Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
1.
Mol Genet Metab ; 142(3): 108508, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820906

RESUMO

Short-chain enoyl-coA hydratase (SCEH) deficiency due to biallelic pathogenic ECHS1 variants was first reported in 2014 in association with Leigh syndrome (LS) and increased S-(2-carboxypropyl)cysteine excretion. It is potentially treatable with a valine-restricted, high-energy diet and emergency regimen. Recently, Simon et al. described four Samoan children harbouring a hypomorphic allele (c.489G > A, p.Pro163=) associated with reduced levels of normally-spliced mRNA. This synonymous variant, missed on standard genomic testing, is prevalent in the Samoan population (allele frequency 0.17). Patients with LS and one ECHS1 variant were identified in NZ and Australian genomic and clinical databases. ECHS1 sequence data were interrogated for the c.489G > A variant and clinical data were reviewed. Thirteen patients from 10 families were identified; all had Pacific ancestry including Samoan, Maori, Cook Island Maori, and Tokelauan. All developed bilateral globus pallidi lesions, excluding one pre-symptomatic infant. Symptom onset was in early childhood, and was triggered by illness or starvation in 9/13. Four of 13 had exercise-induced dyskinesia, 9/13 optic atrophy and 6/13 nystagmus. Urine S-(2-carboxypropyl)cysteine-carnitine and other SCEH-related metabolites were normal or mildly increased. Functional studies demonstrated skipping of exon four and markedly reduced ECHS1 protein. These data provide further support for the pathogenicity of this ECHS1 variant which is also prevalent in Maori, Cook Island Maori, and Tongan populations (allele frequency 0.14-0.24). It highlights the need to search for a second variant in apparent heterozygotes with an appropriate phenotype, and has implications for genetic counselling in family members who are heterozygous for the more severe ECHS1 alleles. SYNOPSIS: Short-chain enoyl-CoA hydratase deficiency is a frequent cause of Leigh-like disease in Maori and wider-Pacific populations, due to the high carrier frequency of a hypomorphic ECHS1 variant c.489G > A, p.[Pro163=, Phe139Valfs*65] that may be overlooked by standard genomic testing.


Assuntos
Enoil-CoA Hidratase , Doença de Leigh , Humanos , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/deficiência , Masculino , Feminino , Lactente , Austrália/epidemiologia , Doença de Leigh/genética , Pré-Escolar , Criança , Mutação , Nova Zelândia , Alelos , Frequência do Gene
2.
Int J Biochem Cell Biol ; 172: 106585, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734232

RESUMO

Tamoxifen is an estrogen receptor modulator that has been reported to alleviate hepatic lipid accumulation in mice, but the mechanism is still unclear. Peroxisome fatty acid ß-oxidation is the main metabolic pathway for the overload of long-chain fatty acids. As long-chain fatty acids are a cause of hepatic lipid accumulation, the activation of peroxisome fatty acid ß-oxidation might be a novel therapeutic strategy for metabolic associated fatty liver disease. In this study, we investigated the mechanism of tamoxifen against hepatic lipid accumulation based on the activation of peroxisome fatty acid ß-oxidation. Tamoxifen reduced liver long-chain fatty acids and relieved hepatic lipid accumulation in high fat diet mice without sex difference. In vitro, tamoxifen protected primary hepatocytes against palmitic acid-induced lipotoxicity. Mechanistically, the RNA-sequence of hepatocytes isolated from the liver revealed that peroxisome fatty acid ß-oxidation was activated by tamoxifen. Protein and mRNA expression of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase were significantly increased in vivo and in vitro. Small interfering RNA enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase in primary hepatocytes abolished the therapeutic effects of tamoxifen in lipid accumulation. In conclusion, our results indicated that tamoxifen could relieve hepatic lipid accumulation in high fat diet mice based on the activation of enoyl CoA hydratase and 3-hydroxyacyl CoA hydratase-mediated peroxisome fatty acids ß-oxidation.


Assuntos
Enoil-CoA Hidratase , Hepatócitos , Metabolismo dos Lipídeos , Fígado , Camundongos Endogâmicos C57BL , Oxirredução , Peroxissomos , Tamoxifeno , Animais , Tamoxifeno/farmacologia , Camundongos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Masculino , Peroxissomos/metabolismo , Peroxissomos/efeitos dos fármacos , Enoil-CoA Hidratase/metabolismo , Enoil-CoA Hidratase/genética , Regulação para Cima/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Feminino , Ácidos Graxos/metabolismo
3.
Mol Med ; 30(1): 69, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783226

RESUMO

BACKGROUND: The Enoyl-CoA hydratase/isomerase family plays a crucial role in the metabolism of tumors, being crucial for maintaining the energy balance and biosynthetic needs of cancer cells. However, the enzymes within this family that are pivotal in gastric cancer (GC) remain unclear. METHODS: We employed bioinformatics techniques to identify key Enoyl-CoA hydratase/isomerase in GC. The expression of ECHDC2 and its clinical significance were validated through tissue microarray analysis. The role of ECHDC2 in GC was further assessed using colony formation assays, CCK8 assay, EDU assay, Glucose and lactic acid assay, and subcutaneous tumor experiments in nude mice. The mechanism of action of ECHDC2 was validated through Western blotting, Co-immunoprecipitation, and immunofluorescence experiments. RESULTS: Our analysis of multiple datasets indicates that low expression of ECHDC2 in GC is significantly associated with poor prognosis. Overexpression of ECHDC2 notably inhibits aerobic glycolysis and proliferation of GC cells both in vivo and in vitro. Further experiments revealed that overexpression of ECHDC2 suppresses the P38 MAPK pathway by inhibiting the protein level of MCCC2, thereby restraining glycolysis and proliferation in GC cells. Ultimately, it was discovered that ECHDC2 promotes the ubiquitination and subsequent degradation of MCCC2 protein by binding with NEDD4. CONCLUSIONS: These findings underscore the pivotal role of the ECHDC2 in regulating aerobic glycolysis and proliferation in GC cells, suggesting ECHDC2 as a potential therapeutic target in GC.


Assuntos
Proliferação de Células , Ubiquitina-Proteína Ligases Nedd4 , Neoplasias Gástricas , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Enoil-CoA Hidratase/metabolismo , Enoil-CoA Hidratase/genética , Regulação Neoplásica da Expressão Gênica , Glicólise , Camundongos Nus , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Ligação Proteica , Proteólise , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Neoplasias Gástricas/genética , Ubiquitinação , Efeito Warburg em Oncologia
4.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293464

RESUMO

The lack of effective treatments for mitochondrial disease has seen the development of new approaches, including those that stimulate mitochondrial biogenesis to boost ATP production. Here, we examined the effects of deoxyribonucleosides (dNs) on mitochondrial biogenesis and function in Short chain enoyl-CoA hydratase 1 (ECHS1) 'knockout' (KO) cells, which exhibit combined defects in both oxidative phosphorylation (OXPHOS) and mitochondrial fatty acid ß-oxidation (FAO). DNs treatment increased mitochondrial DNA (mtDNA) copy number and the expression of mtDNA-encoded transcripts in both CONTROL (CON) and ECHS1 KO cells. DNs treatment also altered global nuclear gene expression, with key gene sets including 'respiratory electron transport' and 'formation of ATP by chemiosmotic coupling' increased in both CON and ECHS1 KO cells. Genes involved in OXPHOS complex I biogenesis were also upregulated in both CON and ECHS1 KO cells following dNs treatment, with a corresponding increase in the steady-state levels of holocomplex I in ECHS1 KO cells. Steady-state levels of OXPHOS complex V, and the CIII2/CIV and CI/CIII2/CIV supercomplexes, were also increased by dNs treatment in ECHS1 KO cells. Importantly, treatment with dNs increased both basal and maximal mitochondrial oxygen consumption in ECHS1 KO cells when metabolizing either glucose or the fatty acid palmitoyl-L-carnitine. These findings highlight the ability of dNs to improve overall mitochondrial respiratory function, via the stimulation mitochondrial biogenesis, in the face of combined defects in OXPHOS and FAO due to ECHS1 deficiency.


Assuntos
Enoil-CoA Hidratase , Biogênese de Organelas , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , DNA Mitocondrial/genética , Ácidos Graxos/metabolismo , Glucose , Carnitina , Desoxirribonucleosídeos , Trifosfato de Adenosina
5.
Cell Death Dis ; 12(10): 911, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615856

RESUMO

Sphingolipid metabolic dysregulation has increasingly been considered to be a drug-resistance mechanism for a variety of tumors. In this study, through an LC-MS assay, LIM and SH3 protein 1 (LASP1) was identified as a sphingolipid-metabolism-involved protein, and short-chain enoyl-CoA hydratase (ECHS1) was identified as a new LASP1-interacting protein through a protein assay in colorectal cancer (CRC). Gain- and loss-of-function analyses demonstrated the stimulatory role played by ECHS1 in CRC cell proliferation, migration, and invasion in vitro and in vivo. Mechanistic studies of the underlying tumor-supportive oncometabolism indicate that ECHS1 enables altering ceramide (Cer) metabolism that increases glycosphingolipid synthesis (HexCer) by promoting UDP-glucose ceramide glycosyltransferase (UGCG). Further analysis showed that ECHS1 promotes CRC progression and drug resistance by releasing reactive oxygen species (ROS) and interfering mitochondrial membrane potential via the PI3K/Akt/mTOR-dependent signaling pathway. Meanwhile, the phenomenon of promoting the survival and drug resistance of CRC cells caused by ECHS1 could be reversed by Eliglustat, a specific inhibitor of UCCG, in vitro and in vivo. IHC assay showed that ECHS1 was overexpressed in CRC tissues, which was related to the differentiation and poor prognosis of CRC patients. This study provides new insight into the mechanism by which phospholipids promote drug resistance in CRC and identifies potential targets for future therapies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ceramidas/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas do Citoesqueleto/metabolismo , Progressão da Doença , Enoil-CoA Hidratase/metabolismo , Proteínas com Domínio LIM/metabolismo , Esfingolipídeos/metabolismo , Animais , Apoptose , Autofagia , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Glicosilação , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Transporte de Monossacarídeos , Invasividade Neoplásica , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingomielinas/metabolismo , Regulação para Cima/genética , Domínios de Homologia de src
6.
Clin Sci (Lond) ; 135(19): 2243-2263, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34569605

RESUMO

The protein tyrosine kinase inhibitor imatinib is used in the treatment of various malignancies but may also promote beneficial effects in the treatment of diabetes. The aim of the present investigation was to characterize the mechanisms by which imatinib protects insulin producing cells. Treatment of non-obese diabetic (NOD) mice with imatinib resulted in increased beta-cell AMP-activated kinase (AMPK) phosphorylation. Imatinib activated AMPK also in vitro, resulting in decreased ribosomal protein S6 phosphorylation and protection against islet amyloid polypeptide (IAPP)-aggregation, thioredoxin interacting protein (TXNIP) up-regulation and beta-cell death. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) mimicked and compound C counteracted the effect of imatinib on beta-cell survival. Imatinib-induced AMPK activation was preceded by reduced glucose/pyruvate-dependent respiration, increased glycolysis rates, and a lowered ATP/AMP ratio. Imatinib augmented the fractional oxidation of fatty acids/malate, possibly via a direct interaction with the beta-oxidation enzyme enoyl coenzyme A hydratase, short chain, 1, mitochondrial (ECHS1). In non-beta cells, imatinib reduced respiratory chain complex I and II-mediated respiration and acyl-CoA carboxylase (ACC) phosphorylation, suggesting that mitochondrial effects of imatinib are not beta-cell specific. In conclusion, tyrosine kinase inhibitors modestly inhibit mitochondrial respiration, leading to AMPK activation and TXNIP down-regulation, which in turn protects against beta-cell death.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus/tratamento farmacológico , Metabolismo Energético/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Mesilato de Imatinib/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Animais , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Diabetes Mellitus/enzimologia , Diabetes Mellitus/patologia , Modelos Animais de Doenças , Enoil-CoA Hidratase/metabolismo , Ativação Enzimática , Humanos , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos Endogâmicos NOD , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Fosforilação , Ratos Sprague-Dawley , Proteína S6 Ribossômica/metabolismo
7.
Radiat Res ; 196(2): 213-224, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34087943

RESUMO

Ketogenic diets (KD) are high in fat and low in carbohydrates, forcing cells to utilize mitochondrial fatty acid oxidation for energy production. Since cancer cells demonstrate increased mitochondrial oxidative stress relative to normal cells, we hypothesized that a KD may selectively enhance metabolic oxidative stress in head and neck cancer cells, sensitizing them to radiation and platinum-based chemotherapy without causing increased toxicity in surrounding normal tissues. This hypothesis was tested in preclinical murine xenografts and in a phase 1 clinical trial (NCT01975766). In this study, mice bearing human head and neck cancer xenografts (FaDu) were fed either standard mouse chow or KetoCal® KD (90% fat, 8% carbohydrate, 2% protein) and exposed to ionizing radiation. Tumors were harvested from mice to test for glutathione, a biomarker of oxidative stress. In parallel, patients with locally advanced head and neck cancer were enrolled in a phase 1 clinical trial where they consumed KD and received radiation with concurrent platinum-based chemotherapy. Subjects consumed KetoCal KD via percutaneous endoscopic gastrostomy (PEG) tube and were also allowed to orally consume water, sugar-free drinks, and foods approved by a dietitian. Oxidative stress markers including protein carbonyls and total glutathione were assessed in patient blood samples both pre-KD and while consuming the KD. Mice bearing FaDu xenografts that received radiation and KD demonstrated a slight improvement in tumor growth rate and survival compared to mice that received radiation alone; however a variation in responses was seen dependent on the fatty acid composition of the diet. In the phase 1 clinical trial, a total of twelve patients were enrolled in the study. Four patients completed five weeks of the KD as per protocol (with variance in compliance). Eight patients did not tolerate the diet with concurrent radiation and platinum-chemotherapy (5 were patient decision and 3 were removed from study due to toxicity). The median number of days consuming a KD in patients who did not complete the study was 5.5 (range: 2-8 days). Reasons for discontinuation included "stress of diet compliance" (1 patient), grade 2 nausea (3 patients), and grade 3 fatigue (1 patient). Three patients were removed from the trial due to dose-limiting toxicities including: grade 4 hyperuricemia (2 patients) and grade 3 acute pancreatitis (1 patient). Median weight loss was 2.95% for the KD-tolerant group and 7.92% for patients who did not tolerate the diet. In conclusion, the ketogenic diet shows promise as a treatment combined with radiation in preclinical mouse head and neck cancer xenografts. A phase 1 clinical trial evaluating the safety and tolerability of KD demonstrated difficulty with diet compliance when combined with standard-of-care radiation therapy and cisplatin chemotherapy.


Assuntos
Dieta Cetogênica/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/dietoterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , 3-Hidroxiacil-CoA Desidrogenases/efeitos dos fármacos , 3-Hidroxiacil-CoA Desidrogenases/efeitos da radiação , Acetil-CoA C-Aciltransferase/efeitos dos fármacos , Acetil-CoA C-Aciltransferase/efeitos da radiação , Adulto , Idoso , Animais , Isomerases de Ligação Dupla Carbono-Carbono/efeitos dos fármacos , Isomerases de Ligação Dupla Carbono-Carbono/efeitos da radiação , Quimiorradioterapia/efeitos adversos , Dieta Cetogênica/efeitos adversos , Enoil-CoA Hidratase/efeitos dos fármacos , Enoil-CoA Hidratase/efeitos da radiação , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Racemases e Epimerases/efeitos dos fármacos , Racemases e Epimerases/efeitos da radiação , Radiação Ionizante , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação
8.
Sci Prog ; 104(2): 368504211011344, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33881965

RESUMO

Gastric cancer (GC) is one of the most common malignant tumors in the world. As far as we know, no biomarker has been widely accepted for early diagnosis and prognosis prediction of GC. The purpose of this study is to find potential biomarkers to predict the prognosis of GC. The differentially expressed gene (DEG) was analyzed from GSE93774. Enrichr was used to analyze the gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, the enrichment of transcription factors (TF), miRNA, and kinase. GO analysis showed DEGs was enriched in the process of amino acid metabolism. Pathway results showed DEGs was mainly enriched in cell cycle. Propionyl CoA carboxylase alpha (PCCA), Enoyl coenzyme A hydratase short chain 1 (ECHS1), and 3-hydroxyacyl-CoA dehydrogenase (HADH) have prognostic value in patients with GC. ECHS1 and HADH genes were significantly associated with disease-free survival. There was a significant correlation between PCCA and overall survival rate. The results of this study suggest that PCCA, ECHS1, and HADH may be new biomarkers for predicting the prognosis of GC.


Assuntos
3-Hidroxiacil-CoA Desidrogenase , Enoil-CoA Hidratase , Metilmalonil-CoA Descarboxilase , Neoplasias Gástricas , 3-Hidroxiacil-CoA Desidrogenase/genética , Biomarcadores Tumorais/genética , Enoil-CoA Hidratase/genética , Perfilação da Expressão Gênica/métodos , Humanos , Prognóstico , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
9.
J Inherit Metab Dis ; 44(2): 401-414, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32677093

RESUMO

The neurological phenotype of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) and short-chain enoyl-CoA hydratase (SCEH) defects is expanding and natural history studies are necessary to improve clinical management. From 42 patients with Leigh syndrome studied by massive parallel sequencing, we identified five patients with SCEH and HIBCH deficiency. Fourteen additional patients were recruited through collaborations with other centres. In total, we analysed the neurological features and mutation spectrum in 19 new SCEH/HIBCH patients. For natural history studies and phenotype to genotype associations we also included 70 previously reported patients. The 19 newly identified cases presented with Leigh syndrome (SCEH, n = 11; HIBCH, n = 6) and paroxysmal dystonia (SCEH, n = 2). Basal ganglia lesions (18 patients) were associated with small cysts in the putamen/pallidum in half of the cases, a characteristic hallmark for diagnosis. Eighteen pathogenic variants were identified, 11 were novel. Among all 89 cases, we observed a longer survival in HIBCH compared to SCEH patients, and in HIBCH patients carrying homozygous mutations on the protein surface compared to those with variants inside/near the catalytic region. The SCEH p.(Ala173Val) change was associated with a milder form of paroxysmal dystonia triggered by increased energy demands. In a child harbouring SCEH p.(Ala173Val) and the novel p.(Leu123Phe) change, an 83.6% reduction of the protein was observed in fibroblasts. The SCEH and HIBCH defects in the catabolic valine pathway were a frequent cause of Leigh syndrome in our cohort. We identified phenotype and genotype associations that may help predict outcome and improve clinical management.


Assuntos
Anormalidades Múltiplas/genética , Erros Inatos do Metabolismo dos Aminoácidos/genética , Distonia/genética , Enoil-CoA Hidratase/genética , Doença de Leigh/genética , Tioléster Hidrolases/deficiência , Valina/metabolismo , Encéfalo/diagnóstico por imagem , Pré-Escolar , Distonia/diagnóstico , Enoil-CoA Hidratase/deficiência , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Internacionalidade , Doença de Leigh/diagnóstico , Doença de Leigh/metabolismo , Imageamento por Ressonância Magnética , Masculino , Redes e Vias Metabólicas/genética , Mutação , Fenótipo , Taxa de Sobrevida , Tioléster Hidrolases/genética
10.
Brain Dev ; 43(2): 308-313, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33139125

RESUMO

BACKGROUND: ECHS1 is a key enzyme of the valine catabolic pathway and oxidation of fatty acids. In ECHS1 deficiency (ECHS1D), accumulation of toxic intermediates from the valine induces neurodegeneration, which presents Leigh syndrome (LS). Therefore, valine restriction is suggested as an effective therapy. Further, cysteamine may detoxify the toxic metabolites themselves and N-acetylcysteine (NAC) is a potent antioxidant preventing neurological affect. Herein, we report the therapeutic effects of dietary therapy, cysteamine, and NAC in two siblings with ECHS1D, including their clinical, neuroradiological, and chemical aspects. CASE REPORT: The elder sister was the proband and was diagnosed as LS at 13 months of age. Gene analysis identified compound heterozygous ECHS1 mutations. Her psychomotor development was regressed, and she became bedridden. At 4 years old she started a low protein diet (LPD), but with no obvious neurological change. The younger brother was confirmed early with ECHS1D and received cysteamine and NAC treatment from 5 months of age, which could not prevent him developing LS at 7 months of age. Thus, we started a LPD at 14 months of age, with which he regained his ability to roll over, then we proceeded to a valine-restricted diet. The brain magnetic resonance image hyperintensity was diminished, and the lactate peak on magnetic resonance spectroscopy decreased. His neurological outcome is better than his elder sister. In both cases, excretion of valine metabolites decreased after dietary therapy without obvious adverse effects. CONCLUSION: Early initiation of dietary therapy may reduce neurological sequelae in patients with ECHS1D.


Assuntos
Enoil-CoA Hidratase/deficiência , Valina/metabolismo , Acetilcisteína/farmacologia , Cisteamina/farmacologia , Dietoterapia/métodos , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Enoil-CoA Hidratase/fisiologia , Família , Feminino , Testes Genéticos/métodos , Humanos , Lactente , Japão , Doença de Leigh/genética , Doença de Leigh/prevenção & controle , Imageamento por Ressonância Magnética/métodos , Masculino , Mutação/genética , Linhagem , Irmãos , Resultado do Tratamento , Valina/deficiência , Valina/genética
11.
Cell Rep ; 33(8): 108421, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33238129

RESUMO

Emerging evidence indicates that non-mutational drug tolerance mechanisms underlie the survival of residual cancer "persister" cells. Here, we find that BRAF(V600E) mutant melanoma persister cells tolerant to BRAF/MEK inhibitors switch their metabolism from glycolysis to oxidative respiration supported by peroxisomal fatty acid ß-oxidation (FAO) that is transcriptionally regulated by peroxisome proliferator-activated receptor alpha (PPARα). Knockdown of the key peroxisomal FAO enzyme, acyl-CoA oxidase 1 (ACOX1), as well as treatment with the peroxisomal FAO inhibitor thioridazine, specifically suppresses the oxidative respiration of persister cells and significantly decreases their emergence. Consistently, a combination treatment of BRAF/MEK inhibitors with thioridazine in human-melanoma-bearing mice results in a durable anti-tumor response. In BRAF(V600E) melanoma samples from patients treated with BRAF/MEK inhibitors, higher baseline expression of FAO-related genes and PPARα correlates with patients' outcomes. These results pave the way for a metabolic strategy to overcome drug resistance.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Acil-CoA Oxidase/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Enoil-CoA Hidratase/metabolismo , Melanoma/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Racemases e Epimerases/metabolismo , Animais , Humanos , Melanoma/patologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia
12.
Mol Genet Metab ; 131(1-2): 90-97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32928639

RESUMO

BACKGROUND: The plasma acylcarnitine profile is frequently used as a biochemical assessment for follow-up in diagnosed patients with fatty acid oxidation disorders (FAODs). Disease specific acylcarnitine species are elevated during metabolic decompensation but there is clinical and biochemical heterogeneity among patients and limited data on the utility of an acylcarnitine profile for routine clinical monitoring. METHODS: We evaluated plasma acylcarnitine profiles from 30 diagnosed patients with long-chain FAODs (carnitine palmitoyltransferase-2 (CPT2), very long-chain acyl-CoA dehydrogenase (VLCAD), and long-chain 3-hydroxy acyl-CoA dehydrogenase or mitochondrial trifunctional protein (LCHAD/TFP) deficiencies) collected after an overnight fast, after feeding a controlled low-fat diet, and before and after moderate exercise. Our purpose was to describe the variability in this biomarker and how various physiologic states effect the acylcarnitine concentrations in circulation. RESULTS: Disease specific acylcarnitine species were higher after an overnight fast and decreased by approximately 60% two hours after a controlled breakfast meal. Moderate-intensity exercise increased the acylcarnitine species but it varied by diagnosis. When analyzed for a genotype/phenotype correlation, the presence of the common LCHADD mutation (c.1528G > C) was associated with higher levels of 3-hydroxyacylcarnitines than in patients with other mutations. CONCLUSIONS: We found that feeding consistently suppressed and that moderate intensity exercise increased disease specific acylcarnitine species, but the response to exercise was highly variable across subjects and diagnoses. The clinical utility of routine plasma acylcarnitine analysis for outpatient treatment monitoring remains questionable; however, if acylcarnitine profiles are measured in the clinical setting, standardized procedures are required for sample collection to be of value.


Assuntos
Cardiomiopatias/sangue , Carnitina O-Palmitoiltransferase/deficiência , Carnitina/análogos & derivados , Síndrome Congênita de Insuficiência da Medula Óssea/sangue , Erros Inatos do Metabolismo Lipídico/sangue , Erros Inatos do Metabolismo/sangue , Doenças Mitocondriais/sangue , Miopatias Mitocondriais/sangue , Proteína Mitocondrial Trifuncional/deficiência , Doenças Musculares/sangue , Doenças do Sistema Nervoso/sangue , Rabdomiólise/sangue , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Aciltransferase/genética , Acetil-CoA C-Aciltransferase/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/sangue , Isomerases de Ligação Dupla Carbono-Carbono/genética , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Cardiomiopatias/dietoterapia , Cardiomiopatias/patologia , Cardiomiopatias/terapia , Carnitina/sangue , Carnitina/genética , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/sangue , Síndrome Congênita de Insuficiência da Medula Óssea/dietoterapia , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Terapia por Exercício , Jejum , Feminino , Humanos , Erros Inatos do Metabolismo Lipídico/dietoterapia , Erros Inatos do Metabolismo Lipídico/patologia , Erros Inatos do Metabolismo Lipídico/terapia , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/sangue , Masculino , Erros Inatos do Metabolismo/dietoterapia , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/terapia , Doenças Mitocondriais/dietoterapia , Doenças Mitocondriais/patologia , Doenças Mitocondriais/terapia , Miopatias Mitocondriais/dietoterapia , Miopatias Mitocondriais/patologia , Miopatias Mitocondriais/terapia , Proteína Mitocondrial Trifuncional/sangue , Doenças Musculares/dietoterapia , Doenças Musculares/patologia , Doenças Musculares/terapia , Doenças do Sistema Nervoso/dietoterapia , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/terapia , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Rabdomiólise/dietoterapia , Rabdomiólise/patologia , Rabdomiólise/terapia
13.
Biol Pharm Bull ; 43(9): 1382-1392, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32879213

RESUMO

The effects of different dietary fats on hepatic fatty acid oxidation were compared in male ICR mice and Sprague-Dawley rats. Animals were fed diets containing 100 g/kg of either palm oil (saturated fat), safflower oil (rich in linoleic acid), an oil of evening primrose origin (γ-linolenic acid, GLA oil), perilla oil (α-linolenic acid) or fish oil (eicosapentaenoic and doxosahexaenoic acids) for 21 d. GLA, perilla and fish oils, compared with palm and safflower oils, increased the activity of fatty acid oxidation enzymes in both mice and rats, with some exceptions. In mice, GLA and fish oils greatly increased the peroxisomal palmitoyl-CoA oxidation rate, and the activity of acyl-CoA oxidase and enoyl-CoA hydratase to the same degree. The effects were much smaller with perilla oil. In rats, enhancing effects were more notable with fish oil than with GLA and perilla oils, excluding the activity of enoyl-CoA hydratase, and were comparable between GLA and perilla oils. In mice, strong enhancing effects of GLA oil, which were greater than with perilla oil and comparable to those of fish oil, were confirmed on mRNA levels of peroxisomal but not mitochondrial fatty acid oxidation enzymes. In rats, the effects of GLA and perilla oils on mRNA levels of peroxisomal and mitochondrial enzymes were indistinguishable, and lower than those observed with fish oil. Therefore, considerable diversity in the response to dietary polyunsaturated fats, especially the oil rich in γ-linolenic acid and fish oil, of hepatic fatty acid oxidation pathway exists between mice and rats.


Assuntos
Gorduras na Dieta/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Ácido gama-Linolênico/administração & dosagem , Acil-CoA Oxidase/metabolismo , Ração Animal , Animais , Enoil-CoA Hidratase/metabolismo , Óleos de Peixe/administração & dosagem , Óleos de Peixe/química , Fígado/citologia , Fígado/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Oxirredução/efeitos dos fármacos , Peroxissomos/efeitos dos fármacos , Peroxissomos/enzimologia , Óleos de Plantas/administração & dosagem , Óleos de Plantas/química , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
14.
Oncogene ; 39(39): 6157-6171, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32820252

RESUMO

Non-small cell lung cancer (NSCLC) is the major cause of cancer-associated death worldwide, but its underlying mechanisms remain to be fully elucidated. Long noncoding RNAs (lncRNAs) are known to play an important role in the aberrant regulation of gene expression in many cancers, including NSCLC. Here, we investigated the involvement of the lncRNA KTN1-AS1 in NSCLC. We found that KTN1-AS1 expression was upregulated in NSCLC tissue and was positively associated with poor prognosis. KTN1-AS1 knockdown inhibited cell growth and proliferation, increased apoptosis, and modulated the expression of cell cycle- and apoptosis-related proteins (cyclin A1, cyclin-dependent kinase 2, Bcl2, and Bax) in NSCLC cell lines and tumour xenografts in nude mice. KTN1-AS1 bound to and directly regulated the expression of miR-130a-5p. Notably, miR-130a-5p overexpression suppressed NSCLC cell proliferation and increased apoptosis in vitro and in vivo, and this effect was reversed by KTN1-AS1 overexpression. Finally, we showed that KTN1-AS1 modulated the expression of 3-phosphoinositide-dependent protein kinase 1 (PDPK1), a miR-130a-5p target and key regulator of autophagy in NSCLC cells. Taken together, our results suggest that the KTN1-AS1/miR-130a-5p/PDPK1 pathway may be a potential therapeutic target for NSCLC.


Assuntos
Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas de Membrana/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Progressão da Doença , Enoil-CoA Hidratase , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , RNA Antissenso/genética , RNA Antissenso/metabolismo
15.
Int J Biol Macromol ; 164: 1600-1607, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768477

RESUMO

The acyl-CoA dehydrogenase (FadE) and (R)-specific enoyl-CoA hydratase (PhaJ) are functionally related to the degradation of fatty acids and the synthesis of polyhydroxyalkanoates (PHAs). To verify this, a recombinant Cupriavidus necator H16 harboring the plasmid -pMPJAS03- with fadE from Escherichia coli strain K12 and phaJ1 from Pseudomonas putida strain KT2440 under the arabinose promoter (araC-PBAD) was constructed. The impact of co-expressing fadE and phaJ genes on C. necator H16/pMPJAS03 maintaining the wild-type synthase on short-chain-length/medium-chain-length PHA formation from canola or avocado oil at different arabinose concentrations was investigated. The functional activity of fadEE.c led to obtaining higher biomass and PHA concentrations compared to the cultures without expressing the gene. While high transcriptional levels of phaJ1P.p, at 0.1% of arabinose, aid the wild-type synthase to polymerize larger-side chain monomers, such as 3-Hydroxyoctanoate (3HO) and 3-Hydroxydecanoate (3HD). The presence of even small amounts of 3HO and 3HD in the co-polymers significantly depresses the melting temperature of the polymers, compared to those composed of pure 3-hydroxybutyrate (3HB). Our data presents supporting evidence that the synthesis of larger-side chain monomers by the recombinant strain relies not only upon the affinity of the wild-type synthase but also on the functionality of the intermediate supplying enzymes.


Assuntos
Acil-CoA Desidrogenase/genética , Cupriavidus necator/genética , Enoil-CoA Hidratase/genética , Óleos de Plantas/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/genética , Acil-CoA Desidrogenase/metabolismo , Arabinose/genética , Arabinose/metabolismo , Caprilatos/metabolismo , Cupriavidus necator/metabolismo , Ácidos Decanoicos/metabolismo , Enoil-CoA Hidratase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Hidroxibutiratos/metabolismo , Plasmídeos/genética , Poli-Hidroxialcanoatos/metabolismo , Regiões Promotoras Genéticas/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Transcrição Gênica/genética
16.
Lipids Health Dis ; 19(1): 105, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450865

RESUMO

BACKGROUND: Fat accumulation in the liver contributes to the development of non-alcoholic fatty liver disease (NAFLD). N-acetylcysteine (NAC) is an antioxidant, acting both directly and indirectly via upregulation of cellular antioxidants. We examined the mechanisms of liver steatosis after 12 months high fat (HF) diet and tested the ability of NAC to rescue liver steatosis. METHODS: Seven-week-old C57BL/6 (B6) male mice were administered HF diet for 12 months (HF group). Two other groups received HF diet for 12 months accompanied by NAC for 12 months (HFD + NAC(1-12)) or 6 months (HFD + NAC(1-6)). The control group was fed regular diet for 12 months (CD group). RESULTS: Liver steatosis was more pronounced in the HF group than in the CD group after 12 month feeding. NAC intake for 6 or 12 months decreased liver steatosis in comparison with HF diet (p < 0.05). Furthermore, NAC treatment also reduced cellular apoptosis and caspase-3 expression. In the unfolded protein response (UPR) pathway, the expression of ECHS1, HSP60, and HSP70 was decreased in the HFD group (p < 0.05) and rescued by NAC therapy. With regards to the endoplasmic reticulum (ER) stress, Phospho-PERK (p-PERK) and ATF4 expression was decreased in the HF group, and only the HFD + NAC(1-12), but not HFD + NAC(1-6) group, showed significant improvement. CONCLUSION: HF diet for 12 months induces significant liver steatosis via altered ER stress and UPR pathway activity, as well as liver apoptosis. NAC treatment rescues the liver steatosis and apoptosis induced by HF diet.


Assuntos
Acetilcisteína/uso terapêutico , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático , Fígado/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Resposta a Proteínas não Dobradas , Acetilcisteína/farmacologia , Fator 4 Ativador da Transcrição/genética , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apoptose , Chaperonina 60/genética , Enoil-CoA Hidratase/genética , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Fígado/metabolismo , Fígado/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia
17.
Clin Genet ; 97(6): 890-901, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32266967

RESUMO

Primrose syndrome (PS; MIM# 259050) is characterized by intellectual disability (ID), macrocephaly, unusual facial features (frontal bossing, deeply set eyes, down-slanting palpebral fissures), calcified external ears, sparse body hair and distal muscle wasting. The syndrome is caused by de novo heterozygous missense variants in ZBTB20. Most of the 29 published patients are adults as characteristics appear more recognizable with age. We present 13 hitherto unpublished individuals and summarize the clinical and molecular findings in all 42 patients. Several signs and symptoms of PS develop during childhood, but the cardinal features, such as calcification of the external ears, cystic bone lesions, muscle wasting, and contractures typically develop between 10 and 16 years of age. Biochemically, anemia and increased alpha-fetoprotein levels are often present. Two adult males with PS developed a testicular tumor. Although PS should be regarded as a progressive entity, there are no indications that cognition becomes more impaired with age. No obvious genotype-phenotype correlation is present. A subgroup of patients with ZBTB20 variants may be associated with mild, nonspecific ID. Metabolic investigations suggest a disturbed mitochondrial fatty acid oxidation. We suggest a regular surveillance in all adult males with PS until it is clear whether or not there is a truly elevated risk of testicular cancer.


Assuntos
Anormalidades Múltiplas/genética , Calcinose/genética , Otopatias/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Megalencefalia/genética , Atrofia Muscular/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , 3-Hidroxiacil-CoA Desidrogenases/genética , Anormalidades Múltiplas/patologia , Acetil-CoA C-Aciltransferase/genética , Adolescente , Adulto , Calcinose/patologia , Isomerases de Ligação Dupla Carbono-Carbono/genética , Criança , Pré-Escolar , Otopatias/patologia , Enoil-CoA Hidratase/genética , Face/anormalidades , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Megalencefalia/patologia , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/patologia , Atrofia Muscular/patologia , Mutação , Mutação de Sentido Incorreto/genética , Fenótipo , Racemases e Epimerases/genética , Neoplasias Testiculares , Adulto Jovem
18.
Cell Death Dis ; 11(4): 233, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300102

RESUMO

Chemotherapy is the first-tier treatment regime for gastric cancer (GC) patients at advance stages. Mesenchymal stem cell (MSC) cam affect drug-resistance of GC cells in tumor microenvironment, but the detailed mechanism remains poorly understood. Present study aimed to investigate the regulation of MSC-induced long non-coding RNA (lncRNA) in GC. Dysregulated lncRNAs in GC were analyzed based on GEO data. Stemness and drug-resistance of GC cells were detected by sphere formation, colony formation, CCK-8, and flow cytometry analyses. MicroRNA (miRNA)-related pathways were analyzed by online KEGG analysis tool DAVID6.8. Molecular interactions were determined by luciferase reporter assay, pulldown, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), and co-immunoprecipitation (CoIP). Results revealed that MSC co-culture improved stemness and drug-resistance of GC cells. LncRNA histocompatibility leukocyte antigen complex P5 (HCP5) was induced in GC cells by MSC co-culture, contributing to stemness and drug-resistance. Mechanistically, HCP5 sequestered miR-3619-5p and upregulated PPARG coactivator 1 alpha (PPARGC1A), increasing transcription complex Peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC1α)/CEBPB and transcriptionally inducing carnitine palmitoyltransferase 1 (CPT1), which prompted the fatty acid oxidation (FAO) in GC cells. In conclusion, MSC-induced lncRNA HCP5 drove FAO through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of GC, indicating that targeting HCP5 was a novel approach to enhancing the efficacy of chemotherapy in GC.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Enoil-CoA Hidratase/metabolismo , Ácidos Graxos/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/metabolismo , Racemases e Epimerases/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Oxirredução , RNA Longo não Codificante/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transfecção
19.
Aquat Toxicol ; 222: 105470, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32199138

RESUMO

Cadmium (Cd) a highly toxic metal to human and wildlife health and it is hazardous to both terrestrial and aquatic life. In this study, we used RNA sequencing analysis to examine the effects of chronic cadmium exposure on liver lipid metabolism of Bufo gargarizans larvae. Tadpoles were exposed to cadmium concentrations at 0, 5, 10, 50, 100 and 200 µg L-1 from Gosner stage 26-42 of metamorphic climax. The results showed high dose cadmium (50, 100 and 200 µg L-1) caused obvious histological changes characterized by hepatocytes deformation, nuclear pyknosis, increasing melanomacrophage centers (MMCs) and aggregated lipid droplets. Moreover, transcriptome analysis showed that liver function was seriously affected by cadmium exposure. Furthermore, high dose cadmium significantly upregulated the mRNA expression of elongation of very-long-chain fatty acids 1 (ELOVL1), Mitochondrial trans-2-enoyl-CoA reductase (MECR), Trans-2, 3-enoyl-CoA reductase (TER) and Hydroxysteroid (17ß) dehydrogenase type 12 (HSD17B12) which are related with fatty acid synthesis. Meanwhile, mRNA levels of genes related with fat acid oxidation such as acetyl-CoA acyltransferase 2 (ACAA2) and enoyl-coenzyme A (CoA) hydratase short chain 1 (ECHS1) were significantly upregulated while the expression of Acyl-coA thioesterase 1 (ACOT1), 3-hydroxyacyl-CoA dehydrogenase (HADH), Palmitoyl-protein thioesterase 1(PPT1) and Acetyl-CoA acyltransferase 1(ACAA1) was significantly downregulated by high dose cadmium exposure. Furthermore, the mRNA level of ATP-binding cassette subfamily B member 11 (ABCB11) related with bile secretion was significantly decreased exposed to high dose cadmium. Our results suggested cadmium can cause liver dysfunction by inducing histopathological damages, genetic expression alterations and fatty acid metabolism disorder.


Assuntos
Cádmio/toxicidade , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Larva/efeitos dos fármacos , Fígado/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Bufonidae , Enoil-CoA Hidratase/metabolismo , Larva/genética , Larva/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Oxirredução , RNA Mensageiro/metabolismo
20.
BMC Pediatr ; 20(1): 50, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32013919

RESUMO

BACKGROUND: Short-chain enoyl-CoA hydratase (SCEH or ECHS1) deficiency is a rare congenital metabolic disorder caused by biallelic mutations in the ECHS gene. Clinical phenotype includes severe developmental delay, regression, dystonia, seizures, elevated lactate, and brain MRI abnormalities consistent with Leigh syndrome (LS). SCEH is most notably involved in valine catabolism. There is no effective treatment for the disease, patients may respond to dietary restriction of valine and supplementation of N-acetylcysteine . CASE PRESENTATION: We describe two patients who presented in infancy or early childhood with SCEH deficiency. Both patients were shown to harbor heterozygous or homozygous variants in the ECHS1 gene, and developmental retardation or regression as the onset manifestation. Brain MRI showed abnormal signals of bilateral pallidus. Urine metabolic examination showed increased levels of 2,3-dihydroxy-2-methylbutyric acid and S-(2-carboxypropyl) cysteamine S-(2-carboxypropoxypropyl) cysteamine (SCPCM). A valine restricted diet and combined of N-acetylcysteine supplementation were utilized in the two patients. CONCLUSIONS: In clinical practice, The elevated urinary 2,3-dihydroxy-2-methylbutyrate, S-(2-carboxypropyl) cysteine, S-(2-carboxypropyl) cysteine and N-acetyl-S-(2-carboxypropyl) cysteine levels might be clues for diagnosis of SCEH deficiency which can be confirmed throughGenetic sequencing of ECHS1 gene. Early cocktail therapy, valine restrictied diet and N-acetylcysteine supplementation could improve the prognosis of patients.


Assuntos
Enoil-CoA Hidratase , Doença de Leigh , Pré-Escolar , Enoil-CoA Hidratase/genética , Heterozigoto , Homozigoto , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/tratamento farmacológico , Doença de Leigh/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA