Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
1.
World J Microbiol Biotechnol ; 40(6): 197, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722384

RESUMO

Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.


Assuntos
Luteína , Xantofilas , Zeaxantinas , Luteína/biossíntese , Luteína/metabolismo , Zeaxantinas/metabolismo , Xantofilas/metabolismo , Engenharia Metabólica/métodos , Carotenoides/metabolismo , Bactérias/metabolismo , Humanos , Vias Biossintéticas
2.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1380-1405, 2024 May 25.
Artigo em Chinês | MEDLINE | ID: mdl-38783804

RESUMO

Paclitaxel, a rare diterpene extracted from the bark of Chinese yew (Taxus chinensis), is renowned for its anti-cancer activity and serves as a primary drug for treating cancers. Due to the exceptionally low content of paclitaxel in the bark, a semi-synthetic method that depletes Chinese yew resources is used in the production of paclitaxel, which, however, fails to meet the escalating clinical demand. In recent years, researchers have achieved significant progress in heterologous biosynthesis and metabolic engineering for the production of paclitaxel. This article comprehensively reviews the advancements in paclitaxel production, encompassing chemical synthesis, heterologous biosynthesis, and cell engineering. It provides an in-depth introduction to the biosynthetic pathway and transcriptional regulation mechanisms of paclitaxel, aiming to provide a valuable reference for further research on paclitaxel biosynthesis.


Assuntos
Paclitaxel , Paclitaxel/biossíntese , Engenharia Metabólica/métodos , Taxus/genética , Taxus/metabolismo , Antineoplásicos Fitogênicos/biossíntese , Antineoplásicos Fitogênicos/farmacologia , Transcrição Gênica , Vias Biossintéticas/genética
3.
Microb Cell Fact ; 23(1): 128, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704580

RESUMO

BACKGROUND: Anthraquinone-fused enediynes (AFEs) are excellent payloads for antibody-drug conjugates (ADCs). The yields of AFEs in the original bacterial hosts are extremely low. Multiple traditional methods had been adopted to enhance the production of the AFEs. Despite these efforts, the production titers of these compounds are still low, presenting a practical challenge for their development. Tiancimycins (TNMs) are a class of AFEs produced by Streptomyces sp. CB03234. One of their salient features is that they exhibit rapid and complete cell killing ability against various cancer cell lines. RESULTS: In this study, a combinatorial metabolic engineering strategy guided by the CB03234-S genome and transcriptome was employed to improve the titers of TNMs. First, re-sequencing of CB03234-S (Ribosome engineered mutant strains) genome revealed the deletion of a 583-kb DNA fragment, accounting for about 7.5% of its genome. Second, by individual or combined inactivation of seven potential precursor competitive biosynthetic gene clusters (BGCs) in CB03234-S, a double-BGC inactivation mutant, S1009, was identified with an improved TNMs titer of 28.2 ± 0.8 mg/L. Third, overexpression of five essential biosynthetic genes, including two post-modification genes, and three self-resistance auxiliary genes, was also conducted, through which we discovered that mutants carrying the core genes, tnmE or tnmE10, exhibited enhanced TNMs production. The average TNMs yield reached 43.5 ± 2.4 mg/L in a 30-L fermenter, representing an approximately 360% increase over CB03234-S and the highest titer among all AFEs to date. Moreover, the resulting mutant produced TNM-W, a unique TNM derivative with a double bond instead of a common ethylene oxide moiety. Preliminary studies suggested that TNM-W was probably converted from TNM-A by both TnmE and TnmE10. CONCLUSIONS: Based on the genome and transcriptome analyses, we adopted a combined metabolic engineering strategy for precursor enrichment and biosynthetic pathway reorganization to construct a high-yield strain of TNMs based on CB03234-S. Our study establishes a solid basis for the clinical development of AFE-based ADCs.


Assuntos
Antraquinonas , Enedi-Inos , Engenharia Metabólica , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Engenharia Metabólica/métodos , Antraquinonas/metabolismo , Enedi-Inos/metabolismo , Família Multigênica , Vias Biossintéticas
4.
Artigo em Inglês | MEDLINE | ID: mdl-38621758

RESUMO

Lycopene has been widely used in the food industry and medical field due to its antioxidant, anti-cancer, and anti-inflammatory properties. However, achieving efficient manufacture of lycopene using chassis cells on an industrial scale remains a major challenge. Herein, we attempted to integrate multiple metabolic engineering strategies to establish an efficient and balanced lycopene biosynthetic system in Saccharomyces cerevisiae. First, the lycopene synthesis pathway was modularized to sequentially enhance the metabolic flux of the mevalonate pathway, the acetyl-CoA supply module, and lycopene exogenous enzymatic module. The modular operation enabled the efficient conversion of acetyl-CoA to downstream pathway of lycopene synthesis, resulting in a 3.1-fold increase of lycopene yield. Second, we introduced acetate as an exogenous carbon source and utilized an acetate-repressible promoter to replace the natural ERG9 promoter. This approach not only enhanced the supply of acetyl-CoA but also concurrently diminished the flux toward the competitive ergosterol pathway. As a result, a further 42.3% increase in lycopene production was observed. Third, we optimized NADPH supply and mitigated cytotoxicity by overexpressing ABC transporters to promote lycopene efflux. The obtained strain YLY-PDR11 showed a 12.7-fold increase in extracellular lycopene level compared to the control strain. Finally, the total lycopene yield reached 343.7 mg/L, which was 4.3 times higher than that of the initial strain YLY-04. Our results demonstrate that combining multi-modular metabolic engineering with efflux engineering is an effective approach to improve the production of lycopene. This strategy can also be applied to the overproduction of other desirable isoprenoid compounds with similar synthesis and storage patterns in S. cerevisiae. ONE-SENTENCE SUMMARY: In this research, lycopene production in yeast was markedly enhanced by integrating a multi-modular approach, acetate signaling-based down-regulation of competitive pathways, and an efflux optimization strategy.


Assuntos
Acetilcoenzima A , Carotenoides , Licopeno , Engenharia Metabólica , Saccharomyces cerevisiae , Licopeno/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica/métodos , Carotenoides/metabolismo , Acetilcoenzima A/metabolismo , Ácido Mevalônico/metabolismo , Vias Biossintéticas , Regiões Promotoras Genéticas , NADP/metabolismo , Redes e Vias Metabólicas/genética , Acetatos/metabolismo
5.
Plant Physiol Biochem ; 210: 108511, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593484

RESUMO

Terpenoids are a vast class of plant specialized metabolites (PSMs) manufactured by plants and are involved in their interactions with environment. In addition, they add health benefits to human nutrition and are widely used as pharmaceutically active compounds. However, native plants produce a limited amount of terpenes restricting metabolite yield of terpene-related metabolites. Exponential growth in the plant metabolome data and the requirement of alternative approaches for producing the desired amount of terpenoids, has redirected plant biotechnology research to plant metabolic engineering, which requires in-depth knowledge and precise expertise about dynamic plant metabolic pathways and cellular physiology. Metabolic engineering is an assuring tool for enhancing the concentration of terpenes by adopting specific strategies such as overexpression of the key genes associated with the biosynthesis of targeted metabolites, controlling the modulation of transcription factors, downregulation of competitive pathways (RNAi), co-expression of the biosynthetic pathway genes in heterologous system and other combinatorial approaches. Microorganisms, fast-growing host plants (such as Nicotiana benthamiana), and cell suspension/callus cultures have provided better means for producing valuable terpenoids. Manipulation in the biosynthetic pathways responsible for synthesis of terpenoids can provide opportunities to enhance the content of desired terpenoids and open up new avenues to enhance their production. This review deliberates the worth of metabolic engineering in medicinal plants to resolve issues associated with terpenoid production at a commercial scale. However, to bring the revolution through metabolic engineering, further implementation of genome editing, elucidation of metabolic pathways using omics approaches, system biology approaches, and synthetic biology tactics are essentially needed.


Assuntos
Engenharia Metabólica , Terpenos , Terpenos/metabolismo , Engenharia Metabólica/métodos
6.
Microb Cell Fact ; 23(1): 122, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678199

RESUMO

BACKGROUND: Industrial biomanufacturing of value-added products using CO2 as a carbon source is considered more sustainable, cost-effective and resource-efficient than using common carbohydrate feedstocks. Cupriavidus necator H16 is a representative H2-oxidizing lithoautotrophic bacterium that can be utilized to valorize CO2 into valuable chemicals and has recently gained much attention as a promising platform host for versatile C1-based biomanufacturing. Since this microbial platform is genetically tractable and has a high-flux carbon storage pathway, it has been engineered to produce a variety of valuable compounds from renewable carbon sources. In this study, the bacterium was engineered to produce resveratrol autotrophically using an artificial phenylpropanoid pathway. RESULTS: The heterologous genes involved in the resveratrol biosynthetic pathway-tyrosine ammonia lyase (TAL), 4-coumaroyl CoA ligase (4CL), and stilbene synthase (STS) -were implemented in C. necator H16. The overexpression of acetyl-CoA carboxylase (ACC), disruption of the PHB synthetic pathway, and an increase in the copy number of STS genes enhanced resveratrol production. In particular, the increased copies of VvSTS derived from Vitis vinifera resulted a 2-fold improvement in resveratrol synthesis from fructose. The final engineered CR-5 strain produced 1.9 mg/L of resveratrol from CO2 and tyrosine via lithoautotrophic fermentation. CONCLUSIONS: To the best of our knowledge, this study is the first to describe the valorization of CO2 into polyphenolic compounds by engineering a phenylpropanoid pathway using the lithoautotrophic bacterium C. necator H16, demonstrating the potential of this strain a platform for sustainable chemical production.


Assuntos
Dióxido de Carbono , Cupriavidus necator , Fermentação , Engenharia Metabólica , Resveratrol , Cupriavidus necator/metabolismo , Cupriavidus necator/genética , Resveratrol/metabolismo , Dióxido de Carbono/metabolismo , Engenharia Metabólica/métodos , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Amônia-Liases/metabolismo , Amônia-Liases/genética , Vias Biossintéticas
7.
Sci Rep ; 14(1): 9512, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664593

RESUMO

Continuous research on obtaining an even more efficient production of very long-chain polyunsaturated fatty acids (VLC-PUFAs) in plants remains one of the main challenges of scientists working on plant lipids. Since crops are not able to produce these fatty acids due to the lack of necessary enzymes, genes encoding them must be introduced exogenously from native organisms producing VLC-PUFAs. In this study we reported, in tobacco leaves, the characterization of three distinct ∆6-desaturases from diatom Phaeodactylum tricornutum, fungi Rhizopus stolonifer and microalge Osterococcus tauri and two different ∆5-desaturases from P. tricornutum and single-celled saprotrophic eukaryotes Thraustochytrium sp. The in planta agroinfiltration of essential ∆6-desaturases, ∆6-elongases and ∆5-desaturases allowed for successful introduction of eicosapentaenoic acid (20:5∆5,8,11,14,17) biosynthesis pathway. However, despite the desired, targeted production of ω3-fatty acids we detected the presence of ω6-fatty acids, indicating and confirming previous results that all tested desaturases are not specifically restricted to neither ω3- nor ω6-pathway. Nevertheless, the additional co-expression of acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) from Phaeodactylum tricornutum boosted the proportion of ω3-fatty acids in newly synthesized fatty acid pools. For the most promising genes combinations the EPA content reached at maximum 1.4% of total lipid content and 4.5% of all fatty acids accumulated in the TAG pool. Our results for the first time describe the role of LPCAT enzyme and its effectiveness in alleviating a bottleneck called 'substrate dichotomy' for improving the transgenic production of VLC-PUFAs in plants.


Assuntos
Diatomáceas , Ácidos Graxos Dessaturases , Ácidos Graxos Ômega-3 , Engenharia Metabólica , Nicotiana , Plantas Geneticamente Modificadas , Diatomáceas/genética , Diatomáceas/metabolismo , Diatomáceas/enzimologia , Engenharia Metabólica/métodos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/biossíntese , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Nicotiana/metabolismo
8.
Biotechnol J ; 19(3): e2300650, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479990

RESUMO

S-Adenosyl-L-methionine (SAM) is a substrate for many enzyme-catalyzed reactions and provides methyl groups in numerous biological methylations, and thus has vast applications in the agriculture and medical field. Saccharomyces cerevisiae has been engineered as a platform with significant potential for producing SAM, but the current production has room for improvement. Thus, a method that consists of a series of metabolic engineering strategies was established in this study. These strategies included enhancing SAM synthesis, increasing ATP supply, down-regulating SAM metabolism, and down-regulating competing pathway. After combinatorial metabolic engineering, Bayesian optimization was conducted on the obtained strain C262P6S to optimize the fermentation medium. A final yield of 2972.8 mg·L-1 at 36 h with 29.7% of the L-Met conversion rate in the shake flask was achieved, which was 26.3 times higher than that of its parent strain and the highest reported production in the shake flask to date. This paper establishes a feasible foundation for the construction of SAM-producing strains using metabolic engineering strategies and demonstrates the effectiveness of Bayesian optimization in optimizing fermentation medium to enhance the generation of SAM.


Assuntos
Metionina , S-Adenosilmetionina , Metionina/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica/métodos , Teorema de Bayes , Fermentação , Racemetionina/metabolismo
9.
Cell ; 187(5): 1278-1295.e20, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38387457

RESUMO

CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA. Applying MEGA to a model of CAR T cell exhaustion, we robustly suppressed inhibitory receptor upregulation and uncovered paired regulators of T cell function through combinatorial CRISPR screening. We additionally implemented druggable regulation of MEGA to control CAR activation in a receptor-independent manner. Lastly, MEGA enabled multiplexed disruption of immunoregulatory metabolic pathways to enhance CAR T cell fitness and anti-tumor activity in vitro and in vivo. MEGA offers a versatile synthetic toolkit for applications in cancer immunotherapy and beyond.


Assuntos
Engenharia Metabólica , Linfócitos T , Humanos , Perfilação da Expressão Gênica , Engenharia Metabólica/métodos , RNA , Transcriptoma
10.
Bioresour Technol ; 393: 130104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008225

RESUMO

This study explored the potential of methanol as a sustainable feedstock for biomanufacturing, focusing on Methylobacterium extorquens, a well-established representative of methylotrophic cell factories. Despite this bacterium's long history, its untapped photosynthetic capabilities for production enhancement have remained unreported. Using genome-scale flux balance analysis, it was hypothesized that introducing photon fluxes could boost the yield of 3-hydroxypropionic acid (3-HP), an energy- and reducing equivalent-consuming chemicals. To realize this, M. extorquens was genetically modified by eliminating the negative regulator of photosynthesis, leading to improved ATP levels and metabolic activity in non-growth cells during a two-stage fermentation process. This modification resulted in a remarkable 3.0-fold increase in 3-HP titer and a 2.1-fold increase in its yield during stage (II). Transcriptomics revealed that enhanced light-driven methanol oxidation, NADH transhydrogenation, ATP generation, and fatty acid degradation were key factors. This development of photo-methylotrophy as a platform technology introduced novel opportunities for future production enhancements.


Assuntos
Ácido Láctico/análogos & derivados , Methylobacterium , Methylobacterium/genética , Methylobacterium/metabolismo , Fermentação , Metanol/metabolismo , Trifosfato de Adenosina/metabolismo , Engenharia Metabólica/métodos
11.
Microb Cell Fact ; 22(1): 234, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964284

RESUMO

Flavonoids are important plant secondary metabolites showing antioxidant, antitumor, anti-inflammatory, and antiviral activities, among others. Methylated flavonoids are particularly interesting compared to non-methylated ones due to their greater stability and intestinal absorption, which improves their oral bioavailability. In this work we have stablished a metabolic engineered strain of Streptomyces albidoflavus with enhanced capabilities for flavonoid production, achieving a 1.6-fold increase in the biosynthesis of naringenin with respect to the parental strain. This improved strain, S. albidoflavus UO-FLAV-004, has been used for the heterologous biosynthesis of the methylated flavonoids sakuranetin, acacetin and genkwanin. The achieved titers of sakuranetin and acacetin were 8.2 mg/L and 5.8 mg/L, respectively. The genkwanin titers were 0.8 mg/L, with a bottleneck identified in this producing strain. After applying a co-culture strategy, genkwanin production titers reached 3.5 mg/L, which represents a 4.4-fold increase. To our knowledge, this study presents the first biosynthesis of methylated flavonoids in not only any Streptomyces species, but also in any Gram-positive bacteria.


Assuntos
Engenharia Metabólica , Streptomyces , Engenharia Metabólica/métodos , Flavonoides , Streptomyces/genética , Streptomyces/metabolismo
12.
Microb Cell Fact ; 22(1): 212, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838667

RESUMO

BACKGROUND: Oviedomycin is one among several polyketides known for their potential as anticancer agents. The biosynthetic gene cluster (BGC) for oviedomycin is primarily found in Streptomyces antibioticus. However, because this BGC is usually inactive under normal laboratory conditions, it is necessary to employ systematic metabolic engineering methods, such as heterologous expression, refactoring of BGCs, and optimization of precursor biosynthesis, to allow efficient production of these compounds. RESULTS: Oviedomycin BGC was captured from the genome of Streptomyces antibioticus by a newly constructed plasmid, pCBA, and conjugated into the heterologous strain, S. coelicolor M1152. To increase the production of oviedomycin, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system was utilized in an in vitro setting to refactor the native promoters within the ovm BGC. The target promoters of refactoring were selected based on examination of factors such as transcription levels and metabolite profiling. Furthermore, genome-scale metabolic simulation was applied to find overexpression targets that could enhance the biosynthesis of precursors or cofactors related to oviedomycin production. The combined approach led to a significant increase in oviedomycin production, reaching up to 670 mg/L, which is the highest titer reported to date. This demonstrates the potential of the approach undertaken in this study. CONCLUSIONS: The metabolic engineering approach used in this study led to the successful production of a valuable polyketide, oviedomycin, via BGC cloning, promoter refactoring, and gene manipulation of host metabolism aided by genome-scale metabolic simulation. This approach can be also useful for the efficient production of other secondary molecules encoded by 'silent' BGCs.


Assuntos
Policetídeos , Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Engenharia Metabólica/métodos , Streptomyces/genética , Policetídeos/metabolismo , Família Multigênica
13.
Microb Cell Fact ; 22(1): 204, 2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37807050

RESUMO

BACKGROUND: "ATP wasting" has been observed in 13C metabolic flux analyses of Saccharomyces cerevisiae, a yeast strain commonly used to produce ethanol. Some strains of S. cerevisiae, such as the sake strain Kyokai 7, consume approximately two-fold as much ATP as laboratory strains. Increased ATP consumption may be linked to the production of ethanol, which helps regenerate ATP. RESULTS: This study was conducted to enhance ethanol and 2,3-butanediol (2,3-BDO) production in the S. cerevisiae strains, ethanol-producing strain BY318 and 2,3-BDO-producing strain YHI030, by expressing the fructose-1,6-bisphosphatase (FBPase) and ATP synthase (ATPase) genes to induce ATP dissipation. The introduction of a futile cycle for ATP consumption in the pathway was achieved by expressing various FBPase and ATPase genes from Escherichia coli and S. cerevisiae in the yeast strains. The production of ethanol and 2,3-BDO was evaluated using high-performance liquid chromatography and gas chromatography, and fermentation tests were performed on synthetic media under aerobic conditions in batch culture. The results showed that in the BY318-opt_ecoFBPase (expressing opt_ecoFBPase) and BY318-ATPase (expressing ATPase) strains, specific glucose consumption was increased by 30% and 42%, respectively, and the ethanol production rate was increased by 24% and 45%, respectively. In contrast, the YHI030-opt_ecoFBPase (expressing opt_ecoFBPase) and YHI030-ATPase (expressing ATPase) strains showed increased 2,3-BDO yields of 26% and 18%, respectively, and the specific production rate of 2,3-BDO was increased by 36%. Metabolomic analysis confirmed the introduction of the futile cycle. CONCLUSION: ATP wasting may be an effective strategy for improving the fermentative biosynthetic capacity of S. cerevisiae, and increased ATP consumption may be a useful tool in some alcohol-producing strains.


Assuntos
Etanol , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Engenharia Metabólica/métodos , Fermentação , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo
14.
Adv Sci (Weinh) ; 10(31): e2302417, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37749873

RESUMO

Prokaryotic genomes are generally organized in haploid. In synthetic biological research, efficient chassis cells must be constructed to produce bio-based products. Here, the essential division of the ftsZ gene to create functional polyploid E. coli is regulated. The artificial polyploid E. coli containing 2-4 chromosomes is confirmed through PCR amplification, terminator localization, and flow cytometry. The polyploid E. coli exhibits a larger cell size, and its low pH tolerance and acetate resistance are stronger than those of haploid E. coli. Transcriptome analysis shows that the genes of the cell's main functional pathways are significantly upregulated in the polyploid E. coli. These advantages of the polyploid E. coli results in the highest reported L-threonine yield (160.3 g L-1 ) in fed-batch fermentation to date. In summary, an easy and convenient method for constructing polyploid E. coli and demonstrated its application in L-threonine production is developed. This work provides a new approach for creating an excellent host strain for biochemical production and studying the evolution of prokaryotes and their chromosome functions.


Assuntos
Escherichia coli , Engenharia Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Treonina/genética , Treonina/metabolismo , Fermentação
15.
Metab Eng ; 79: 38-48, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392985

RESUMO

Microbial overproduction of aromatic chemicals has gained considerable industrial interest and various metabolic engineering approaches have been employed in recent years to address the associated challenges. So far, most studies have used sugars (mostly glucose) or glycerol as the primary carbon source. In this study, we used ethylene glycol (EG) as the main carbon substrate. EG could be obtained from the degradation of plastic and cellulosic wastes. As a proof of concept, Escherichia coli was engineered to transform EG into L-tyrosine, a valuable aromatic amino acid. Under the best fermentation condition, the strain produced 2 g/L L-tyrosine from 10 g/L EG, outperforming glucose (the most common sugar feedstock) in the same experimental conditions. To prove the concept that EG can be converted into different aromatic chemicals, E. coli was further engineered with a similar approach to synthesize other valuable aromatic chemicals, L-phenylalanine and p-coumaric acid. Finally, waste polyethylene terephthalate (PET) bottles were degraded using acid hydrolysis and the resulting monomer EG was transformed into L-tyrosine using the engineered E. coli, yielding a comparable titer to that obtained using commercial EG. The strains developed in this study should be valuable to the community for producing valuable aromatics from EG.


Assuntos
Escherichia coli , Etilenoglicol , Escherichia coli/genética , Escherichia coli/metabolismo , Etilenoglicol/metabolismo , Engenharia Metabólica/métodos , Glucose/metabolismo , Tirosina/genética , Tirosina/metabolismo , Carbono/metabolismo , Fermentação
16.
Biotechnol Adv ; 68: 108214, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37478981

RESUMO

Triterpenoids are among the most assorted class of specialized metabolites found in all the taxa of living organisms. Triterpenoids are the leading active ingredients sourced from plant species and are utilized in pharmaceutical and cosmetic industries. The triterpenoid precursor 2,3-oxidosqualene, which is biosynthesized via the mevalonate (MVA) pathway is structurally diversified by the oxidosqualene cyclases (OSCs) and other scaffold-decorating enzymes such as cytochrome P450 monooxygenases (P450s), UDP-glycosyltransferases (UGTs) and acyltransferases (ATs). A majority of the bioactive triterpenoids are harvested from the native hosts using the traditional methods of extraction and occasionally semi-synthesized. These methods of supply are time-consuming and do not often align with sustainability goals. Recent advancements in metabolic engineering and synthetic biology have shown prospects for the green routes of triterpenoid pathway reconstruction in heterologous hosts such as Escherichia coli, Saccharomyces cerevisiae and Nicotiana benthamiana, which appear to be quite promising and might lead to the development of alternative source of triterpenoids. The present review describes the biotechnological strategies used to elucidate complex biosynthetic pathways and to understand their regulation and also discusses how the advances in triterpenoid pathway engineering might aid in the scale-up of triterpenoid production in engineered hosts.


Assuntos
Triterpenos , Plantas/metabolismo , Biotecnologia/métodos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo
17.
Sci Rep ; 13(1): 9732, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322079

RESUMO

Ectoine has gained considerable attention as a high-value chemical with significant application potential and market demand. This study aimed to increase ectoine yields by blocking the metabolic shunt pathway of L-aspartate-4-semialdehyde, the precursor substrate in ectoine synthesis. The homoserine dehydrogenase encoded by hom in H. campaniensis strain XH26 is responsible for the metabolic shunt of L-aspartate-4-semialdehyde to glycine. CRISPR/Cas9 technology was used to seamlessly knockout hom, blocking the metabolic shunt pathway to increase ectoine yields. The ectoine yield of XH26/Δhom was 351.13 mg (g CDW)-1 after 48 h of incubation in 500 mL shake flasks using optimal medium with 1.5 mol L-1 NaCl, which was significantly higher than the 239.18 mg (g CDW)-1 of the wild-type strain. Additionally, the absence of the ectoine metabolic shunt pathway affects betaine synthesis, and thus the betaine yields of XH26/Δhom was 19.98 mg (g CDW)-1, considerably lower than the 69.58 mg (g CDW)-1 of the wild-type strain. Batch fermentation parameters were optimized, and the wild-type strain and XH26/Δhom were fermented in 3 L fermenters, resulting in a high ectoine yield of 587.09 mg (g CDW)-1 for the defective strain, which was significantly greater than the ectoine yield of 385.03 mg (g CDW)-1 of the wild-type strain. This study showed that blocking the metabolic shunt of synthetic substrates effectively increases ectoine production, and a reduction in the competitively compatible solute betaine appears to promote increased ectoine synthesis.


Assuntos
Ácido Aspártico , Engenharia Metabólica , Engenharia Metabólica/métodos , Betaína
18.
Biotechnol Bioeng ; 120(10): 3039-3056, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37309999

RESUMO

ß-elemene is one of the most commonly used antineoplastic drugs in cancer treatment. As a plant-derived natural chemical, biologically engineering microorganisms to produce germacrene A to be converted to ß-elemene harbors great expectations since chemical synthesis and plant isolation methods come with their production deficiencies. In this study, we report the design of an Escherichia coli cell factory for the de novo production of germacrene A to be converted to ß-elemene from a simple carbon source. A series of systematic approaches of engineering the isoprenoid and central carbon pathways, translational and protein engineering of the sesquiterpene synthase, and exporter engineering yielded high-efficient ß-elemene production. Specifically, deleting competing pathways in the central carbon pathway ensured the availability of acetyl-coA, pyruvate, and glyceraldehyde-3-phosphate for the isoprenoid pathways. Adopting lycopene color as a high throughput screening method, an optimized NSY305N was obtained via error-prone polymerase chain reaction mutagenesis. Further overexpression of key pathway enzymes, exporter genes, and translational engineering produced 1161.09 mg/L of ß-elemene in a shake flask. Finally, we detected the highest reported titer of 3.52 g/L of ß-elemene and 2.13 g/L germacrene A produced by an E. coli cell factory in a 4-L fed-batch fermentation. The systematic engineering reported here generally applies to microbial production of a broader range of chemicals. This illustrates that rewiring E. coli central metabolism is viable for producing acetyl-coA-derived and pyruvate-derived molecules cost-effectively.


Assuntos
Escherichia coli , Sesquiterpenos , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Acetilcoenzima A/metabolismo , Sesquiterpenos/metabolismo , Carbono/metabolismo
19.
Bioresour Technol ; 378: 129012, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37019413

RESUMO

Nervonic acid has proven efficacy in brain development and the prevention of neurodegenerative diseases. Here, an alternative and sustainable strategy for nervonic acid-enriched plant oil production was established. Different ß-ketoacyl-CoA synthases and heterologous Δ15 desaturase were co-expressed, combined with the deletion of the ß-oxidation pathway to construct orthogonal plant and non-plant nervonic acid biosynthesis pathways in Yarrowia lipolytica. A "block-pull-restrain" strategy was further applied to improve the supply of stearic acid as the precursor of the non-plant pathway. Then, lysophosphatidic acid acyltransferase from Malania oleifera (MoLpaat) was identified, which showed specificity for nervonic acid. Endogenous LPAAT was exchanged by MoLPAAT resulted in 17.10 % nervonic acid accumulation. Finally, lipid metabolism was engineered and cofactor supply was increased to boost the lipid accumulation in a stable null-hyphal strain. The final strain produced 57.84 g/L oils with 23.44 % nervonic acid in fed-batch fermentation, which has the potential to substitute nervonic acid-enriched plant oil.


Assuntos
Yarrowia , Yarrowia/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Óleos de Plantas/metabolismo , Alimentos , Engenharia Metabólica/métodos
20.
Metab Eng ; 77: 199-207, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37054967

RESUMO

Promoters adjust cellular gene expression in response to internal or external signals and are key elements for implementing dynamic metabolic engineering concepts in fermentation processes. One useful signal is the dissolved oxygen content of the culture medium, since production phases often proceed in anaerobic conditions. Although several oxygen-dependent promoters have been described, a comprehensive and comparative study is missing. The goal of this work is to systematically test and characterize 15 promoter candidates that have been previously reported to be induced upon oxygen depletion in Escherichia coli. For this purpose, we developed a microtiter plate-level screening using an algal oxygen-independent flavin-based fluorescent protein and additionally employed flow cytometry analysis for verification. Various expression levels and dynamic ranges could be observed, and six promoters (nar-strong, nar-medium, nar-weak, nirB-m, yfiD-m, and fnrF8) appear particularly suited for dynamic metabolic engineering applications. We demonstrate applicability of these candidates for dynamic induction of enforced ATP wasting, a metabolic engineering approach to increase productivity of microbial strains that requires a narrow level of ATPase expression for optimal function. The selected candidates exhibited sufficient tightness under aerobic conditions while, under complete anaerobiosis, driving expression of the cytosolic F1-subunit of the ATPase from E. coli to levels that resulted in unprecedented specific glucose uptake rates. We finally utilized the nirB-m promoter to demonstrate the optimization of a two-stage lactate production process by dynamically enforcing ATP wasting, which is automatically turned on in the anaerobic (growth-arrested) production phase to boost the volumetric productivity. Our results are valuable for implementing metabolic control and bioprocess design concepts that use oxygen as signal for regulation and induction.


Assuntos
Proteínas de Escherichia coli , Engenharia Metabólica , Engenharia Metabólica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentação , Trifosfato de Adenosina/metabolismo , Oxigênio/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA