low doses of ET-1 (20 pmol) or NGF (100 ng), did not increase hindpaw tactile or thermal sensitivity, but their simultaneous injections sensitized the paw to both modalities. Daily i.pl. injections of low ET-1 doses in male rats caused tactile sensitization after 21 days, and enabled further tactile and thermal sensitization from low dose NGF, in ipsilateral and contralateral hindpaws. Single injections of 100 ng NGF, without changing the paw's tactile sensitivity by itself, acutely sensitized the ipsilateral paw to subsequent injections of low ET-1. The sensitization from repeated low ET-1 dosing and the cross-sensitization between NGF and ET-1 were both significantly greater in female than in male rats. These findings reveal a synergistic interaction between cutaneously administered low doses of NGF and ET-1, which could contribute to cancer-related pain.


Assuntos
Endotelina-1/metabolismo , Fator de Crescimento Neural/metabolismo , Dor/induzido quimicamente , Dor/metabolismo , Tato/fisiologia , Animais , Endotelina-1/administração & dosagem , Endotelina-1/toxicidade , Feminino , Injeções Subcutâneas , Masculino , Fator de Crescimento Neural/administração & dosagem , Fator de Crescimento Neural/toxicidade , Medição da Dor/métodos , Estimulação Física/efeitos adversos , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Tato/efeitos dos fármacos
9.
Methods Mol Biol ; 1717: 115-133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29468588

RESUMO

Multiple methods exist to model permanent and transient ischemia under anesthesia in animals, however most human strokes occur while conscious. The use of endothelin-1 as a vasoconstrictor applied to the perivascular surface of the middle cerebral artery is one of the only methods for inducing stroke in conscious animals. Here, we describe standard operating procedures for stereotaxic placement of an ET-1 guide probe above the middle cerebral artery, induction of stroke in conscious rats, predictive outcome scoring during stroke, and neurological behavioral tests that we use to monitor transient and continuing deficits. The inclusion of long term neurological assessment is of particular importance when taking into consideration the effects of stroke on brain remodeling.


Assuntos
Encéfalo , Estado de Consciência , Endotelina-1/toxicidade , Acidente Vascular Cerebral , Doença Aguda , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Humanos , Ratos , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
10.
Am J Physiol Heart Circ Physiol ; 314(1): H52-H64, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971844

RESUMO

Hyperglycemia-induced production of endothelin (ET)-1 is a hallmark of endothelial dysfunction in diabetes. Although the detrimental vascular effects of increased ET-1 are well known, the molecular mechanisms regulating endothelial synthesis of ET-1 in the setting of diabetes remain largely unidentified. Here, we show that adapter molecule TRAF3 interacting protein 2 (TRAF3IP2) mediates high glucose-induced ET-1 production in endothelial cells and ET-1-mediated endothelial cell inflammation. Specifically, we found that high glucose upregulated TRAF3IP2 in human aortic endothelial cells, which subsequently led to activation of JNK and IKKß. shRNA-mediated silencing of TRAF3IP2, JNK1, or IKKß abrogated high-glucose-induced ET-converting enzyme 1 expression and ET-1 production. Likewise, overexpression of TRAF3IP2, in the absence of high glucose, led to activation of JNK and IKKß as well as increased ET-1 production. Furthermore, ET-1 transcriptionally upregulated TRAF3IP2, and this upregulation was prevented by pharmacological inhibition of ET-1 receptor B using BQ-788, or inhibition of NADPH oxidase-derived reactive oxygen species using gp91ds-tat and GKT137831. Notably, we found that knockdown of TRAF3IP2 abolished ET-1-induced proinflammatory and adhesion molecule (IL-1ß, TNF-α, monocyte chemoattractant protein 1, ICAM-1, VCAM-1, and E-selectin) expression and monocyte adhesion to endothelial cells. Finally, we report that TRAF3IP2 is upregulated and colocalized with CD31, an endothelial marker, in the aorta of diabetic mice. Collectively, findings from the present study identify endothelial TRAF3IP2 as a potential new therapeutic target to suppress ET-1 production and associated vascular complications in diabetes. NEW & NOTEWORTHY This study provides the first evidence that the adapter molecule TRAF3 interacting protein 2 mediates high glucose-induced production of endothelin-1 by endothelial cells as well as endothelin-1-mediated endothelial cell inflammation. The findings presented herein suggest that TRAF3 interacting protein 2 may be an important therapeutic target in diabetic vasculopathy characterized by excess endothelin-1 production.


Assuntos
Angiopatias Diabéticas/induzido quimicamente , Células Endoteliais/efeitos dos fármacos , Endotelina-1/toxicidade , Glucose/toxicidade , Inflamação/induzido quimicamente , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/metabolismo , Células Endoteliais/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Feminino , Humanos , Quinase I-kappa B/metabolismo , Inflamação/genética , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Masculino , Camundongos Endogâmicos NOD , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Monócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética
11.
Am J Physiol Cell Physiol ; 314(3): C310-C322, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167148

RESUMO

Estradiol (E2) prevents cardiac hypertrophy, and these protective actions are mediated by estrogen receptor (ER)α and ERß. The G protein-coupled estrogen receptor (GPER) mediates many estrogenic effects, and its activation in the heart has been observed in ischemia and reperfusion injury or hypertension models; however, the underlying mechanisms need to be fully elucidated. Herein, we investigated whether the protective effect of E2 against cardiomyocyte hypertrophy induced by endothelin-1 (ET-1) is mediated by GPER and the signaling pathways involved. Isolated neonatal female rat cardiomyocytes were treated with ET-1 (100 nmol/l) for 48 h in the presence or absence of E2 (10 nmol/l) or GPER agonist G-1 (10 nmol/l) and GPER antagonist G-15 (10 nmol/l). ET-1 increased the surface area of cardiomyocytes, and this was associated with increased expression of atrial and brain natriuretic peptides. Additionally, ET-1 increased the phosphorylation of extracellular signal-related protein kinases-1/2 (ERK1/2). Notably, E2 or G-1 abolished the hypertrophic actions of ET-1, and that was reversed by G-15. Likewise, E2 reversed the ET-1-mediated increase of ERK1/2 phosphorylation as well as the decrease of phosphorylated Akt and its upstream activator 3-phosphoinositide-dependent protein kinase-1 (PDK1). These effects were inhibited by G-15, indicating that they are GPER dependent. Confirming the participation of GPER, siRNA silencing of GPER inhibited the antihypertrophic effect of E2. In conclusion, E2 plays a key role in antagonizing ET-1-induced hypertrophy in cultured neonatal cardiomyocytes through GPER signaling by a mechanism involving activation of the PDK1 pathway, which would prevent the increase of ERK1/2 activity and consequently the development of hypertrophy.


Assuntos
Cardiomegalia/prevenção & controle , Endotelina-1/toxicidade , Estradiol/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Animais Recém-Nascidos , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Cardiotoxicidade , Células Cultivadas , Citoproteção , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Neurotox Res ; 32(1): 58-70, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28285347

RESUMO

Endothelin-1 (ET-1) is a vasoactive peptide produced by activated astrocytes and microglia and is implicated in initiating and sustaining reactive gliosis in neurodegenerative diseases. We have previously suggested that ET-1 can play a role in the pathophysiology of amyotrophic lateral sclerosis (ALS). Indeed, we reported that this peptide is abundantly expressed in reactive astrocytes in the spinal cord of SOD1-G93A mice and ALS patients and exerts a toxic effect on motor neurons (MNs) in an in vitro model of mixed spinal cord cultures enriched with reactive astrocytes. Here, we explored the possible mechanisms underlying the toxic effect of ET-1 on cultured MNs. We show that ET-1 toxicity is not directly caused by oxidative stress or activation of cyclooxygenase-2 but requires the synthesis of nitric oxide and is mediated by a reduced activation of the phosphoinositide 3-kinase pathway. Furthermore, we observed that ET-1 is also toxic for microglia, although its effect on MNs is independent of the presence of this type of glial cells. Our study confirms that ET-1 may contribute to MN death and corroborates the view that the modulation of ET-1 signaling might be a therapeutic strategy to slow down MN degeneration in ALS.


Assuntos
Endotelina-1/toxicidade , Neurônios Motores/efeitos dos fármacos , Degeneração Neural/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/uso terapêutico , Proteínas de Arabidopsis , Ácido Ascórbico/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Embrião de Mamíferos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imunoprecipitação , Degeneração Neural/tratamento farmacológico , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Fosfatidilinositol 3-Quinases/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Medula Espinal/citologia
13.
Acta Neurobiol Exp (Wars) ; 76(3): 212-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27685774

RESUMO

White matter injury is an important cause of functional disability of the brain. We comprehensively analyzed a modified endothelin-1 (ET­1) injection-induced white matter injury model in the rat which is very valuable for investigating the underlying mechanisms of subcortical ischemic stroke. ET-1 was stereotactically injected into the internal capsule of the rat. To avoid complications with leakage of ET-1 into the lateral ventricle, the safest trajectory angle to the target was established. Rats with white matter injury were extensively evaluated for structural changes and functional sequelae, using motor function tests, magnetic resonance (MR) imaging, histopathology evolution, volume estimation of the lesion, and neuroanatomical identification of affected neurons using the retrograde tracer hydroxystilbamidine. Optimization of the trajectory of the ET-1 injection needle provided excellent survival rate. MR imaging visualized the white matter injury 2 days after surgery. Motor function deficit appeared temporarily after the operation. Histological studies confirmed damage of axons and myelin sheaths followed by inflammatory reaction and gliosis similar to lacunar infarction, with lesion volume of less than 1% of the whole brain. Hydroxystilbamidine injected into the lesion revealed wide spatial distribution of the affected neuronal population. Compared with prior ET-1 injection models, this method induced standardized amount of white matter damage and temporary motor function deficit in a reproducible and safe manner. The present model is valuable for studying the pathophysiology of not only ischemia, but a broader set of white matter damage conditions in the lissencephalic brain.


Assuntos
Modelos Animais de Doenças , Endotelina-1/toxicidade , Leucoencefalopatias/induzido quimicamente , Leucoencefalopatias/patologia , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ectodisplasinas/metabolismo , Lateralidade Funcional/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Cápsula Interna/efeitos dos fármacos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/fisiopatologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Imageamento por Ressonância Magnética , Exame Neurológico , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Ratos , Ratos Sprague-Dawley , Estilbamidinas/farmacocinética , Natação/psicologia , Fatores de Tempo
14.
Mol Neurobiol ; 53(3): 1533-1539, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25652270

RESUMO

Hypertension is one of the co-morbid conditions for stroke and profoundly increases its incidence. Angiotensin II (AngII) is shown to be at the center stage in driving the renin angiotensin system via activation of angiotensin 1 receptor (AT1R). This makes the AT1R gene one of the candidates whose differential regulation leads to the predisposition to disorders associated with hypertension. A haplotype block of four SNPs is represented primarily by haplotype-I, or Hap-I (TTAA), and haplotype-II, or Hap-II (AGCG), in the promoter of human AT1R (hAT1R) gene. To better understand the physiological role of these haplotypes, transgenic (TG) mice containing Hap-I and Hap-II of the hAT1R gene in a 166-kb bacterial artificial chromosome (BAC) were generated. Mice received injection of endothelin-1 (1 mg/ml) directly in to the striatum and were evaluated for neurologic deficit scores and sacrificed for analysis of infarct volume and mRNA levels of various proteins. Mice containing Hap-I suffered from significantly higher neurological deficits and larger brain infarcts than Hap II. Similarly, the molecular analysis of oxidant and inflammatory markers in brains of mice showed a significant increase (p < 0.05) in NOX-1 (2.3-fold), CRP (4.3-fold), and IL6 (1.9-fold) and a corresponding reduced expression of antioxidants SOD (60%) and HO1 (55%) in Hap-I mice as compared to Hap-II mice. These results suggest that increased expression of hAT1R rendered Hap-I TG mice susceptible to stroke-related pathology, possibly due to increased level of brain inflammatory and oxidative stress markers and a suppressed antioxidant defense system.


Assuntos
Receptor Tipo 1 de Angiotensina/fisiologia , Acidente Vascular Cerebral/genética , Animais , Corpo Estriado/efeitos dos fármacos , Endotelina-1/toxicidade , Haplótipos , Humanos , Interleucina-6/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NADH NADPH Oxirredutases/análise , NADPH Oxidase 1 , Proteínas do Tecido Nervoso/análise , Estresse Oxidativo , Receptor Tipo 1 de Angiotensina/genética , Proteínas Recombinantes de Fusão/metabolismo , Superóxido Dismutase-1/análise
15.
Anesth Analg ; 121(4): 1065-1077, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26218866

RESUMO

BACKGROUND: Contralateral hyperalgesia, occurring after unilateral injury, is usually explained by central sensitization in spinal cord and brain. We previously reported that injection of endothelin-1 (ET-1) into one rat hindpaw induces prolonged mechanical and chemical sensitization of the contralateral hindpaw. Here, we examined the role of contralateral efferent activity in this process. METHODS: ET-1 (2 nmol, 10 µL) was injected subcutaneously into the plantar surface of right (ipsilateral) hindpaw (ILP), and the thermal response latency and mechanical threshold for nocifensive withdrawal were determined by the use of, respectively, plantar radiant heating and von Frey filaments, for both ILP and contralateral hindpaws (CLP). Either paw was anesthetized for 60 minutes by direct injection of bupivacaine (0.25%, 40 µL), 30 minutes before ET-1. Alternatively, the contralateral sciatic nerve was blocked for 6 to 12 hours by percutaneous injection of bupivacaine-releasing microspheres 30 minutes before injection of ET-1. Systemic actions of these bupivacaine formulations were simulated by subcutaneous injection at the nuchal midline. RESULTS: After the injection of ET-1, the mechanical threshold of both ILP and CLP decreased by 2 hours, appeared to be lowest around 24 hours, and recovered through 48 hours to preinjection baseline at 72 hours. These hypersensitive responses were suppressed by bupivacaine injected into the ipsilateral paw before ET-1. Injection of the CLP by bupivacaine also suppressed the hypersensitivity of the CLP at all test times, and that of the ILP, except at 2 hours when it increased the sensitivity. This same pattern of change occurred when the contralateral sciatic nerve was blocked by bupivacaine-releasing microspheres. The systemic actions of these bupivacaine formulations were much smaller and only reached significance at 24 hours post-ET-1. Thermal hypersensitivity after ET-1 injection also occurred in both ILP and CLP and showed the same pattern in response to the 2 contralateral anesthetic procedures. CONCLUSIONS: These results show that efferent transmission through the contralateral innervation into the paw is necessary for contralateral sensitization by ET-1, suggesting that the release of substances by distal nerve endings is involved. The release of substances in the periphery is essential for contralateral sensitization by ET-1 and may also contribute to secondary hyperalgesia, occurring at loci distant from the primary injury, that occurs after surgery or nerve damage.


Assuntos
Endotelina-1/toxicidade , Membro Posterior/efeitos dos fármacos , Temperatura Alta , Hiperalgesia/induzido quimicamente , Neurônios Eferentes/efeitos dos fármacos , Tato , Animais , Endotelina-1/administração & dosagem , Membro Posterior/inervação , Membro Posterior/fisiopatologia , Temperatura Alta/efeitos adversos , Hiperalgesia/fisiopatologia , Injeções Subcutâneas , Masculino , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
16.
Stem Cell Res Ther ; 6: 121, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26088123

RESUMO

INTRODUCTION: Despite its high incidence, nerve fiber (axon and myelin) damage after cerebral infarct has not yet been extensively investigated. The aim of this study was to investigate white matter repair after adipose-derived mesenchymal stem cell (ADMSC) administration in an experimental model of subcortical stroke. Furthermore, we aimed to analyze the ADMSC secretome and whether this could be implicated in this repair function. METHODS: An animal model of subcortical ischemic stroke with white matter affectation was induced in rats by injection of endothelin-1. At 24 hours, 2 × 10(6) ADMSC were administered intravenously to the treatment group. Functional evaluation, lesion size, fiber tract integrity, cell death, proliferation, white matter repair markers (Olig-2, NF, and MBP) and NogoA were all studied after sacrifice (7 days and 28 days). ADMSC migration and implantation in the brain as well as proteomics analysis and functions of the secretome were also analyzed. RESULTS: Neither ADMSC migration nor implantation to the brain was observed after ADMSC administration. In contrast, ADMSC implantation was detected in peripheral organs. The treatment group showed a smaller functional deficit, smaller lesion area, less cell death, more oligodendrocyte proliferation, more white matter connectivity and higher amounts of myelin formation. The treated animals also showed higher levels of white matter-associated markers in the injured area than the control group. Proteomics analysis of the ADMSC secretome identified 2,416 proteins, not all of them previously described to be involved in brain plasticity. CONCLUSIONS: White matter integrity in subcortical stroke is in part restored by ADMSC treatment; this is mediated by repair molecular factors implicated in axonal sprouting, remyelination and oligodendrogenesis. These findings are associated with improved functional recovery after stroke.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Acidente Vascular Cerebral/terapia , Substância Branca/fisiopatologia , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Endotelina-1/toxicidade , Imageamento por Ressonância Magnética , Masculino , Proteína Básica da Mielina/metabolismo , Proteínas da Mielina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nogo , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Proteoma/análise , Proteômica , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/etiologia
17.
Neurobiol Learn Mem ; 119: 42-51, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576791

RESUMO

Sporadic Alzheimer's disease (AD) accounts for a high proportion of AD cases. Therefore, it is of importance to investigate other factors that contribute to the etiology and progression of AD. AD is characterized by decreased cholinergic tone, tau hyperphosphorylation and beta-amyloid (Aß) accumulation. In addition to the hallmark pathology, other factors have been identified that increase the risk of AD, including stroke. This study examined the combined effects of beta-amyloid administration and unilateral stroke in an animal model of AD. Adult rats were given a sham surgery, bilateral intraventricular infusion of 10 µL of 50n mol Aß(25-35), a unilateral injection of endothelin-1 into the right striatum, or Aß and endothelin-1 administration in combination. Following a recovery period, rats were tested in the 1-trial place learning variant of the Morris water task followed by an ambiguous discriminative fear-conditioning to context task. After behavioural assessment, rats were euthanized, and representative sections of the medial septum were analyzed for differences in choline-acetyltransferase (ChAT) immunohistochemistry. No differences were observed in spatial working memory, but the combined effect of Aß and stroke resulted in deficits in the discriminative fear-conditioning to context task. A trend towards decreased ChAT-positive staining in the medial septum was observed. This study indicates that Aß and stroke in combination produce worse functional consequences than when experienced alone, furthering the concept of AD as a disease with multiple and complex etiologies.


Assuntos
Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/toxicidade , Aprendizagem/fisiologia , Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Colina O-Acetiltransferase/metabolismo , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Endotelina-1/toxicidade , Medo/efeitos dos fármacos , Medo/fisiologia , Infusões Intraventriculares , Aprendizagem/efeitos dos fármacos , Masculino , Memória de Curto Prazo/efeitos dos fármacos , Ratos , Ratos Wistar , Núcleos Septais/efeitos dos fármacos , Núcleos Septais/metabolismo , Memória Espacial/efeitos dos fármacos , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/complicações
18.
Behav Brain Res ; 261: 210-9, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24388978

RESUMO

Constraint induced movement therapy (CIMT), which forces use of the impaired arm following stroke, improves functional recovery. The mechanisms underlying recovery are not well understood, necessitating further investigation into how rehabilitation may affect neuroplasticity using animal models. Animal motivation and stress make modelling CIMT in animals challenging. We have shown that following focal ischemia, voluntary forced use therapy using pet activity balls could engage the impaired forelimb and result in a modest acceleration in recovery. In this study, we investigated the effects of a more intensive appetitively motivated regimen that included task specific reaching exercises. Adult male Sprague Dawley rats were subjected to focal unilateral stroke using intracerebral injections of endothelin-1 or sham surgery. Three days later, stroke animals were assigned to daily rehabilitation or control therapy. Rehabilitation consisted of 30 min of generalized movement sessions in activity balls, followed by 30 min of voluntary task-specific movement using reaching boxes. Rats were tested weekly to measure forelimb deficit and recovery. After 30 days, animals were euthanized and tissue was examined for infarct volume, brain derived neurotrophic factor expression, and the presence of new neurons using doublecortin immunohistochemistry. Rehabilitation resulted in a significant acceleration of forelimb recovery in several tests, and a significant increase in the number of doublecortin-expressing cells. Furthermore, while the proportion of cells expressing BDNF in the peri-infarct region did not change, there was a shift in the cellular origin of expressed BDNF, resulting in significantly more non-neuronal, non-astrocytic BDNF, presumed to be of microglial origin.


Assuntos
Terapia por Exercício , Membro Anterior/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral/complicações , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Proteína Duplacortina , Endotelina-1/toxicidade , Comportamento Alimentar , Lateralidade Funcional , Proteína Glial Fibrilar Ácida/metabolismo , Locomoção , Masculino , Fosfopiruvato Hidratase/metabolismo , Desempenho Psicomotor , Ratos , Ratos Sprague-Dawley , Restrição Física , Acidente Vascular Cerebral/induzido quimicamente , Fatores de Tempo
19.
Pharmacol Rep ; 65(4): 898-905, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24145084

RESUMO

BACKGROUND: The aim of this study was to assess whether apocynin, an nicotinamide adenine dinucleotide phosphate (NADPH) oxidase blocker, influences lipid peroxidation TBARS, hydrogen peroxide (H2O2) content, protein level, heart edema, tumor necrosis factor α (TNF-α) concentration or the glutathione redox system in heart homogenates obtained from endothelin 1 (ET-1)-induced oxidative stress rats. METHODS: Experiments were carried out on adult male Wistar-Kyoto rats. The animals were divided into 4 groups: Group I: saline-treated control; Group II: saline followed by ET-1 (3 µg/kg b.w., iv); Group III: apocynin (5 mg/kg b.w., iv) administered half an hour before saline; Group IV: apocynin (5 mg/kg b.w., iv) administered half an hour before ET-1 (3 µg/kg b.w., iv). RESULTS: Injection of ET-1 alone showed a significant (p < 0.001) increase in thiobarbituric acid reactive substances (TBARS) and the hydrogen peroxide level (p < 0.01) vs. control, as well as a decrease (p < 0.001) in the GSH level. Apocynin significantly decreased TBARS (p < 0.001) and H2O2 (p < 0.05) level (vs. control) as well as improved protein level (p < 0.001) in the heart. Apocynin also prevented ET-1-induced heart edema (p < 0.05). The presence of ET-1 increased the concentration of TNF-α (p < 0.05) while apocynin decreased it (p < 0.05). Our results indicate that ET-1 may induce oxidative stress in heart tissue by reducing the GSH/GSSG ratio, stimulating lipid peroxidation and increasing TNF-α concentration. Apocynin diminished these measures of oxidative stress and TNF-α. CONCLUSION: ET-1-induced formation of ROS in the heart is at least partially regulated via NADPH oxidase.


Assuntos
Acetofenonas/farmacologia , NADPH Oxidases/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Acetofenonas/uso terapêutico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Endotelina-1/toxicidade , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Fator de Necrose Tumoral alfa/metabolismo
20.
Clin Lab ; 59(5-6): 589-96, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23865358

RESUMO

BACKGROUND: Intermedin (IMD), a novel peptide related to calcitonin gene-related peptide (CGRP) and adrenomedullin (ADM), may have localized actions as a modulator of cardiac function. The aim of the study is to explore the effect of IMD on angiotensin II (Ang II) and endothelin-1 (ET-1) induced hypertrophy in ventricular myocytes of neonatal rat and to try to elucidate the possible mechanism. METHODS: Neonatal rat cardiomyocytes were cultured in serum-free medium with and without AngII (1 micromol/L) or ET-1 (60 micromol/L) in the presence and absence of IMD (1 micromol/L). Hypertrophic responses (including cell surface area, alpha-actin, and beta-myosin heavy chain mRNA expression) and cardiomyocyte expression of NADPH oxidase gp91phox were determined. RESULTS: Ang II induced increases in cardiomyocyte size to 305 +/- 32 microm2 (n = 198, p < 0.05, at 48 hours), alpha-actin expression to 4 +/- 2.8-fold (n = 6, p < 0.05, at 48 hours) and beta-myosin heavy chain expression to 11 +/- 4.8-fold (n = 6, p < 0.05, at 48 hours), and expression of the gp91phox subunit of NADPH oxidase to 29.4 +/- 12.7-fold (n = 6, p < 0.05, at 48 hours). These effects were all significantly inhibited by IMD; cardiomyocyte size, alpha-actin expression, beta-myosin heavy chain expression, and gp91phox expression were reduced to 265 +/- 32 microm2 (n = 374, p < 0.05), 3.0 +/- 1.7-fold (n = 6, p < 0.05), 8.7 +/- 4.9-fold (n = 6, p < 0.05), 3.9 +/- 3-fold (n = 6, p < 0.05), respectively. IMD also significantly inhibited ET1-induced increases in cardiomyocyte size and superoxide generation. CONCLUSIONS: IMD exerts an antihypertrophic effect on neonatal cardiomyocytes by reduced levels of superoxide, suggesting that an antioxidant action contributes to the antihypertrophic actions of IMD.


Assuntos
Adrenomedulina/farmacologia , Angiotensina II/toxicidade , Cardiomegalia/induzido quimicamente , Cardiomegalia/prevenção & controle , Endotelina-1/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Neuropeptídeos/farmacologia , Actinas/biossíntese , Actinas/genética , Actinas/metabolismo , Análise de Variância , Animais , Animais Recém-Nascidos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Interações Medicamentosas , Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/biossíntese , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , NADPH Oxidase 2 , NADPH Oxidases/biossíntese , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Substâncias Protetoras/farmacologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA