Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 899: 173993, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33675782

RESUMO

Resveratrol has been reported to have beneficial effects on sepsis by regulating the inflammatory response. However, it remains unclear if resveratrol plays a role in the development of endotoxin tolerance. Treatment with resveratrol in macrophages stimulated with primary lipopolysaccharide (LPS) resulted in the increased production of TNF-α and IL-6 induced by a 2nd dose of LPS (by 74.5 ± 12.9% and 63.4 ± 12%, respectively, compared to untreated cells, P < 0.05). This effect was inhibited by compound C, an AMPK inhibitor, and STO609, a calcium/calmodulin-dependent protein kinase-kinase (CaMKK) inhibitor. Resveratrol diminished the expression of interleukin-1 receptor-associated kinase M (IRAK-M) and Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1) by prolonging the exposure of cells to LPS (by 60.8 ± 16.3% and 70.3 ± 18.1%, respectively, compared to LPS only). The effect of resveratrol on the LPS-induced expression of IRAK-M and SHIP1 was inhibited by compound C or STO609. After a 2nd dose of LPS, resveratrol increased phosphorylation of ERK1/2, p38, and JNK in endotoxin tolerant macrophages. In vivo systemic administration of resveratrol prevented a significant increase in mortality rate by cecal ligation and puncture in LPS-induced endotoxin-tolerant mice. These results indicate that resveratrol induces AMPK activation through the Ca2+/CaMKKß pathway and suppresses the development of endotoxin tolerance by inhibiting LPS-induced expression of IRAK-M and SHIP1.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Endotoxemia/tratamento farmacológico , Fatores Imunológicos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Resveratrol/farmacologia , Animais , Sinalização do Cálcio , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/enzimologia , Ativação Enzimática , Mediadores da Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos , Macrófagos/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Células RAW 264.7 , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 319(6): H1482-H1495, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33064557

RESUMO

Multiple organ perfusion is impaired in sepsis. Clinical studies suggest that persistent perfusion disturbances are prognostic of fatal outcome in sepsis. Pyroptosis occurs upon activation of caspases and their subsequent cleavage of gasdermin D (Gsdmd), resulting in Gsdmd-N (activated NH2-terminal fragment of Gsdmd) that form membrane pores to induce cell death in sepsis. In addition, Gsdmd-/- mice are protected from a lethal dose of lipopolysaccharide (LPS). However, how Gsdmd-mediated pyroptosis occurs in endothelial cells and leads to impaired perfusion remain unexplored in endotoxemia. We used transgenic mice with ablation of Gsdmd and determined that mice lacking Gsdmd exhibited reduced breakdown of endothelial barrier, improved organ perfusion, as well as increased survival in endotoxemia. Phospholipase Cγ1 (PLCγ1) contributed to Gsdmd-mediated endothelial pyroptosis in a calcium-dependent fashion, without affecting Gsdmd-N production. Cytosolic calcium signaling promoted Gsdmd-N translocation to the plasma membrane, enhancing endothelial pyroptosis induced by LPS. We used adeno-associated virus (AAV9) vectors carrying a short hairpin RNA (shRNA) against murine PLCγ1 mRNA under control of the tie1 core promoter (AAV-tie1-sh-PLCγ1) to uniquely downregulate PLCγ1 expression in the endothelial cells. Here, we showed that unique inhibition of endothelial PLCγ1 attenuated breakdown of endothelial barrier, reduced vascular leakage, and improved perfusion disturbances. Moreover, unique downregulate endothelial PLCγ1 expression markedly decreased mortality of mice in endotoxemia. Thus, we establish that endothelial injury as an important trigger of fatal outcome in endotoxemia. Additionally, these findings suggest that interfering with Gsdmd and PLCγ1-calcium pathway may represent a new treatment strategy for critically ill patients sustaining endotoxemia.NEW & NOTEWORTHY Our study newly reveals that Phospholipase Cγ1 (PLCγ1) contributes to gasdermin D (Gsdmd)-mediated endothelial pyroptosis in a calcium-dependent fashion. Cytosolic calcium signaling promotes activated NH2-terminal fragment of Gsdmd (Gsdmd-N) to translocate to the plasma membrane, enhancing endothelial pyroptosis induced by cytoplasmic LPS. Genetic or pharmacologic inhibition of endothelial PLCγ1 attenuated breakdown of endothelial barrier, reduced vascular leakage, improve perfusion disturbances, and decrease mortality of mice in endotoxemia.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Membrana Celular/enzimologia , Células Endoteliais/enzimologia , Endotoxemia/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fosfolipase C gama/metabolismo , Piroptose , Animais , Permeabilidade Capilar , Membrana Celular/patologia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/patologia , Feminino , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lipopolissacarídeos , Masculino , Camundongos Knockout , Proteínas de Ligação a Fosfato/deficiência , Proteínas de Ligação a Fosfato/genética , Transporte Proteico
3.
Eur J Pharmacol ; 881: 173259, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32565338

RESUMO

Systemic inflammation resulting from the release of pro-inflammatory cytokines and the chronic activation of the innate immune system remains a major cause of morbidity and mortality in the United States. After having demonstrated that Fyn, a Src family kinase, regulates microglial neuroinflammatory responses in cell culture and animal models of Parkinson's disease, we investigate here its role in modulating systemic inflammation using an endotoxic mouse model. Fyn knockout (KO) and their wild-type (WT) littermate mice were injected once intraperitoneally with either saline or 5 mg/kg lipopolysaccharide (LPS) and were killed 48 h later. LPS-induced mortality, endotoxic symptoms and hypothermia were significantly attenuated in Fyn KO, but not WT, mice. LPS reduced survival in Fyn WT mice to 49% compared to 84% in Fyn KO mice. Fyn KO mice were also protected from LPS-induced deficits in horizontal and vertical locomotor activities, total distance traveled and stereotypic movements. Surface body temperatures recorded at 24 h and 48 h post-LPS dropped significantly in Fyn WT, but not in KO, mice. Importantly, endotoxemia-associated changes to levels of the serum pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), splenocyte apoptosis and inducible nitric oxide synthase (iNOS) production in hepatocytes were also significantly attenuated in Fyn KO mice. Likewise, pharmacologically inhibiting Fyn with 10 mg/kg dasatinib (oral) significantly attenuated LPS-induced increases in plasma TNF-α and IL-6 protein levels and hepatic pro-IL-1ß messenger ribonucleic acids (mRNAs). Collectively, these results indicate that genetic knockdown or pharmacological inhibition of Fyn dampens systemic inflammation, demonstrating for the first time that Fyn kinase plays a critical role in mediating the endotoxic inflammatory response.


Assuntos
Endotoxemia/enzimologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Apoptose , Comportamento Animal , Citocinas/metabolismo , Dasatinibe/farmacologia , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/prevenção & controle , Mediadores da Inflamação/sangue , Lipopolissacarídeos , Fígado/metabolismo , Locomoção , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-fyn/deficiência , Proteínas Proto-Oncogênicas c-fyn/genética , Baço/metabolismo , Baço/patologia
4.
Respir Res ; 20(1): 109, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31159807

RESUMO

BACKGROUND: Hypoxic pulmonary vasoconstriction (HPV) optimizes the match between ventilation and perfusion in the lung by reducing blood flow to poorly ventilated regions. Sepsis and endotoxemia impair HPV. We previously showed that nitric oxide synthase 2 (NOS2) is required, but not sufficient, for the effect of endotoxin on HPV. The aim of the current study was to identify additional factors that might contribute to the impairment of HPV during endotoxemia. METHODS: Gene expression profiling was determined using pulmonary tissues from NOS2-deficient (NOS2-/-) and wild-type mice subjected to endotoxin or saline challenge (control). HPV was accessed as the percentage increase in left pulmonary vascular resistance (LPVR) in response to left main bronchus occlusion (LMBO) in wild-type mice. RESULTS: Among the 22,690 genes analyzed, endotoxin induced a greater than three-fold increase in 59 and 154 genes in the lungs of wild-type and NOS2-/- mice, respectively. Of all the genes induced by endotoxin in wild-type mice, arginase 1 (Arg1) showed the greatest increase (16.3-fold compared to saline treated wild-type mice). In contrast, endotoxin did not increase expression of Arg1 in NOS2-/- mice. There was no difference in the endotoxin-induced expression of Arg2 between wild-type and NOS2-deficient mice. We investigated the role of arginase in HPV by treating the mice with normal saline or the arginase inhibitor Nω-hydroxy-nor-L-arginine (norNOHA). In control mice (in the absence of endotoxin) treated with normal saline, HPV was intact as determined by profound LMBO-induced increase in LPVR (121 ± 22% from baseline). During endotoxemia and treatment with normal saline, HPV was impaired compared to normal saline treated control mice (33 ± 9% vs. 121 ± 22%, P < 0.05). HPV was restored in endotoxin-exposed mice after treatment with the arginase inhibitor norNOHA as shown by the comparison to endotoxemic mice treated with normal saline (113 ± 29% vs, 33 ± 9%, P < 0.05) and to control mice treated with normal saline (113 ± 29% vs, 121 ± 22%, P = 0.97). CONCLUSIONS: The results of this study suggest that endotoxemia induces Arg1 and that arginase contributes to the endotoxin-induced impairment of HPV in mice.


Assuntos
Arginase/metabolismo , Endotoxemia/enzimologia , Circulação Pulmonar/fisiologia , Resistência Vascular/fisiologia , Vasoconstrição/fisiologia , Animais , Endotoxemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Toxicol Appl Pharmacol ; 368: 26-36, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30776389

RESUMO

Cardiac dysfunction is a vital complication during endotoxemia (ETM). Accumulating evidence suggests that enhanced glycolytic metabolism promotes inflammatory and myocardial diseases. In this study, we performed deep mRNA sequencing analysis on the hearts of control and lipopolysaccharide (LPS)-challenged mice (40 mg/kg, i.p.) and identified that the glycolytic enzyme, 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase 3 (PFKFB3) might play an indispensable role in ETM-induced cardiac damage. Quantitative real-time PCR validated the transcriptional upregulation of PFKFB3 in the myocardium of LPS-challenged mice and immunoblotting and immunostaining assays confirmed that LPS stimulation markedly increased the expression of PFKFB3 at the protein level both in vivo and in vitro. The potent antagonist 3-(3pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) was used to block PFKFB3 activity in vivo (50 mg/kg, i.p.) and in vitro (10 µM). Echocardiographic analysis and TUNEL staining showed that 3PO significantly alleviated LPS-induced cardiac dysfunction and apoptotic injury in vivo. 3PO also suppressed the LPS-induced secretion of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6 and lactate in the serum, in addition to lactate in the myocardium. PFKFB3 inhibition also diminished the nuclear translocation and phosphorylation of transcription factor nuclear factor-κB (NF-κB) in both adult cardiomyocytes and HL-1 cells. Furthermore, immunoblotting analysis showed that 3PO inhibited LPS-induced apoptotic induction in cardiomyocytes. Taken together, these findings demonstrate that PFKFB3 participates in LPS-induced cardiac dysfunction via mediating inflammatory and apoptotic signaling pathway.


Assuntos
Apoptose , Endotoxemia/enzimologia , Cardiopatias/enzimologia , Mediadores da Inflamação/metabolismo , Miócitos Cardíacos/enzimologia , Fosfofrutoquinase-2/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/patologia , Endotoxemia/prevenção & controle , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica , Cardiopatias/induzido quimicamente , Cardiopatias/patologia , Cardiopatias/prevenção & controle , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/genética , Piridinas/farmacologia , Transdução de Sinais
6.
Biochim Biophys Acta Mol Cell Res ; 1865(9): 1277-1292, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29932987

RESUMO

BACKGROUND: The Ras-homologous GTPase Rac1 plays a key role in the regulation of gene expression, cytoskeleton-associated processes and cell death as well as carcinogenesis and inflammation. Here, we investigated the impact of Rac1 signaling on liver-mediated immune homeostasis. METHODS: We employed a constitutive Alb-Cre-driven rac1 knock-out and a poly I:C-inducible Mx1-Cre-based knock-out model and analyzed cytokine expression profiles in liver and other organs under basal situation and following LPS-induced endotoxemia by flow cytometry, qRT-PCR and immunocytochemistry. RESULTS: Constitutive Alb-Cre-driven rac1 knockout in hepatocytes altered the basal distribution and activation of immune cells in the liver and likewise in kidney and lung. Early systemic alterations in cytokine serum levels following LPS treatment remained unaffected by Rac1. Furthermore, lack of Rac1 in hepatocytes of untreated animals shifted the liver to a chronic inflammatory state, as depicted by an enhanced mRNA expression of marker genes related to activated macrophages. Upon acute LPS-induced endotoxemia, increased IL-10 mRNA expression in the liver of Alb-Cre Rac1-deficient mice provided an anti-inflammatory response. Employing a poly I:C-inducible Mx1-Cre-based rac1 knock-out, which allows a more widespread rac1 deletion in both hepatocytes and non-hepatocytes, we observed substantial differences regarding both basal and LPS-stimulated cytokine expression profiles as compared to the Alb-Cre system. CONCLUSIONS: Rac1-dependent mechanisms in hepatocytes and non-hepatocytes contribute to the maintenance of liver immune homeostasis under basal situation and following LPS-induced endotoxemia. Disturbed Rac1-regulated hepatocyte functions may promote liver damage under pathophysiological situation involving inflammatory stress.


Assuntos
Endotoxemia/enzimologia , Interleucina-10/genética , Lipopolissacarídeos/efeitos adversos , Fígado/imunologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Endotoxemia/imunologia , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Imunidade , Rim/imunologia , Fígado/enzimologia , Pulmão/imunologia , Macrófagos/metabolismo , Camundongos , Transdução de Sinais
7.
J Clin Invest ; 127(11): 4124-4135, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990935

RESUMO

Acute lung injury is a leading cause of death in bacterial sepsis due to the wholesale destruction of the lung endothelial barrier, which results in protein-rich lung edema, influx of proinflammatory leukocytes, and intractable hypoxemia. Pyroptosis is a form of programmed lytic cell death that is triggered by inflammatory caspases, but little is known about its role in EC death and acute lung injury. Here, we show that systemic exposure to the bacterial endotoxin lipopolysaccharide (LPS) causes severe endothelial pyroptosis that is mediated by the inflammatory caspases, human caspases 4/5 in human ECs, or the murine homolog caspase-11 in mice in vivo. In caspase-11-deficient mice, BM transplantation with WT hematopoietic cells did not abrogate endotoxemia-induced acute lung injury, indicating a central role for nonhematopoietic caspase-11 in endotoxemia. Additionally, conditional deletion of caspase-11 in ECs reduced endotoxemia-induced lung edema, neutrophil accumulation, and death. These results establish the requisite role of endothelial pyroptosis in endotoxemic tissue injury and suggest that endothelial inflammatory caspases are an important therapeutic target for acute lung injury.


Assuntos
Caspases/fisiologia , Células Endoteliais/enzimologia , Endotoxemia/enzimologia , Lesão Pulmonar/enzimologia , Piroptose , Animais , Estudos de Casos e Controles , Caspases Iniciadoras , Células Cultivadas , Endotélio Vascular/patologia , Endotoxemia/imunologia , Feminino , Humanos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/enzimologia , Pulmão/imunologia , Pulmão/patologia , Lesão Pulmonar/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor 4 Toll-Like/metabolismo
8.
J Immunol ; 199(7): 2515-2527, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28848068

RESUMO

Dual-specificity phosphatase 3 (DUSP3) is a small phosphatase with poorly known physiological functions and for which only a few substrates are known. Using knockout mice, we recently reported that DUSP3 deficiency confers resistance to endotoxin- and polymicrobial-induced septic shock. We showed that this protection was macrophage dependent. In this study, we further investigated the role of DUSP3 in sepsis tolerance and showed that the resistance is sex dependent. Using adoptive-transfer experiments and ovariectomized mice, we highlighted the role of female sex hormones in the phenotype. Indeed, in ovariectomized females and in male mice, the dominance of M2-like macrophages observed in DUSP3-/- female mice was reduced, suggesting a role for this cell subset in sepsis tolerance. At the molecular level, DUSP3 deletion was associated with estrogen-dependent decreased phosphorylation of ERK1/2 and Akt in peritoneal macrophages stimulated ex vivo by LPS. Our results demonstrate that estrogens may modulate M2-like responses during endotoxemia in a DUSP3-dependent manner.


Assuntos
Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Endotoxemia/enzimologia , Endotoxemia/prevenção & controle , Estrogênios/metabolismo , Macrófagos/fisiologia , Choque Séptico/prevenção & controle , Animais , Coinfecção/complicações , Fosfatases de Especificidade Dupla/deficiência , Endotoxemia/genética , Endotoxemia/microbiologia , Feminino , Tolerância Imunológica , Lipopolissacarídeos/imunologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Knockout , Ovariectomia , Fosforilação , Caracteres Sexuais , Transdução de Sinais
9.
Pharmacol Res ; 111: 217-225, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27317946

RESUMO

Sepsis is a systemic inflammatory response to infection with a high mortality but has no specific treatment despite decades of research. North American (NA) ginseng (Panax quinquefolius) is a popular natural health product with anti-oxidant and anti-inflammatory properties. The aim of the present study was to investigate the effects of NA ginseng on pro-inflammatory cytokine expression and cardiac function in endotoxemia, a model of sepsis. Mice were challenged with lipopolysaccharide (LPS) to induce endotoxemia. Myocardial expression of tumor necrosis factor-alpha (TNF-α), a major pro-inflammatory cytokine that causes cardiac dysfunction, was upregulated in mice with endotoxemia, which was accompanied by increases in NOX2 expression, superoxide generation and ERK1/2 phosphorylation. Notably, pretreatment with NA ginseng aqueous extract (50mg/kg/day, oral gavage) for 5days significantly inhibited NOX2 expression, superoxide generation, ERK1/2 phosphorylation and TNF-α expression in the heart during endotoxemia. Importantly, cardiac function and survival in endotoxemic mice were significantly improved. Additionally, pretreatment with ginseng extract inhibited superoxide generation, ERK1/2 phosphorylation and TNF-α expression induced by LPS in cultured cardiomyocytes. We conclude that NA ginseng inhibits myocardial NOX2-ERK1/2-TNF-α signaling pathway and improves cardiac function in endotoxemia, suggesting that NA ginseng may have the potential in the prevention of clinical sepsis.


Assuntos
Anti-Inflamatórios/farmacologia , Endotoxemia/tratamento farmacológico , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , NADPH Oxidase 2/metabolismo , Panax/química , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anti-Inflamatórios/isolamento & purificação , Células Cultivadas , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/enzimologia , Endotoxemia/fisiopatologia , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosforilação , Fitoterapia , Extratos Vegetais/isolamento & purificação , Plantas Medicinais , Superóxidos/metabolismo , Fatores de Tempo , Função Ventricular Esquerda/efeitos dos fármacos
10.
J Cardiovasc Pharmacol ; 68(2): 171-81, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27110744

RESUMO

Reduced blood pressure (BP) and cardiac autonomic activity are early manifestations of endotoxemia. We investigated whether these effects are modulated by central mitogen-activated protein kinases (MAPKs) and related phosphoinositide-3-kinase (PI3K)/soluble guanylate cyclase (sGC) signaling in conscious rats. The effect of pharmacologic inhibition of these molecular substrates on BP, heart rate (HR), and heart rate variability (HRV) responses evoked by intravascular lipopolysaccharide (LPS) (10 mg/kg) were assessed. LPS (1) lowered BP (2) increased HR, (3) reduced time [SD of beat-to-beat intervals (SDNN), and root mean square of successive differences in R-R intervals (rMSSD)], and frequency domain indices of HRV (total power and spectral bands of low and high-frequency), and (4) elevated serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels. The inhibition of TNF-α (pentoxifylline) or inducible nitric oxide synthase (iNOS, aminoguanidine) abolished hemodynamic, HRV, and inflammatory actions of LPS. Intracisternal (i.c.) injection of ODQ (sGC inhibitor), wortmannin (PI3K inhibitor), and SP600125 (MAPKJNK inhibitor) mitigated the hypotensive and tachycardic actions of LPS but failed to affect associated decreases in HRV. MAPKp38 inhibition by i.c. SB203580 produced exactly opposite effects. None of the LPS effects was altered after i.c. PD98059 (MAPKERK1/2 inhibitor). Overall, central MAPKs/PI3K/sGC pathways variably contribute to the TNF-α/iNOS-dependent reductions in BP and HRV seen during endotoxic shock.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Encéfalo/enzimologia , Endotoxemia/enzimologia , Coração/inervação , Hipotensão/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Taquicardia/enzimologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Sistema Nervoso Autônomo/efeitos dos fármacos , Pressão Sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/fisiopatologia , Endotoxemia/prevenção & controle , Inibidores Enzimáticos/farmacologia , Frequência Cardíaca , Hipotensão/induzido quimicamente , Hipotensão/fisiopatologia , Hipotensão/prevenção & controle , Lipopolissacarídeos , Masculino , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Ratos Wistar , Transdução de Sinais , Guanilil Ciclase Solúvel/antagonistas & inibidores , Taquicardia/induzido quimicamente , Taquicardia/fisiopatologia , Taquicardia/prevenção & controle , Fatores de Tempo , Fator de Necrose Tumoral alfa/antagonistas & inibidores
11.
J Cell Biochem ; 116(8): 1730-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25736558

RESUMO

Inducible nitric oxide synthase (iNOS) critically contributes to the development of endotoxin-mediated inflammation. It can be induced by cytokines or endotoxins via distinct signaling pathways. Lipopolysaccharide (LPS) triggers iNOS expression through activation of the inhibitor of κB-α (IκB-α)-nuclear factor κB (NF-κB) cascade, whereas interferon-γ (IFN-γ) acts primarily through Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1). Methylene blue (MB), an agent used clinically to treat numerous ailments, has been shown to reduce NO accumulation through suppression of iNOS activity. But it remains unclear whether MB affects iNOS induction. This knowledge gap is addressed in the present study using cultured cells and endotoxemic mice. With mouse macrophages, MB treatment prevented the LPS- and/or IFN-γ-stimulated iNOS protein expression. Real-time PCR experiments showed that iNOS mRNA transcription was robustly blocked by MB treatment. The inhibitory effect of MB on iNOS expression was confirmed in vivo in endotoxemic mice. Further analysis showed that MB had no significant effect on IκB-α degradation and NF-κB or STAT1 phosphorylation in LPS/IFN-γ-stimulated cells. The nuclear transport of active NF-κB or STAT1 was also not affected by MB treatment. But MB treatment markedly reduced the binding of NF-κB and STAT1 to their DNA elements. Chromatin immunoprecipitation assays confirmed that MB reduced NF-κB and STAT1 bindings to iNOS promoter inside the cell. These studies show that MB attenuates transcriptional factor binding amid iNOS mRNA transcription, providing further insight into the molecular mechanism of MB in disease therapy.


Assuntos
Endotoxemia/enzimologia , Macrófagos/efeitos dos fármacos , Azul de Metileno/administração & dosagem , Óxido Nítrico Sintase Tipo II/genética , Fatores de Transcrição/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Endotoxemia/induzido quimicamente , Endotoxemia/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon gama/farmacologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/farmacologia , Macrófagos/enzimologia , Masculino , Azul de Metileno/farmacologia , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Ligação Proteica/efeitos dos fármacos
12.
Free Radic Biol Med ; 78: 224-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25463280

RESUMO

Heme oxygenase (HO)-1 is the inducible isoform of the heme-degrading enzyme HO, which is upregulated by multiple stress stimuli. HO-1 has major immunomodulatory and anti-inflammatory effects via its cell-type-specific functions in mononuclear cells. Contradictory findings have been reported on HO-1 regulation by the Toll-like receptor (TLR) 4 ligand lipopolysaccharide (LPS) in these cells. Therefore, we reinvestigated the effects of LPS on HO-1 gene expression in human and murine mononuclear cells in vitro and in vivo. Remarkably, LPS downregulated HO-1 in primary human peripheral blood mononuclear cells (PBMCs), CD14(+) monocytes, macrophages, dendritic cells, and granulocytes, but upregulated this enzyme in primary murine macrophages and human monocytic leukemia cell lines. Furthermore, experiments with human CD14(+) monocytes revealed that activation of other TLRs including TLR1, -2, -5, -6, -8, and -9 decreased HO-1 mRNA expression. LPS-dependent downregulation of HO-1 was specific, because expression of cyclooxygenase-2, NADP(H)-quinone oxidoreductase-1, and peroxiredoxin-1 was increased under the same experimental conditions. Notably, LPS upregulated expression of Bach1, a critical transcriptional repressor of HO-1. Moreover, knockdown of this nuclear factor enhanced basal and LPS-dependent HO-1 expression in mononuclear cells. Finally, downregulation of HO-1 in response to LPS was confirmed in PBMCs from human individuals subjected to experimental endotoxemia. In conclusion, LPS downregulates HO-1 expression in primary human mononuclear cells via a Bach1-mediated pathway. As LPS-dependent HO-1 regulation is cell-type- and species-specific, experimental findings in cell lines and animal models need careful interpretation.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Leucócitos Mononucleares/enzimologia , Lipopolissacarídeos/farmacologia , Macrófagos/enzimologia , Monócitos/enzimologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Western Blotting , Regulação para Baixo , Endotoxemia/tratamento farmacológico , Endotoxemia/enzimologia , Endotoxemia/patologia , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Heme Oxigenase-1/genética , Humanos , Leucemia Monocítica Aguda/tratamento farmacológico , Leucemia Monocítica Aguda/enzimologia , Leucemia Monocítica Aguda/patologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Monócitos/citologia , Monócitos/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Hepatobiliary Pancreat Dis Int ; 13(3): 281-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24919612

RESUMO

BACKGROUND: Ron receptor tyrosine kinase signaling in macrophages, including Kupffer cells and alveolar macrophages, suppresses endotoxin-induced proinflammatory cytokine/chemokine production. Further, we have also identified genes from Ron replete and Ron deplete livers that were differentially expressed during the progression of liver inflammation associated with acute liver failure in mice by microarray analyses. While important genes and signaling pathways have been identified downstream of Ron signaling during progression of inflammation by this approach, the precise role that Ron receptor plays in regulating the transcriptional landscape in macrophages, and particular in isolated Kupffer cells, has still not been investigated. METHODS: Kupffer cells were isolated from wild-type (TK+/+) and Ron tyrosine kinase deficient (TK-/-) mice. Ex vivo, the cells were treated with lipopolysaccharide (LPS) in the presence or absence of the Ron ligand, hepatocyte growth factor-like protein (HGFL). Microarray and qRT-PCR analyses were utilized to identify alterations in gene expression between genotypes. RESULTS: Microarray analyses identified genes expressed differentially in TK+/+ and TK-/- Kupffer cells basally as well as after HGFL and LPS treatment. Interestingly, our studies identified Mefv, a gene that codes for the anti-inflammatory protein pyrin, as an HGFL-stimulated Ron-dependent gene. Moreover, lipocalin 2, a proinflammatory gene, which is induced by LPS, was significantly suppressed by HGFL treatment. Microarray results were validated by qRT-PCR studies on Kupffer cells treated with LPS and HGFL. CONCLUSION: The studies herein suggest a novel mechanism whereby HGFL-induced Ron receptor activation promotes the expression of anti-inflammatory genes while inhibiting genes involved in inflammation with a net effect of diminished inflammation in macrophages.


Assuntos
Endotoxemia/enzimologia , Células de Kupffer/enzimologia , Fígado/enzimologia , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Animais , Células Cultivadas , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Endotoxemia/genética , Endotoxinas/farmacologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Fator de Crescimento de Hepatócito/farmacologia , Mediadores da Inflamação/metabolismo , Células de Kupffer/efeitos dos fármacos , Lipocalina-2 , Lipocalinas/genética , Lipocalinas/metabolismo , Fígado/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Reação em Cadeia da Polimerase , Proteínas Proto-Oncogênicas/farmacologia , Pirina , Receptores Proteína Tirosina Quinases/deficiência , Receptores Proteína Tirosina Quinases/genética
14.
PLoS One ; 9(1): e86135, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465919

RESUMO

RATIONALE AND OBJECTIVE: Arginase-1 is an important component of the intricate mechanism regulating arginine availability during immune responses and nitric oxide synthase (NOS) activity. In this study Arg1(fl/fl)/Tie2-Cre(tg/-) mice were developed to investigate the effect of arginase-1 related arginine depletion on NOS2- and NOS3-dependent NO production and jejunal microcirculation under resting and endotoxemic conditions, in mice lacking arginase-1 in endothelial and hematopoietic cells. METHODS AND RESULTS: Arginase-1-deficient mice as compared with control mice exhibited higher plasma arginine concentration concomitant with enhanced NO production in endothelial cells and jejunal tissue during endotoxemia. In parallel, impaired jejunal microcirculation was observed in endotoxemic conditions. Cultured bone-marrow-derived macrophages of arginase-1 deficient animals also presented a higher inflammatory response to endotoxin than control littermates. Since NOS2 competes with arginase for their common substrate arginine during endotoxemia, Nos2 deficient mice were also studied under endotoxemic conditions. As Nos2(-/-) macrophages showed an impaired inflammatory response to endotoxin compared to wild-type macrophages, NOS2 is potentially involved. A strongly reduced NO production in Arg1(fl/fl)/Tie2-Cre(tg/-) mice following infusion of the NOS2 inhibitor 1400W further implicated NOS2 in the enhanced capacity to produce NO production Arg1(fl/fl)/Tie2-Cre(tg/-) mice. CONCLUSIONS: Reduced arginase-1 activity in Arg1(fl/fl)/Tie2-Cre(tg/-) mice resulted in increased inflammatory response and NO production by NOS2, accompanied by a depressed microcirculatory flow during endotoxemia. Thus, arginase-1 deficiency facilitates a NOS2-mediated pro-inflammatory activity at the expense of NOS3-mediated endothelial relaxation.


Assuntos
Arginase/metabolismo , Arginina/sangue , Endotoxemia/sangue , Endotoxemia/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/biossíntese , Animais , Contagem de Células , Citrulina/sangue , Citocinas/biossíntese , Integrases/metabolismo , Jejuno/irrigação sanguínea , Jejuno/enzimologia , Jejuno/patologia , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcirculação , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Nitritos/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Ornitina/sangue , Perfusão , Peroxidase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor TIE-2/metabolismo
15.
Inflammation ; 37(2): 451-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24170307

RESUMO

Clinical studies have reported associations between MMP-8 genotypes and clinical outcomes without exploring underlying mechanisms. This study aims to understand the influence of the rs1940475 SNP on downstream chemokine and cytokine response in human endotoxemia. Rs1940475 was genotyped in 44 healthy Caucasian males, who were challenged with an intravenous bolus of 2 ng/kg lipopolysaccharide (LPS). Plasma levels of tumor necrosis factor (TNF), interleukin (IL)-6, IL-8, and macrophage inflammatory protein (MIP)-1α were measured at baseline and 2, 4, 6, and 24 h after LPS infusion with high-sensitivity enzyme immunoassays. Peak TNF levels at 2 h after LPS infusion were significantly higher in subjects with AA genotype compared to subjects with AG or GG genotypes (185 pg/mL [IQR, 154-234] vs. 94 pg/mL [IQR, 65-125] vs. 107 pg/mL [IQR, 80-241], respectively; p = 0.03 between groups). Peak IL-6 levels were trend-wise higher in subjects with AA genotype compared to those with AG or GG genotypes (566 pg/mL [IQR, 294-644] vs. 278 pg/mL [IQR, 184-539] and 329 pg/mL [IQR, 240-492], respectively; p = 0.15 between groups). In contrast, peak MIP-1α at 2 h was highest in GG genotype carriers compared to those with AG or AA genotypes (602 pg/mL [IQR, 449-727] vs. 389 pg/mL [IQR, 375-490] and 510 pg/mL [425-813], respectively; p < 0.03 between groups). AA genotype carriers had highest peak TNF and IL-6 levels after LPS challenge, whereas peak MIP-1α levels were highest in GG carriers. This indicates that the rs1940475 SNP modifies the host response to inflammatory stimuli, which may in part explain previously shown associations with clinical outcomes.


Assuntos
Endotoxemia/enzimologia , Endotoxemia/genética , Mediadores da Inflamação/sangue , Metaloproteinase 8 da Matriz/genética , Polimorfismo de Nucleotídeo Único , Administração Intravenosa , Adulto , Biomarcadores/sangue , Coagulação Sanguínea , Quimiocina CCL3/sangue , Endotoxemia/sangue , Endotoxemia/etnologia , Endotoxemia/imunologia , Endotoxinas/administração & dosagem , Frequência do Gene , Predisposição Genética para Doença , Voluntários Saudáveis , Humanos , Interleucina-6/sangue , Interleucina-8/sangue , Masculino , Neutrófilos/enzimologia , Neutrófilos/imunologia , Fenótipo , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue , População Branca/genética , Adulto Jovem
16.
Crit Care Med ; 41(12): e411-22, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23963133

RESUMO

OBJECTIVE: As adenosine monophosphate (AMP)-activated protein kinase both controls cytoskeleton organization in endothelial cells and exerts anti-inflammatory effects, we here postulated that it could influence vascular permeability and inflammation, thereby counteracting cardiac wall edema during sepsis. DESIGN: Controlled animal study. SETTINGS: University research laboratory. SUBJECTS: C57BL/6J, α1AMPK, and α1AMPK mice. INTERVENTION: Sepsis was triggered in vivo using a sublethal injection of lipopolysaccharide (O55B5, 10 mg/kg), inducing systolic left ventricular dysfunction. Left ventricular function, edema, vascular permeability, and inflammation were assessed in vivo in both wild-type mice (α1AMPK) and α1AMP-activated protein kinase-deficient mice (α1AMPK). The 5-aminoimidazole-4-carboxamide riboside served to study the impact of AMP-activated protein kinase activation on vascular permeability in vivo. The integrity of endothelial cell monolayers was also examined in vitro after lipopolysaccharide challenge in the presence of aminoimidazole-4-carboxamide riboside and/or after α1AMP-activated protein kinase silencing. MEASUREMENTS AND MAIN RESULTS: α1AMP-activated protein kinase deficiency dramatically impaired tolerance to lipopolysaccharide challenge. Indeed, α1AMPK exhibited heightened cardiac vascular permeability after lipopolysaccharide challenge compared with α1AMPK. Consequently, an increase in left ventricular mass corresponding to exaggerated wall edema occurred in α1AMPK, without any further decrease in systolic function. Mechanistically, the lipopolysaccharide-induced α1AMPK cardiac phenotype could not be attributed to major changes in the systemic inflammatory response but was due to an increased disruption of interendothelial tight junctions. Accordingly, AMP-activated protein kinase activation by aminoimidazole-4-carboxamide riboside counteracted lipopolysaccharide-induced hyperpermeability in wild-type mice in vivo as well as in endothelial cells in vitro. This effect was associated with a potent protection of zonula occludens-1 linear border pattern in endothelial cells. CONCLUSIONS: Our results demonstrate for the first time the involvement of a signaling pathway in the control of left ventricular wall edema during sepsis. AMP-activated protein kinase exerts a protective action through the preservation of interendothelial tight junctions. Interestingly, exaggerated left ventricular wall edema was not coupled with aggravated systolic dysfunction. However, it could contribute to diastolic dysfunction in patients with sepsis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Permeabilidade Capilar , Edema/etiologia , Endotoxemia/complicações , Endotoxemia/enzimologia , Cardiopatias/etiologia , Inflamação/etiologia , Proteínas Quinases Ativadas por AMP/deficiência , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Corantes/farmacocinética , Citocinas/sangue , Ecocardiografia , Edema/diagnóstico , Edema/fisiopatologia , Células Endoteliais/efeitos dos fármacos , Endotoxemia/induzido quimicamente , Azul Evans/farmacocinética , Inativação Gênica , Cardiopatias/diagnóstico , Cardiopatias/fisiopatologia , Ventrículos do Coração/fisiopatologia , Humanos , Inflamação/sangue , Lipopolissacarídeos/farmacologia , Pulmão/enzimologia , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peroxidase/metabolismo , Ribonucleosídeos/farmacologia , Junções Íntimas/efeitos dos fármacos
17.
Psychoneuroendocrinology ; 38(9): 1819-23, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23394872

RESUMO

Salivary α-amylase (sAA) is a digestive enzyme that plays also an important role in mucosal immunity. Secretion of the sAA is largely under the control of the autonomic nervous system and increases in sAA activity have repeatedly been observed in response to various stressors. The present study aimed at investigating whether and to what extent sAA activity levels are affected during systemic inflammation. Fourteen healthy male volunteers received intravenous injections of either bacterial endotoxin or placebo at two different occasions in a randomized and double-blinded manner. sAA activity was monitored over a period of 6h together with inflammatory markers, plasma norepinephrine (NE) and salivary cortisol levels, vital parameters, and state anxiety. Endotoxin administration elicited a transient inflammatory response reflected by increases in body temperature, whole blood cell counts, and circulating levels of interleukin (IL)-6. The immune changes were accompanied by a transient increase in sAA activity, elevations in salivary cortisol and plasma NE concentrations, as well as increases in heart rate and state anxiety. Although sAA and plasma NE responses showed distinct time courses, a significant positive correlation over the total observation period was found. Whether the observed sAA response is driven by an increase in sympathetic activity or more generally reflects inflammation induced changes in sympathetic-parasympathetic balance remains to be elucidated.


Assuntos
Endotoxemia/fisiopatologia , Endotoxinas/toxicidade , Glândulas Salivares/metabolismo , alfa-Amilases Salivares/metabolismo , Adulto , Pressão Sanguínea/efeitos dos fármacos , Temperatura Corporal , Método Duplo-Cego , Endotoxemia/sangue , Endotoxemia/enzimologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hidrocortisona/sangue , Interleucina-6/sangue , Contagem de Leucócitos , Masculino , Norepinefrina/sangue , Sistema Nervoso Parassimpático/fisiopatologia , Distribuição Aleatória , Glândulas Salivares/enzimologia , Sistema Nervoso Simpático/fisiopatologia
18.
J Immunol ; 190(3): 1264-75, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23275604

RESUMO

Sepsis is a leading cause of intensive care unit admissions, with high mortality and morbidity. Although outcomes have improved with better supportive care, specific therapies are limited. Endothelial activation and oxidant injury are key events in the pathogenesis of sepsis-induced lung injury. The signaling pathways leading to these events remain poorly defined. We sought to determine the role of MAPK kinase 3 (MKK3), a kinase of the p38 group, in the pathogenesis of sepsis. We used a murine i.p. LPS model of systemic inflammation to mimic sepsis. Lung injury parameters were assessed in lung tissue and bronchoalveolar lavage specimens. Primary lung endothelial cells were cultured and assessed for mediators of inflammation and injury, such as ICAM-1, AP-1, NF-κB, and mitochondrial reactive oxygen species. Our studies demonstrate that MKK3 deficiency confers virtually complete protection against organ injury after i.p. LPS. Specifically, MKK3(-/-) mice were protected against acute lung injury, as assessed by reduced inflammation, mitochondrial reactive oxygen species generation, endothelial injury, and ICAM-1 expression after LPS administration. Our results show that endothelial MKK3 is required for inflammatory cell recruitment to the lungs, mitochondrial oxidant-mediated AP-1, NF-κB activation, and ICAM-1 expression during LPS challenge. Collectively, these studies identify a novel role for MKK3 in lethal LPS responses and provide new therapeutic targets against sepsis and acute lung injury.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Células Endoteliais/enzimologia , Endotoxemia/enzimologia , MAP Quinase Quinase 3/fisiologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/prevenção & controle , Animais , Apoptose , Líquido da Lavagem Broncoalveolar , Quimiotaxia de Leucócito/fisiologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotoxemia/patologia , Molécula 1 de Adesão Intercelular/biossíntese , Molécula 1 de Adesão Intercelular/genética , Lipopolissacarídeos/toxicidade , Pulmão/patologia , MAP Quinase Quinase 3/antagonistas & inibidores , MAP Quinase Quinase 3/deficiência , MAP Quinase Quinase 3/genética , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Ativação de Neutrófilo , Peritonite/induzido quimicamente , Peritonite/enzimologia , RNA Interferente Pequeno/farmacologia , Quimera por Radiação , Espécies Reativas de Oxigênio/metabolismo , Sepse/enzimologia , Fator de Transcrição AP-1/metabolismo
19.
PLoS One ; 7(12): e51327, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251501

RESUMO

Our previous studies showed that recombinant high-density lipoprotein (rHDL) rHDL74 exhibited higher anti-inflammatory capabilities compared to wild-type rHDL (rHDLwt), while rHDL228 showed hyper-proinflammation. In this paper, we further investigated the potential mechanisms involved in their different inflammatory functions using two models: endotoxemic mice and the RAW264.7 inflammation model. Our results showed that 24 h after the injection of lipopolysaccharide (LPS), mice treated with rHDL74 had a significant decrease in plasma CRP (P<0.01 vs. rHDLwt; P<0.01 vs. LPS), MCP-1 (P<0.05 vs. rHDLwt; P<0.01 vs. LPS) and CD14 (P<0.01 vs. LPS) compared with the mice treated with rHDLwt or the controls that received LPS only. Similar to our previous study, rHDL228 increased the plasma level of CRP (P<0.05 vs. LPS) and MCP-1 (P<0.01 vs. LPS). Our immunohistochemistry and western blot analysis showed that rHDL74 inhibited the activation of NF-κB in endotoxemic mice and JNK and p38 in the RAW264.7 inflammation model, while rHDL228 exacerbated the activation of NF-κB and ERK. In summary, our data suggest that rHDL74 exhibits higher anti-inflammatory activity by decreasing inflammatory factors and inhibiting the activation of NF-κB, JNK and p38, while rHDL228 appears to be hyper-proinflammation by increasing these inflammatory factors and aggravating the activation of NF-κB and ERK.


Assuntos
Apolipoproteína A-I/metabolismo , Cisteína/genética , Endotoxemia/metabolismo , Lipídeos/química , MAP Quinase Quinase 4/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Apolipoproteína A-I/genética , Linhagem Celular , Endotoxemia/enzimologia , Camundongos
20.
Free Radic Biol Med ; 53(6): 1327-1338, 2012 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-22902401

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. After an institutional investigation into the work of Dr. Jun Ren, University of Wyoming subsequently conducted an examination of other selected publications of Dr. Ren's under the direction of the HHS Office of Research Integrity. Based on the findings of this examination, the University of Wyoming recommended this article be retracted due to concerns regarding data irregularities inconsistent with published conclusions. Specifically, University of Wyoming found evidence of data irregularities and image reuse in Figure 2 that significantly affect the results and conclusions reported in the manuscript.


Assuntos
Autofagia , Catalase/metabolismo , Endotoxemia/fisiopatologia , Contração Miocárdica , Miocárdio/enzimologia , Animais , Apoptose , Cálcio/metabolismo , Sinalização do Cálcio , Catalase/genética , Endotoxemia/induzido quimicamente , Endotoxemia/enzimologia , Expressão Gênica , Frequência Cardíaca , Ventrículos do Coração/imunologia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Estimativa de Kaplan-Meier , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/imunologia , Miocárdio/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/fisiologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA