Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mech Ageing Dev ; 196: 111497, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957217

RESUMO

Cell-cycle arrest reflects an accumulation of responses to DNA damage that sequentially affects cell growth and division. Herein, we analyzed the effect of the 9-mer dimer defensin-like peptide, CopA3, against colorectal cancer cell growth and proliferation in a dose-dependent manner upon 96 h of treatment. As observed, CopA3 treatment significantly affected cancer cell growth, reduced colony formation ability, increased the number of SA-ß-Gal positive cells, and remarkably reduced Ki67 protein expression. Notably, in HCT-116 cells, CopA3 (5 µM) treatment effectively increased oxidative stress and, as a result, amplified the endogenous ROS, mitochondrial ROS, and NO content in the cells, which further activated the DNA damage response and caused cell-cycle arrest at the G1 phase. The prolonged cell-cycle arrest elevated the release of inflammatory cytokines in the cell supernatant. Nevertheless, mechanistically, NAC treatment effectively reversed the CopA3 effect and significantly reduced the oxidative stress; subsequently rescuing the cells from G1 phase arrest. Overall, CopA3 treatment can inhibit the growth and proliferation of colorectal cancer cells by inducing cell-cycle arrest through the ROS-mediated pathway.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais , Proteínas de Insetos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Citocinas/análise , Relação Dose-Resposta a Droga , Inibidores do Crescimento/farmacologia , Células HCT116 , Humanos , Antígeno Ki-67/análise , Espécies Reativas de Oxigênio/análise , Resultado do Tratamento , Ensaio Tumoral de Célula-Tronco/métodos
2.
Methods Mol Biol ; 2267: 227-239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33786796

RESUMO

Mitotic catastrophe (MC) is a cell death modality induced by DNA damage that involves the activation of cell cycle checkpoints such as the "DNA structure checkpoint" and "spindle assembly checkpoint" (SAC) leading to aberrant mitosis. Depending on the signal, MC can drive the cell to death or to senescence. The suppression of MC favors aneuploidy. Several cancer therapies, included microtubular poisons and radiations, trigger MC. The clonogenic assay has been used to study the capacity of single cells to proliferate and to generate macroscopic colonies and to evaluate the efficacy of anticancer drugs. Nevertheless, this method cannot analyze MC events. Here, we report an improved technique based on the use of human colon cancer HCT116 stable expressing histone H2B-GFP and DsRed-centrin proteins, allowing to determine the capacity of cells to proliferate, and to determine changes in the nucleus and centrosomes.


Assuntos
Morte Celular , Proliferação de Células , Mitose , Ensaio Tumoral de Célula-Tronco/métodos , Antimitóticos/toxicidade , Antineoplásicos/toxicidade , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HCT116 , Histonas/genética , Histonas/metabolismo , Humanos
4.
Clin Transl Oncol ; 23(1): 22-34, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32447643

RESUMO

PURPOSE: There is growing evidence of an association between physical activity and a reduced risk of cancer and cancer recurrence. The aim of this study was to assess the effects of exercise-conditioned human serum (HS) effects on the proliferative and tumorigenic potential of triple-negative breast cancer (TNBC) and prostate cancer (PC) cells. Moreover, modulated mechanisms and several physiological factors that can predict exercise effects were investigated. METHODS: Thirty healthy sedentary subjects were recruited for the study. The subjects performed two high-intensity endurance cycling (HIEC) sessions before and after a nine-week period of high-intensity interval training (HIIT). Cell tumorigenic capacity affected by HS collected before (t0), immediately after (t1), 4 h (t2), and 24 h (t3) after the HIEC sessions was evaluated by in vitro three-dimensional colony formation. The modulation of molecular pathways was analyzed by western blotting and qPCR in TNBC and PC cells, and in TNBC xenografts in exercised mice. RESULTS: All of the HIEC-conditioned HS (t1, t2, and t3) markedly impacted the proliferative and the microtumor-forming capacity of both TNBC and PC cell lines, while the HS collected from the subjects at rest did not. Modulation of the Hippo and Wnt/ß-catenin pathways by HIEC-conditioned HS before and after the period of HIIT was shown. Multiple linear regression analysis showed relationships between the effects of HIEC-conditioned HS in PC cells, lactate threshold and VO2max. CONCLUSIONS: These results highlight the potential of HIEC bouts in tumor progression control and the importance of optimizing an approach to identify physiological predictors of the effects of acute exercise in tertiary cancer prevention.


Assuntos
Ciclismo/fisiologia , Proliferação de Células/fisiologia , Treinamento Intervalado de Alta Intensidade , Neoplasias da Próstata/patologia , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Meios de Cultivo Condicionados , Progressão da Doença , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Via de Sinalização Hippo , Humanos , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Neoplasias da Próstata/prevenção & controle , Proteínas Serina-Treonina Quinases/metabolismo , Distribuição Aleatória , Análise de Regressão , Comportamento Sedentário , Prevenção Terciária , Fatores de Tempo , Neoplasias de Mama Triplo Negativas/prevenção & controle , Ensaio Tumoral de Célula-Tronco/métodos , Via de Sinalização Wnt , Adulto Jovem
5.
Radiat Oncol ; 15(1): 248, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33121517

RESUMO

BACKGROUND: The clonogenic assay is a versatile and frequently used tool to quantify reproductive cell survival in vitro. Current state-of-the-art analysis relies on plating efficiency-based calculations which assume a linear correlation between the number of cells seeded and the number of colonies counted. The present study was designed to test the validity of this assumption and to evaluate the robustness of clonogenic survival results obtained. METHODS: A panel of 50 established cancer cell lines was used for comprehensive evaluation of the clonogenic assay procedure and data analysis. We assessed the performance of plating efficiency-based calculations and examined the influence of critical experimental parameters, such as cell density seeded, assay volume, incubation time, as well as the cell line-intrinsic factor of cellular cooperation by auto-/paracrine stimulation. Our findings were integrated into a novel mathematical approach for the analysis of clonogenic survival data. RESULTS: For various cell lines, clonogenic growth behavior failed to be adequately described by a constant plating efficiency, since the density of cells seeded severely influenced the extent and the dynamics of clonogenic growth. This strongly impaired the robustness of survival calculations obtained by the current state-of-the-art method using plating efficiency-based normalization. A novel mathematical approach utilizing power regression and interpolation of matched colony numbers at different irradiation doses applied to the same dataset substantially reduced the impact of cell density on survival results. Cellular cooperation was observed to be responsible for the non-linear clonogenic growth behavior of a relevant number of cell lines and the impairment of survival calculations. With 28/50 cell lines of different tumor entities showing moderate to high degrees of cellular cooperation, this phenomenon was found to be unexpectedly common. CONCLUSIONS: Our study reveals that plating efficiency-based analysis of clonogenic survival data is profoundly compromised by cellular cooperation resulting in strongly underestimated assay-intrinsic errors in a relevant proportion of established cancer cell lines. This severely questions the use of plating efficiency-based calculations in studies aiming to achieve more than semiquantitative results. The novel approach presented here accounts for the phenomenon of cellular cooperation and allows the extraction of clonogenic survival results with clearly improved robustness.


Assuntos
Comunicação Celular , Ensaio Tumoral de Célula-Tronco/métodos , Sobrevivência Celular , Humanos , Células Tumorais Cultivadas
6.
J Pharmacol Toxicol Methods ; 106: 106911, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32805386

RESUMO

INTRODUCTION: Clonogenic assay evaluates the potential of cells to undergo division or generate clones following treatment with a chemical or other agent, thereby allowing the evaluation of cytotoxic and/or antiproliferative effects. Clonogenic assay analysis using traditional methods tends to be time-consuming and yield inconsistent results, whereas results from analyses conducted using automated image processing methods may be misleading or subject to misinterpretation. Thus, the aim of this work was to validate and demonstrate the applicability of a recently developed software. METHODS: Repeatability of measurements was evaluated by comparing results from 10 replicate images from a single well. To evaluate the viability of the software, results were compared with those obtained from manual counting, crystal violet optical density, and up-to-date automated methods. A clonogenic index was experimentally developed using the individual area occupied by colonies, while clone stratification was used to differentiate between antiproliferative and cytotoxic effects. RESULTS: The developed software showed to be a reliable and consistent tool for clonogenic assay evaluation, presenting a repeatability mean error of 0.79% for the number of colonies and 0.89% for the total area of colonies, as well as exhibiting a significant correlation (p < 0.05) with results obtained from widely adopted gold standard methods. The software was also able to detect an appropriate dose-dependent effect as well as a predominant cytotoxic effect of vincristine on MCF-7 cells and calculate the clonogenic index. DISCUSSION: Therefore, this software is adequate for the analysis of clonogenic assay images, differentiating between cytotoxic and antiproliferative trends.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia Intravital/métodos , Software , Ensaio Tumoral de Célula-Tronco/métodos , Antineoplásicos Fitogênicos/farmacologia , Contagem de Células/métodos , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Humanos , Células MCF-7 , Reprodutibilidade dos Testes , Vincristina/farmacologia
7.
J Radiat Res ; 61(6): 828-831, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32823284

RESUMO

Radiotherapy treatment strategies should be personalized based on the radiosensitivity of individual tumors. Clonogenic assays are the gold standard method for in vitro assessment of radiosensitivity. Reproducibility is the critical factor for scientific rigor; however, this is reduced by insufficient reporting of methodologies. In reality, the reporting standards of methodologies pertaining to clonogenic assays remain unclear. To address this, we performed a literature search and qualitative analysis of the reporting of methodologies pertaining to clonogenic assays. A comprehensive literature review identified 1672 papers that report the radiosensitivity of human cancer cells based on clonogenic assays. From the identified papers, important experimental parameters (i.e. number of biological replicates, technical replicates, radiation source and dose rate) were recorded and analyzed. We found that, among the studies, (i) 30.5% did not report biological or technical replicates; (ii) 47.0% did not use biological or technical replicates; (iii) 3.8% did not report the radiation source; and (iv) 32.3% did not report the dose rate. These data suggest that reporting of methodologies pertaining to clonogenic assays in a considerable number of previously published studies is insufficient, thereby threatening reproducibility. This highlights the need to raise awareness of standardization of the methodologies used to conduct clonogenic assays.


Assuntos
Sobrevivência Celular/efeitos da radiação , Neoplasias/radioterapia , Radioterapia (Especialidade)/normas , Tolerância a Radiação/efeitos da radiação , Bioensaio/métodos , Linhagem Celular Tumoral , Células Cultivadas , Raios gama , Humanos , Redes Neurais de Computação , Reprodutibilidade dos Testes , Projetos de Pesquisa , Resultado do Tratamento , Ensaio Tumoral de Célula-Tronco/métodos , Raios X
8.
Radiol Oncol ; 54(2): 168-179, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32229678

RESUMO

Background Management of locoregionally recurrent head and neck squamous cell carcinomas (HNSCC) is challenging due to potential radioresistance. Pulsed low-dose rate (PLDR) irradiation exploits phenomena of increased radiosensitivity, low-dose hyperradiosensitivity (LDHRS), and inverse dose-rate effect. The purpose of this study was to evaluate LDHRS and the effect of PLDR irradiation in isogenic HNSCC cells with different radiosensitivity. Materials and methods Cell survival after different irradiation regimens in isogenic parental FaDu and radioresistant FaDu-RR cells was determined by clonogenic assay; post irradiation cell cycle distribution was studied by flow cytometry; the expression of DNA damage signalling genes was assesed by reverse transcription-quantitative PCR. Results Radioresistant Fadu-RR cells displayed LDHRS and were more sensitive to PLDR irradiation than parental FaDu cells. In both cell lines, cell cycle was arrested in G2/M phase 5 hours after irradiation. It was restored 24 hours after irradiation in parental, but not in the radioresistant cells, which were arrested in G1-phase. DNA damage signalling genes were under-expressed in radioresistant compared to parental cells. Irradiation increased DNA damage signalling gene expression in radioresistant cells, while in parental cells only few genes were under-expressed. Conclusions We demonstrated LDHRS in isogenic radioresistant cells, but not in the parental cells. Survival of LDHRS-positive radioresistant cells after PLDR was significantly reduced. This reduction in cell survival is associated with variations in DNA damage signalling gene expression observed in response to PLDR most likely through different regulation of cell cycle checkpoints.


Assuntos
Neoplasias de Cabeça e Pescoço/radioterapia , Recidiva Local de Neoplasia/radioterapia , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Ciclo Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Dano ao DNA/genética , Fase G1/efeitos da radiação , Fase G2/efeitos da radiação , Expressão Gênica , Humanos , Mitose/efeitos da radiação , Dosagem Radioterapêutica , Fatores de Tempo , Ensaio Tumoral de Célula-Tronco/métodos
9.
Cancer Res ; 80(8): 1644-1655, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32094299

RESUMO

Glioblastoma multiforme (GBM) and other solid malignancies are heterogeneous and contain subpopulations of tumor cells that exhibit stem-like features. Our recent findings point to a dedifferentiation mechanism by which reprogramming transcription factors Oct4 and Sox2 drive the stem-like phenotype in glioblastoma, in part, by differentially regulating subsets of miRNAs. Currently, the molecular mechanisms by which reprogramming transcription factors and miRNAs coordinate cancer stem cell tumor-propagating capacity are unclear. In this study, we identified miR-486-5p as a Sox2-induced miRNA that targets the tumor suppressor genes PTEN and FoxO1 and regulates the GBM stem-like cells. miR-486-5p associated with the GBM stem cell phenotype and Sox2 expression and was directly induced by Sox2 in glioma cell lines and patient-derived neurospheres. Forced expression of miR-486-5p enhanced the self-renewal capacity of GBM neurospheres, and inhibition of endogenous miR-486-5p activated PTEN and FoxO1 and induced cell death by upregulating proapoptotic protein BIM via a PTEN-dependent mechanism. Furthermore, delivery of miR-486-5p antagomirs to preestablished orthotopic GBM neurosphere-derived xenografts using advanced nanoparticle formulations reduced tumor sizes in vivo and enhanced the cytotoxic response to ionizing radiation. These results define a previously unrecognized and therapeutically targetable Sox2:miR-486-5p axis that enhances the survival of GBM stem cells by repressing tumor suppressor pathways. SIGNIFICANCE: This study identifies a novel axis that links core transcriptional drivers of cancer cell stemness to miR-486-5p-dependent modulation of tumor suppressor genes that feeds back to regulate glioma stem cell survival.


Assuntos
Neoplasias Encefálicas/patologia , Sobrevivência Celular , Proteína Forkhead Box O1/genética , Genes Supressores de Tumor , Glioblastoma/patologia , MicroRNAs/metabolismo , Proteínas de Neoplasias/fisiologia , PTEN Fosfo-Hidrolase/genética , Fatores de Transcrição SOXB1/fisiologia , Animais , Proteína 11 Semelhante a Bcl-2/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Morte Celular , Desdiferenciação Celular/genética , Linhagem Celular Tumoral , Reprogramação Celular/fisiologia , Repressão Epigenética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , MicroRNAs/administração & dosagem , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Nanopartículas/administração & dosagem , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Células-Tronco Neurais , Fator 3 de Transcrição de Octâmero/metabolismo , Tolerância a Radiação , Distribuição Aleatória , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transfecção/métodos , Carga Tumoral , Ensaio Tumoral de Célula-Tronco/métodos , Regulação para Cima
10.
Cancer Res ; 80(8): 1669-1680, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32060145

RESUMO

The role of the ataxia-telangiectasia-mutated (ATM) gene in human malignancies, especially in solid tumors, remains poorly understood. In the present study, we explored the involvement of ATM in transforming primary human cells into cancer stem cells. We show that ATM plays an unexpected role in facilitating oncogene-induced malignant transformation through transcriptional reprogramming. Exogenous expression of an oncogene cocktail induced a significant amount of DNA double-strand breaks in human fibroblasts that caused persistent activation of ATM, which in turn enabled global transcriptional reprogramming through chromatin relaxation, allowing oncogenic transcription factors to access chromatin. Consistently, deficiencies in ATM significantly attenuated oncogene-induced transformation of human cells. In addition, ATM inhibition significantly reduced tumorigenesis in a mouse model of mammary cancer. ATM and cellular DNA damage response therefore play a previously unknown role in facilitating rather than suppressing oncogene-induced malignant transformation of mammalian cells. SIGNIFICANCE: These findings uncover a novel pro-oncogenic role for ATM and show that contrary to established theory, ATM does not always function as a tumor suppressor; its function is however dependent on cell type.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Transformação Celular Neoplásica/genética , Reprogramação Celular/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Células-Tronco Neoplásicas/patologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Transformação Celular Neoplásica/patologia , Cromatina/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Feminino , Fibroblastos/patologia , Técnicas de Inativação de Genes , Marcação de Genes/métodos , Genes p53 , Humanos , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Nus , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/metabolismo , Ativação Transcricional , Transcriptoma/fisiologia , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo , Ensaio Tumoral de Célula-Tronco/métodos
11.
Cells ; 8(10)2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557946

RESUMO

Metastasis is the main cause of cancer-related death owing to the blood-borne dissemination of circulating tumor cells (CTCs) early in the process. A rare fraction of CTCs harboring a stem cell profile and tumor initiation capacities is thought to possess the clonogenic potential to seed new lesions. The highest plasticity has been generally attributed to CTCs with a partial epithelial-to-mesenchymal transition (EMT) phenotype, demonstrating a large heterogeneity among these cells. Therefore, detection and functional characterization of these subclones may offer insight into mechanisms underlying CTC tumorigenicity and inform on the complex biology behind metastatic spread. Although an in-depth mechanistic investigation is limited by the extremely low CTC count in circulation, significant progress has been made over the past few years to establish relevant systems from patient CTCs. CTC-derived xenograft (CDX) models and CTC-derived ex vivo cultures have emerged as tractable systems to explore tumor-initiating cells (TICs) and uncover new therapeutic targets. Here, we introduce basic knowledge of CTC biology, including CTC clusters and evidence for EMT/cancer stem cell (CSC) hybrid phenotypes. We report and evaluate the CTC-derived models generated to date in different types of cancer and shed a light on challenges and key findings associated with these novel assays.


Assuntos
Carcinogênese/patologia , Técnicas de Cultura de Células/métodos , Modelos Biológicos , Células Neoplásicas Circulantes/patologia , Animais , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Células-Tronco Neoplásicas/patologia , Ensaio Tumoral de Célula-Tronco/métodos
12.
Int J Radiat Oncol Biol Phys ; 105(3): 537-547, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31271824

RESUMO

PURPOSE: Chemotherapy combined with radiation therapy is the most commonly used approach for treating locally advanced pancreatic cancer. The use of curative doses of radiation in this disease setting is constrained because of the close proximity of the head of the pancreas to the duodenum. The purpose of this study was to determine whether fasting protects the duodenum from high-dose radiation, thereby enabling dose escalation for efficient killing of pancreatic tumor cells. METHODS AND MATERIALS: C57BL/6J mice were either fed or fasted for 24 hours and then exposed to total abdominal radiation at 11.5 Gy. Food intake, body weight, overall health, and survival were monitored. Small intestines were harvested at various time points after radiation, and villi length, crypt depth, and number of crypts per millimeter of intestine were determined. Immunohistochemistry was performed to assess apoptosis and double-strand DNA breaks, and microcolony assays were performed to determine intestinal stem cell regeneration capacity. A syngeneic KPC model of pancreatic cancer was used to determine the effects of fasting on the radiation responses of both pancreatic cancer and host intestinal tissues. RESULTS: We demonstrated that a 24-hour fast in mice improved intestinal stem cell regeneration, as revealed by microcolony assay, and improved host survival of lethal doses of total abdominal irradiation compared with fed controls. Fasting also improved survival of mice with orthotopic pancreatic tumors subjected to lethal abdominal radiation compared with controls with free access to food. Furthermore, fasting did not affect tumor cell killing by radiation therapy and enhanced γ-H2AX staining after radiation therapy, suggesting an additional mild radiosensitizing effect. CONCLUSIONS: These results establish proof of concept for fasting as a dose-escalation strategy, enabling ablative radiation in the treatment of unresectable pancreatic cancer.


Assuntos
Duodeno/efeitos da radiação , Jejum , Tratamentos com Preservação do Órgão , Neoplasias Pancreáticas/radioterapia , Tolerância a Radiação , Células-Tronco/efeitos da radiação , Abdome/efeitos da radiação , Animais , Apoptose , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Feminino , Histonas/metabolismo , Intestino Delgado/citologia , Intestino Delgado/efeitos da radiação , Masculino , Dose Máxima Tolerável , Camundongos , Camundongos Endogâmicos C57BL , Órgãos em Risco/efeitos da radiação , Neoplasias Pancreáticas/mortalidade , Estudo de Prova de Conceito , Lesões por Radiação/mortalidade , Lesões por Radiação/prevenção & controle , Dosagem Radioterapêutica , Distribuição Aleatória , Regeneração , Células-Tronco/fisiologia , Fatores de Tempo , Ensaio Tumoral de Célula-Tronco/métodos
13.
J Gastroenterol Hepatol ; 34(12): 2126-2134, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31039290

RESUMO

BACKGROUND AND AIM: We previously discovered that tumor suppressor candidate 3 (TUSC3) was overexpressed and predicted worse prognosis in colon cancer patients. However, the mechanisms of upregulation of TUSC3 in colon cancer remained unclear. METHODS: MiR-873-5p was predicted and identified as the regulator of TUSC3 via online programs and luciferase reporter assays. The roles of miR-873-5p in regulating colon cancer cell proliferation, colony formation, and invasion were evaluated in vitro. Animal studies were performed to investigate the effects of miR-873-5p on proliferation and lung metastasis. Moreover, the miR-873-5p/TUSC3 related signaling pathway and the prognostic value of combining miR-873-5p and TUSC3 for colon cancer patients were also explored. RESULTS: Here, we identified miR-873-5p as a novel regulator of TUSC3 in colon cancer. Functionally, ectopic expression or silencing of miR-873-5p, respectively, inhibited or promoted colon cancer cells proliferation, colony formation, and invasion, as well as prevented or enhanced the metastasis of colon cancer cells in vitro and in vivo. Molecularly, miR-873-5p functioned as a tumor suppressor by inhibiting the TUSC3/AKT pathway. Overexpression or silencing of TUSC3 could partially reverse the effects of the overexpression or repression of miR-873-5p on colon cancer progression caused by activation of the AKT pathway. Clinically, low miR-873-5p expression predicted poor survival in colon cancer patients, especially combined with high TUSC3 expression. CONCLUSIONS: We identified miR-873-5p as a tumor suppressor, which acts by directly repressing TUSC3 in colon cancer.


Assuntos
Neoplasias do Colo/genética , Proteínas de Membrana/fisiologia , MicroRNAs/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Biomarcadores Tumorais/metabolismo , Proliferação de Células/fisiologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Progressão da Doença , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos Nus , Invasividade Neoplásica/genética , Transplante de Neoplasias , Prognóstico , Proteínas Proto-Oncogênicas c-akt/fisiologia , RNA Neoplásico/genética , Transdução de Sinais/fisiologia , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco/métodos
14.
PLoS One ; 14(1): e0206713, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30699112

RESUMO

It is generally accepted that radiotherapy must target clonogenic cells, i.e., those cells in a tumour that have self-renewing potential. Focussing on isolated clonogenic cells, however, may lead to an underestimate or even to an outright neglect of the importance of biological mechanisms that regulate tumour cell sensitivity to radiation. We develop a new statistical and experimental approach to quantify the effects of radiation on cell populations as a whole. In our experiments, we change the proximity relationships of the cells by culturing them in wells with different shapes, and we find that the radiosensitivity of T47D human breast carcinoma cells in tight clusters is different from that of isolated cells. Molecular analyses show that T47D cells express a Syncytin-1 homologous protein (SyHP). We observe that SyHP translocates to the external surface of the plasma membrane of cells killed by radiation treatment. The data support the fundamental role of SyHP in the formation of intercellular cytoplasmic bridges and in the enhanced radioresistance of surviving cells. We conclude that complex and unexpected biological mechanisms of tumour radioresistance take place at the cell population level. These mechanisms may significantly bias our estimates of the radiosensitivity of breast carcinomas in vivo and thereby affect treatment plans, and they call for further investigations.


Assuntos
Neoplasias da Mama/patologia , Comunicação Celular/efeitos da radiação , Membrana Celular/metabolismo , Produtos do Gene env/metabolismo , Proteínas da Gravidez/metabolismo , Tolerância a Radiação , Apoptose/efeitos da radiação , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Membrana Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Feminino , Produtos do Gene env/genética , Humanos , Proteínas da Gravidez/genética , Radiação Ionizante , Alinhamento de Sequência , Ensaio Tumoral de Célula-Tronco/métodos
15.
Biomed Pharmacother ; 110: 803-817, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30554119

RESUMO

Cancer stem cells (CSCs) are the promising targets for cancer chemotherapy that cannot be eliminated by conventional chemotherapy. In this study cationic liposomes of cabazitaxel (CBX) and silibinin (SIL) were prepared with an aim to kill cancer cells and CSCs for prostate cancer. CBX act as cancer cell inhibitor and SIL as CSC inhibitor. Hyaluronic acid (HA), an endogenous anionic polysaccharide was coated on cationic liposomes for targeting CD44 receptors over expressed on CSCs. Liposomes were prepared by ethanol injection method with particle size below 100 nm and entrapment efficiency of more than 90% at 10% w/w drug loading. Liposomes were characterized by dynamic light scattering, transmission electron microscopy, 1H nuclear magnetic resonance and scanning electron microscopy-energy dispersive x-ray spectroscopy. Liposomes were evaluated for their anticancer action in androgen independent human prostate cancer cell lines (PC-3 and DU-145). HA coated liposomes showed potential cytotoxicity over other groups with low IC50, significantly inhibited cell migration and induced apoptosis. Synergistic cytotoxic effect was also observed with HA coated liposomes that resulted in colony formation inhibition and G2/M phase arrest. Proficient cytotoxicity against CD44+ cells (14.87 ± 0.41% in PC-3 and 33.95 ± 0.68% in DU-145 cells) indicated the efficiency of HA coated liposomes towards CSC targeting. Hence, the outcome of this combinational therapy with CD44 targeting indicates the suitability of HA coated CBX and SIL co-loaded liposomes as a potential approach for eradicating prostate cancer and herein might provide a insight for future studies.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Receptores de Hialuronatos/administração & dosagem , Nanomedicina/métodos , Neoplasias da Próstata , Silibina/administração & dosagem , Taxoides/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Cátions , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Receptores de Hialuronatos/metabolismo , Lipossomos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Silibina/farmacocinética , Taxoides/farmacocinética , Ensaio Tumoral de Célula-Tronco/métodos
16.
Dig Dis Sci ; 63(12): 3348-3358, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30155836

RESUMO

BACKGROUND: Aberrant expression of retinoic acid receptor α (RARα) was correlated with diverse carcinomas such as acute promyelocytic leukemia and colorectal carcinoma. Nevertheless, the function and mechanism of RARα in esophageal carcinoma (EC) remain unclear. AIM: To investigate the expression of RARα in EC and its effect in the tumorigenesis of EC. METHODS AND RESULTS: In immunohistochemistry study, RARα was overexpressed in human EC tissues, and its overexpression was closely related to the pathological differentiation, lymph node metastasis, and clinical stages in EC patients. Functionally, RARα knockdown suppressed the proliferation and metastasis of EC cells through downregulating the expression of PCNA, Ki67, MMP7, and MMP9, as well as enhanced drug susceptibility of EC cells to 5-fluorouracil and cisplatin. Mechanistically, RARα knockdown inhibited the activity of Wnt/ß-catenin pathway through reducing the phosphorylation level of GSK3ß at Ser-9 and inducing phosphorylation level at Tyr-216, which resulted in downregulation of its downstream targets such as MMP7, MMP9, and P-gP. CONCLUSIONS: Our results demonstrated that RARα knockdown suppressed the tumorigenicity of EC via Wnt/ß-catenin pathway. RARα might be a potential molecular target for EC clinical therapy.


Assuntos
Neoplasias Esofágicas , Regulação Neoplásica da Expressão Gênica , Receptor alfa de Ácido Retinoico/metabolismo , Via de Sinalização Wnt/fisiologia , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Feminino , Técnicas de Inativação de Genes/métodos , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Ensaio Tumoral de Célula-Tronco/métodos
17.
Int J Mol Sci ; 19(3)2018 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-29510509

RESUMO

The clonogenic assay is a widely used method to study the ability of cells to 'infinitely' produce progeny and is, therefore, used as a tool in tumor biology to measure tumor-initiating capacity and stem cell status. However, the standard protocol of using 6-well plates has several disadvantages. By miniaturizing the assay to a 96-well microplate format, as well as by utilizing the confluence detection function of a multimode reader, we here describe a new and modified protocol that allows comprehensive experimental setups and a non-endpoint, label-free semi-automatic analysis. Comparison of bright field images with confluence images demonstrated robust and reproducible detection of clones by the confluence detection function. Moreover, time-resolved non-endpoint confluence measurement of the same well showed that semi-automatic analysis was suitable for determining the mean size and colony number. By treating cells with an inhibitor of clonogenic growth (PTC-209), we show that our modified protocol is suitable for comprehensive (broad concentration range, addition of technical replicates) concentration- and time-resolved analysis of the effect of substances or treatments on clonogenic growth. In summary, this protocol represents a time- and cost-effective alternative to the commonly used 6-well protocol (with endpoint staining) and also provides additional information about the kinetics of clonogenic growth.


Assuntos
Miniaturização/métodos , Ensaio Tumoral de Célula-Tronco/métodos , Linhagem Celular Tumoral , Citostáticos/toxicidade , Compostos Heterocíclicos com 2 Anéis/toxicidade , Humanos , Tiazóis/toxicidade
18.
Cancer Chemother Pharmacol ; 81(3): 469-481, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29308536

RESUMO

PURPOSE: Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive squamous cell carcinomas and is generally resistant to chemotherapy. In the present study, the cytotoxic activity of Rabdocoestin B (Rabd-B) against ESCC and the underlying mechanisms were investigated. METHODS: The inhibitory effect of Rabd-B on KYSE30 and KYSE450 was evaluated by Cell Counting Kit-8 (CCK8) and colony formation assays in vitro. The cell cycle distribution and apoptosis of cells treated with Rabd-B were determined by flow cytometry. The mechanisms underlying the effects of Rabd-B were systematically examined by Western blot. The in vivo anti-tumor ability of Rabd-B was measured in mouse xenograft models and cisplatin (DDP) was used as positive control. RESULTS: Rabd-B efficiently induced G2/M phase arrest in ESCC cells by upregulating the Chk1/Chk2-Cdc25C axis to inhibit the G2→M transition facilitated by Cdc2/Cyclin B1. Furthermore, Rabd-B suppressed ATM/ATR phosphorylation, thereby inhibiting BRCA1-mediated DNA repair, which resulted in mitotic catastrophe and induced cell apoptosis. Rabd-B also decreased the activity of the Akt and NF-κB survival signaling pathways and ultimately initiated the caspase-9-dependent intrinsic apoptotic pathway in ESCC cells. The apoptosis induced by Rabd-B could be partially reversed by a caspase-9-specific inhibitor (Z-LEHD-FMK) and a pan-caspase inhibitor (Z-VAD-FMK). Moreover, Rabd-B effectively suppressed tumor growth in mouse xenografts which was comparable to that of DDP without significant injuries to the mice. CONCLUSION: Taken together, these findings indicate that Rabd-B is a promising precursor compound that may be useful as a treatment for ESCC and thus warrants further investigation.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diterpenos/farmacologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Animais , Antineoplásicos Fitogênicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Camundongos , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/fisiologia , Ensaio Tumoral de Célula-Tronco/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
In Vitro Cell Dev Biol Anim ; 54(2): 163-176, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29197033

RESUMO

Clear cell sarcoma (CCS) is an aggressive mesenchymal malignancy characterized by the unique chimeric EWS-ATF1 fusion gene. Patient-derived cancer models are essential tools for the understanding of tumorigenesis and the development of anti-cancer drugs; however, only a limited number of CCS cell lines exist. The objective of this study was to establish patient-derived CCS models. We established patient-derived CCS models from a 43-yr-old female patient. We prepared the patient-derived xenografts (PDXs) from tumor tissues obtained through biopsy or surgery and isolated stable cell lines from PDXs and the original tumor tissue. The presence of gene fusions was examined by RT-PCR, and Sanger sequencing. The established cell lines were characterized by short tandem repeat, viability, colony and spheroid formation, and invasion analyses. Differences in gene enrichment between the primary tumor and cell lines were examined by mass spectrometry and KEGG pathway analysis. The cell lines were maintained for more than 80 passages, and had tumorigenic characteristics such as colony and spheroid formation and invasion. Mass spectrometric proteome analysis demonstrated that the cell lines were enriched for similar but distinct molecular pathways, compared to those in the xenografts and original tumor tissue. Next, tyrosine kinase inhibitors were screened for their suppressive effects on viability. We found that ponatinib, vandetanib, and doxorubicin suppressed the growth of cell lines, and had equivalent IC50 values. Further in-depth investigation and understanding of drug-sensitivity mechanisms will be important for the clinical applications of our cell lines.


Assuntos
Antineoplásicos/farmacologia , Proteoma/metabolismo , Sarcoma de Células Claras/metabolismo , Sarcoma de Células Claras/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Adulto , Linhagem Celular Tumoral , Feminino , Fusão Gênica , Humanos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteoma/análise , Sarcoma de Células Claras/tratamento farmacológico , Esferoides Celulares/patologia , Ensaio Tumoral de Célula-Tronco/métodos
20.
Exp Oncol ; 39(1): 30-35, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28361855

RESUMO

In acute myeloid leukemia (AML) the functional abnormalities of osteopontin (OPN), NF-kB, PI3K/AKT/mTOR/PTEN pathway or ß-catenin have been considered. AIM: To analyze the response of U937 cells to parthenolide (PTL) through the involvement of expression of OPN protein, RelB, AKT1, mTOR, PTEN and ß-catenin genes. MATERIALS AND METHODS: The U937 cells were treated with PTL at concentrations of 4 µM (IC25) or 6 µM (IC50) and with OPN siRNA for MTT assay and colony forming assay. Western blot analysis using antibodies against OPN was performed with lysates of PTL-treated cells. Quantitative real-time polymerase chain reaction was performed using primers for OPN siRNA, RelB, AKT1, mTOR, PTEN and ß-catenin. RESULTS: PTL reduces OPN protein level and down-regulates RelB mRNA in U937 cell line. Suppression of OPN with siRNA increases the cytotoxic effects of PTL. Also, mRNA expression of AKT1, mTOR, PTEN, and ß-catenin decreases with PTL or OPN siRNA. CONCLUSION: Sensitivity of U937 cells to PTL can be associated with the reduction in expression of prosurvival mediators.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sesquiterpenos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Ensaio Tumoral de Célula-Tronco/métodos , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Relação Dose-Resposta a Droga , Humanos , Osteopontina/genética , Osteopontina/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/metabolismo , Células U937 , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA