Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.625
Filtrar
1.
Cell Biol Toxicol ; 40(1): 48, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900277

RESUMO

Aggregation of aberrant proteins is a common pathological hallmark in neurodegeneration such as polyglutamine (polyQ) and other repeat-expansion diseases. Here through overexpression of ataxin3 C-terminal polyQ expansion in Drosophila gut enterocytes, we generated an intestinal obstruction model of spinocerebellar ataxia type3 (SCA3) and reported a new role of nuclear-associated endosomes (NAEs)-the delivery of polyQ to the nucleoplasm. In this model, accompanied by the prominently increased RAB5-positive NAEs are abundant nucleoplasmic reticulum enriched with polyQ, abnormal nuclear envelope invagination, significantly reduced endoplasmic reticulum, indicating dysfunctional nucleocytoplasmic trafficking and impaired endomembrane organization. Consistently, Rab5 but not Rab7 RNAi further decreased polyQ-related NAEs, inhibited endomembrane disorganization, and alleviated disease model. Interestingly, autophagic proteins were enriched in polyQ-related NAEs and played non-canonical autophagic roles as genetic manipulation of autophagic molecules exhibited differential impacts on NAEs and SCA3 toxicity. Namely, the down-regulation of Atg1 or Atg12 mitigated while Atg5 RNAi aggravated the disease phenotypes both in Drosophila intestines and compound eyes. Our findings, therefore, provide new mechanistic insights and underscore the fundamental roles of endosome-centered nucleocytoplasmic trafficking and homeostatic endomembrane allocation in the pathogenesis of polyQ diseases.


Assuntos
Autofagia , Endossomos , Peptídeos , Animais , Peptídeos/metabolismo , Endossomos/metabolismo , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Transporte Ativo do Núcleo Celular , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Doença de Machado-Joseph/metabolismo , Doença de Machado-Joseph/genética , Doença de Machado-Joseph/patologia , Enterócitos/metabolismo , Modelos Animais de Doenças , Ataxina-3/metabolismo , Ataxina-3/genética , Drosophila/metabolismo
2.
Nat Commun ; 15(1): 5493, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38944657

RESUMO

JNK signaling is a critical regulator of inflammation and regeneration, but how it is controlled in specific tissue contexts remains unclear. Here we show that, in the Drosophila intestine, the TNF-type ligand, Eiger (Egr), is expressed exclusively by intestinal stem cells (ISCs) and enteroblasts (EBs), where it is induced by stress and during aging. Egr preferentially activates JNK signaling in a paracrine fashion in differentiated enterocytes (ECs) via its receptor, Grindelwald (Grnd). N-glycosylation genes (Alg3, Alg9) restrain this activation, and stress-induced downregulation of Alg3 and Alg9 correlates with JNK activation, suggesting a regulatory switch. JNK activity in ECs induces expression of the intermembrane protease Rhomboid (Rho), driving secretion of EGFR ligands Keren (Krn) and Spitz (Spi), which in turn activate EGFR signaling in progenitor cells (ISCs and EBs) to stimulate their growth and division, as well as to produce more Egr. This study uncovers an N-glycosylation-controlled, paracrine JNK-EGFR-JNK feedforward loop that sustains ISC proliferation during stress-induced gut regeneration.


Assuntos
Proteínas de Drosophila , Receptores ErbB , Intestinos , Sistema de Sinalização das MAP Quinases , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Intestinos/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Enterócitos/metabolismo , Enterócitos/citologia , Células-Tronco/metabolismo , Células-Tronco/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Drosophila/metabolismo , Glicosilação , Receptores de Peptídeos de Invertebrados/metabolismo , Receptores de Peptídeos de Invertebrados/genética , Proliferação de Células , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Comunicação Celular , Diferenciação Celular , Fator de Crescimento Epidérmico , Proteínas de Membrana
3.
PLoS Pathog ; 20(5): e1011820, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718306

RESUMO

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.


Assuntos
Criptosporidiose , Interferon gama , Mucosa Intestinal , Camundongos Knockout , Animais , Interferon gama/metabolismo , Interferon gama/imunologia , Criptosporidiose/imunologia , Criptosporidiose/parasitologia , Camundongos , Mucosa Intestinal/parasitologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Cryptosporidium , Células Epiteliais/parasitologia , Células Epiteliais/metabolismo , Células Epiteliais/imunologia , Enterócitos/parasitologia , Enterócitos/metabolismo , Enterócitos/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon gama , Fator de Transcrição STAT1/metabolismo , Receptores de Interferon/metabolismo , Receptores de Interferon/genética , Transdução de Sinais
4.
Am J Physiol Gastrointest Liver Physiol ; 327(1): G25-G35, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38713618

RESUMO

Cholesterol is essential for the stability and architecture of the plasma membrane and a precursor of bile acids and steroid hormones in mammals. Excess dietary cholesterol uptake leads to hypercholesterolemia and atherosclerosis and plays a role in cancer development. The role of actin-binding scaffolding protein LIM and SH3 protein 1 (LASP1) in cholesterol trafficking has not been investigated previously. Cholesterol levels, its uptake, and excretion were studied in mice deficient for low-density lipoprotein receptor and Lasp1 (Ldlr-/-Lasp1-/- mice) upon feeding a high-fat diet, and in LASP1-knockdown, differentiated human intestinal epithelial CaCo-2 cells. When compared with diet-fed Ldlr-/- control mice, Ldlr-/-Lasp1-/- mice displayed a reduction in serum cholesterol levels. Mechanistically, we identified a new role of LASP1 in controlling the translocation of the intestinal cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) to the apical cell surface, which was limited in LASP1-knockdown human CaCo-2 enterocytes and in the intestine of Ldlr-/- Lasp1-/- compared with Ldlr-/- mice, linked to LASP1-pAKT signaling but not CDC42 activation. In line, a reduction in cholesterol reabsorption was noted in LASP1-knockdown CaCo-2 cells in vitro, and an enhanced cholesterol excretion via the feces was observed in Ldlr-/- Lasp1-/- mice. These data uncover a novel function of Lasp1 in cholesterol trafficking, promoting cholesterol reabsorption in the intestine. Targeting LASP1 locally could thus represent a novel targeting strategy to ameliorate hypercholesterolemia and associated diseases.NEW & NOTEWORTHY We here uncovered LASP1 as a novel regulator of the shuttling of the sterol transporter NPC1L1 to the cell surface in enterocytes to control cholesterol absorption. Accordingly, LASP1-deficient mice displayed lowered serum cholesterol levels under dietary cholesterol supplementation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Colesterol , Proteínas do Citoesqueleto , Proteínas com Domínio LIM , Proteínas de Membrana Transportadoras , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Animais , Células CACO-2 , Humanos , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos , Colesterol/metabolismo , Colesterol/sangue , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Receptores de LDL/metabolismo , Receptores de LDL/genética , Mucosa Intestinal/metabolismo , Enterócitos/metabolismo , Absorção Intestinal , Dieta Hiperlipídica , Proteínas de Homeodomínio
5.
Am J Physiol Cell Physiol ; 326(6): C1625-C1636, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646790

RESUMO

NBCn1 (SLC4A7) is one of the two major Na+-HCO3- cotransporters in the human colonic epithelium, expressed predominantly in the highly proliferating colonocytes at the cryptal base. Increased NBCn1 expression levels are reported in tumors, including colorectal cancer. The study explores its importance for maintenance of the intracellular pH (pHi), as well as the proliferative, adhesive, and migratory behavior of the self-differentiating Caco2BBe colonic tumor cell line. In the self-differentiating Caco2BBe cells, NBCn1 mRNA was highly expressed from the proliferative stage until full differentiation. The downregulation of NBCn1 expression by RNA interference affected proliferation and differentiation and decreased intracellular pH (pHi) of the cells in correlation with the degree of knockdown. In addition, a disturbed cell adhesion and reduced migratory speed were associated with NBCn1 knockdown. Murine colonic Nbcn1-/- enteroids also displayed reduced proliferative activity. In the migrating Caco2BBe cells, NBCn1 was found at the leading edge and in colocalization with the focal adhesion markers vinculin and paxillin, which suggests that NBCn1 is involved in the establishment of cell-matrix adhesion. Our data highlight the physiological significance of NBCn1 in modulating epithelial pH homeostasis and cell-matrix interactions in the proliferative region of the colonic epithelium and unravel the molecular mechanism behind pathological overexpression of this transporter in human colorectal cancers.NEW & NOTEWORTHY The transporter NBCn1 plays a central role in maintaining homeostasis within Caco2BBe colonic epithelial cells through its regulation of intracellular pH, matrix adhesion, migration, and proliferation. These observations yield valuable insights into the molecular mechanism of the aberrant upregulation of this transporter in human colorectal cancers.


Assuntos
Adesão Celular , Movimento Celular , Proliferação de Células , Colo , Enterócitos , Simportadores de Sódio-Bicarbonato , Humanos , Simportadores de Sódio-Bicarbonato/metabolismo , Simportadores de Sódio-Bicarbonato/genética , Animais , Concentração de Íons de Hidrogênio , Células CACO-2 , Colo/metabolismo , Colo/patologia , Enterócitos/metabolismo , Camundongos , Camundongos Knockout , Diferenciação Celular , Camundongos Endogâmicos C57BL
6.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38683247

RESUMO

Monogenetic variants are responsible for a range of congenital human diseases. Variants in genes that are important for intestinal epithelial function cause a group of disorders characterized by severe diarrhea and loss of nutrient absorption called congenital diarrheas and enteropathies (CODEs). CODE-causing genes include nutrient transporters, enzymes, structural proteins, and vesicular trafficking proteins in intestinal epithelial cells. Several severe CODE disorders result from the loss-of-function in key regulators of polarized endocytic trafficking such as the motor protein, Myosin VB (MYO5B), as well as STX3, STXBP2, and UNC45A. Investigations of the cell biology and pathophysiology following loss-of-function in these genes have led to an increased understanding of both homeostatic and pathological vesicular trafficking in intestinal epithelial cells. Modeling different CODEs through investigation of changes in patient tissues, coupled with the development of animal models and patient-derived enteroids, has provided critical insights into the enterocyte differentiation and function. Linking basic knowledge of cell biology with the phenotype of specific patient variants is a key step in developing effective treatments for rare monogenetic diseases. This knowledge can also be applied more broadly to our understanding of common epithelial disorders.


Assuntos
Enteropatias , Mucosa Intestinal , Animais , Humanos , Modelos Animais de Doenças , Enterócitos/metabolismo , Enterócitos/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Enteropatias/genética , Enteropatias/patologia , Enteropatias/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Modelos Biológicos , Diarreia/metabolismo , Diarreia/patologia
7.
Cell Death Dis ; 15(4): 301, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684650

RESUMO

Understanding the mechanisms involved in colonic epithelial differentiation is key to unraveling the alterations causing inflammatory conditions and cancer. Organoid cultures provide an unique tool to address these questions but studies are scarce. We report a differentiation system toward enterocytes and goblet cells, the two major colonic epithelial cell lineages, using colon organoids generated from healthy tissue of colorectal cancer patients. Culture of these organoids in medium lacking stemness agents resulted in a modest ultrastructural differentiation phenotype with low-level expression of enterocyte (KLF4, KRT20, CA1, FABP2) and goblet cell (TFF2, TFF3, AGR2) lineage markers. BMP pathway activation through depletion of Noggin and addition of BMP4 resulted in enterocyte-biased differentiation. Contrarily, blockade of the Notch pathway using the γ-secretase inhibitor dibenzazepine (DBZ) favored goblet cell differentiation. Combination treatment with BMP4 and DBZ caused a balanced strong induction of both lineages. In contrast, colon tumor organoids responded poorly to BMP4 showing only weak signals of cell differentiation, and were unresponsive to DBZ. We also investigated the effects of 1α,25-dihydroxyvitamin D3 (calcitriol) on differentiation. Calcitriol attenuated the effects of BMP4 and DBZ on colon normal organoids, with reduced expression of differentiation genes and phenotype. Consistently, in normal organoids, calcitriol inhibited early signaling by BMP4 as assessed by reduction of the level of phospho-SMAD1/5/8. Our results show that BMP and Notch signaling play key roles in human colon stem cell differentiation to the enterocytic and goblet cell lineages and that calcitriol modulates these processes favoring stemness features.


Assuntos
Proteína Morfogenética Óssea 4 , Calcitriol , Proteínas de Transporte , Diferenciação Celular , Colo , Dibenzazepinas , Células Caliciformes , Fator 4 Semelhante a Kruppel , Organoides , Receptores Notch , Transdução de Sinais , Humanos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteína Morfogenética Óssea 4/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/citologia , Colo/patologia , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Calcitriol/farmacologia , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Dibenzazepinas/farmacologia , Linhagem da Célula/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/efeitos dos fármacos , Enterócitos/citologia , Vitamina D/farmacologia
8.
Angew Chem Int Ed Engl ; 63(21): e202317552, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38497459

RESUMO

Celiac disease (CeD) is an autoimmune disorder triggered by gluten proteins, affecting approximately 1 % of the global population. The 33-mer deamidated gliadin peptide (DGP) is a metabolically modified wheat-gluten superantigen for CeD. Here, we demonstrate that the 33-mer DGP spontaneously assembles into oligomers with a diameter of approximately 24 nm. The 33-mer DGP oligomers present two main secondary structural motifs-a major polyproline II helix and a minor ß-sheet structure. Importantly, in the presence of 33-mer DGP oligomers, there is a statistically significant increase in the permeability in the gut epithelial cell model Caco-2, accompanied by the redistribution of zonula occludens-1, a master tight junction protein. These findings provide novel molecular and supramolecular insights into the impact of 33-mer DGP in CeD and highlight the relevance of gliadin peptide oligomerization.


Assuntos
Doença Celíaca , Enterócitos , Gliadina , Humanos , Doença Celíaca/metabolismo , Doença Celíaca/patologia , Células CACO-2 , Gliadina/química , Gliadina/metabolismo , Enterócitos/metabolismo , Superantígenos/química , Superantígenos/metabolismo , Permeabilidade
9.
J Drug Target ; 32(5): 529-543, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537662

RESUMO

As a vitro absorption model, the Caco-2 cells originate from a human colon adenocarcinomas and can differentiate into a cell layer with enterocyte-like features. The Caco-2 cell model is popularly applied to explore drug transport mechanisms, to evaluate the permeability of drug and to predict the absorption of drugs or bioactive substances in the gut. However, there are limitations to the application of Caco-2 cell model due to lack of a mucus layer, the long culture period and the inability to accurately simulate the intestinal environment. The most frequent way to expand the Caco-2 cell model and address its limitations is by co-culturing it with other cells or substances. This article reviews the culture methods and applications of 3D and 2D co-culture cell models established around Caco-2 cells. It also concludes with a summary of model strengths and weaknesses.


Assuntos
Técnicas de Cocultura , Modelos Biológicos , Humanos , Células CACO-2 , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Permeabilidade , Enterócitos/metabolismo
10.
J Cell Biochem ; 125(6): e30545, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38436545

RESUMO

To maintain the integrity of the adult gut, the proliferation and differentiation of stem cells must be strictly controlled. Several signaling pathways control the proliferation and differentiation of Drosophila intestinal epithelial cells. Although the modulatory effects of insulin pathway components on cell proliferation have been characterized, their specific role in which cell type and how these components interact with other regulatory signaling pathways remain largely unclear. In this study, we found that InR/Pi3K has major functions in enteroblasts (EBs) that were not previously described. The absence of InR/Pi3K in progenitors leads to a decrease in the number of EBs, while it has no significant effect on intestinal stem cells (ISCs). In addition, we found that InR/Pi3K regulates Notch activity in ISCs and EBs in an opposite way. This is also the reason for the decrease in EB. On the one hand, aberrantly low levels of Notch signaling in ISCs inhibit their proper differentiation into EBs; on the other hand, the higher Notch levels in EBs promote their excessive differentiation into enterocytes (ECs), leading to marked increases in abnormal ECs and decreased proliferation. Moreover, we found that Upd/JAK/STAT signaling acts as an effector or modifier of InR/Pi3K function in the midgut and cooperates with EGFR signaling to regulate cell proliferation. Altogether, our results demonstrate that InR and Pi3K are essential for coordinating stem cell differentiation and proliferation to maintain intestinal homeostasis.


Assuntos
Diferenciação Celular , Proteínas de Drosophila , Receptores ErbB , Homeostase , Fosfatidilinositol 3-Quinases , Receptores Notch , Fatores de Transcrição STAT , Transdução de Sinais , Animais , Receptores Notch/metabolismo , Receptores ErbB/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Fatores de Transcrição STAT/metabolismo , Proliferação de Células , Enterócitos/metabolismo , Enterócitos/citologia , Intestinos/citologia , Drosophila melanogaster/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Peptídeos de Invertebrados
11.
Virus Res ; 342: 199338, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38373599

RESUMO

The role of aichivirus A1 (AiV-A1) in acute gastroenteritis remains controversial and in vitro data illustrating its pathogenesis in suitable human models are scarce. Here, we demonstrate that AiV-A1 isolate A846/88 replicates in ApoA1- (absorptive) and Ki-67-positive (proliferative) enterocytes in stem cell-derived human small intestinal epithelium (HIE) as well as in patient biopsy samples, but not in any of the tested human cell lines. The infection did not result in tissue damage and did not trigger type I and type III interferon (IFN) signalling, whereas the control, human coxsackievirus B3 (strain Nancy), triggered both IFNs. To investigate the tissue tropism, we infected a human tracheal/bronchial epithelium model (HTBE) with AiV-A1 isolates A846/88 and kvgh99012632/2010 and, as a control, with rhinovirus A2 (RV-A2). AiV-A1 isolate kvgh99012632/2010, but not isolate A846/88, replicated in HTBE and induced type III IFN and ISGs signalling. By using various pharmacological inhibitors, we elaborated that cellular entry of AiV-A1 depends on clathrin, dynamin, and lipid rafts and is strongly reliant on endosome acidification. Viral particles co-localised with Rab5a-positive endosomes and promoted leakage of endosomal content. Our data shed light on the early events of AiV-A1 infection and reveal that different isolates exhibit distinct tissue tropism. This supports its clinical importance as a human pathogen with the potential to evolve toward broader tissue specificity.


Assuntos
Brônquios , Mucosa Intestinal , Humanos , Enterócitos , Linhagem Celular , Clatrina
12.
Pflugers Arch ; 476(4): 593-610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374228

RESUMO

The transport of bicarbonate across the enterocyte cell membrane regulates the intracellular as well as the luminal pH and is an essential part of directional fluid movement in the gut. Since the first description of "active" transport of HCO3- ions against a concentration gradient in the 1970s, the fundamental role of HCO3- transport for multiple intestinal functions has been recognized. The ion transport proteins have been identified and molecularly characterized, and knockout mouse models have given insight into their individual role in a variety of functions. This review describes the progress made in the last decade regarding novel techniques and new findings in the molecular regulation of intestinal HCO3- transport in the different segments of the gut. We discuss human diseases with defects in intestinal HCO3- secretion and potential treatment strategies to increase luminal alkalinity. In the last part of the review, the cellular and organismal mechanisms for acid/base sensing in the intestinal tract are highlighted.


Assuntos
Bicarbonatos , Enterócitos , Animais , Camundongos , Humanos , Bicarbonatos/metabolismo , Transporte de Íons , Enterócitos/metabolismo , Membrana Celular/metabolismo , Secreções Corporais/metabolismo , Concentração de Íons de Hidrogênio , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo
13.
J Ethnopharmacol ; 326: 117966, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38401661

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Traditional herbal medicines have been considered as a novel and effective way to treat many diseases. Lizhong decoction (LZD), a classical prescription composed of Zingiber officinale Rosc., Panax ginseng C. A. Mey., Atractylodes macrocephala Koidz., and Glycyrrhiza uralensis Fisch., has been used to treat gastrointestinal disorders in clinical practices for thousands of years. However, the mechanism of LZD in alleviating ulcerative colitis (UC) is still unclear. AIM OF THE STUDY: The purpose of this study was to clarify the potential molecular mechanism of LZD in improving UC. MATERIALS AND METHODS: The amelioration of LZD on dextran sodium sulfate (DSS)-induced UC mice was evaluated by body weight, colon length, pathology of colon tissues, pro-inflammatory cytokines, and intestinal tight junction (TJ) proteins. Moreover, the gene expression profiles of UC patients were extracted to investigate potential pathological mechanisms of UC. The influence of LZD on ferroptosis was analyzed by iron load, malondialdehyde (MDA), and the expression of ferroptosis-associated proteins. Meanwhile, the inhibition of LZD on oxidative stress (OS) was assessed by the superoxide dismutase (SOD) activity, as well as the expression levels of glutathione (GSH) and glutathione disulfide (GSSG). Furthermore, the influence of LZD on ferroptosis was assessed by inhibiting nuclear factor (erythroid-derived-2)-like 2 (Nrf2). RESULTS: LZD showed significant therapeutic effects in UC mice, including reduction of intestinal injury and inflammation. Moreover, LZD treatment notably upregulated the expression of TJ proteins. Further investigation indicated that LZD significantly inhibited the ferroptosis of enterocytes by decreasing iron load and MDA, and increasing the expression levels of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) in colon tissues. Furthermore, the decreased activity of SOD, reduced level of GSH, and increased content of GSSG in UC mice were notably reversed by LZD. Consistent with in vivo results, LZD could markedly inhibit ferroptosis and OS in RSL3-induced Caco-2 cells. Mechanistically, LZD alleviated ferroptosis by suppressing OS through the activation of Nrf2 signaling. CONCLUSIONS: Collectively, LZD remarkably improved intestinal pathological injury in UC mice, and its potential mechanism was the suppression of ferroptosis in enterocytes by the Nrf2/SLC7A11/GPX4 pathway.


Assuntos
Colite Ulcerativa , Colite , Ferroptose , Humanos , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Enterócitos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fator 2 Relacionado a NF-E2 , Dissulfeto de Glutationa , Células CACO-2 , Glutationa , Ferro , Superóxido Dismutase , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL , Sistema y+ de Transporte de Aminoácidos
14.
Am J Physiol Cell Physiol ; 326(3): C829-C842, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38223928

RESUMO

Loss of function mutations in the SLC26A3 gene cause chloride-losing diarrhea in mice and humans. Although systemic adaptive changes have been documented in these patients and in the corresponding knockout mice, how colonic enterocytes adapt to loss of this highly expressed and highly regulated luminal membrane anion exchanger remains unclear. To address this question, SLC26A3 was deleted in the self-differentiating Caco2BBe colonic cell line by the CRISPR/Cas9 technique. We selected a clone with loss of SLC26A3 protein expression and morphological features indistinguishable from those of the native cell line. Neither growth curves nor development of transepithelial electrical resistance (TEER) differed between wild-type (WT) and SLC26A3 knockout (KO) cells. Real-time qPCR and Western analysis in SLC26A3-KO cells revealed an increase in AE2 expression without significant change in NHE3 expression or localization. Steady-state pHi and apical and basolateral Cl-/HCO3- exchange activities were assessed fluorometrically in a dual perfusion chamber with independent perfusion of luminal and serosal baths. Apical Cl-/HCO3- exchange rates were strongly reduced in SLC26A3-KO cells, accompanied by a surface pH more acidic than that of WT cells. Steady-state pHi was not significantly different from that of WT cells, but basolateral Cl-/HCO3- exchange rates were higher in SLC26A3-KO than in WT cells. The data show that CRISPR/Cas9-mediated SLC26A3 deletion strongly reduced apical Cl-/HCO3- exchange rate and apical surface pH, but sustained a normal steady-state pHi due to increased expression and function of basolateral AE2. The low apical surface pH resulted in functional inhibition of NHE-mediated fluid absorption despite normal expression of NHE3 polypeptide.NEW & NOTEWORTHY SLC26A3 gene mutations cause chloride-losing diarrhea. To understand how colonic enterocytes adapt, SLC26A3 was deleted in Caco2BBe cells using CRISPR/Cas9. In comparison to the wild-type cells, SLC26A3 knockout cells showed similar growth and transepithelial resistance but substantially reduced apical Cl-/HCO3- exchange rates, and an acidic surface pH. Steady-state intracellular pH was comparable between the WT and KO cells due to increased basolateral AE2 expression and function.


Assuntos
Cloretos , Diarreia , Humanos , Animais , Camundongos , Trocador 3 de Sódio-Hidrogênio/genética , Ânions , Enterócitos , Concentração de Íons de Hidrogênio , Transportadores de Sulfato/genética , Antiportadores de Cloreto-Bicarbonato/genética
15.
Nature ; 625(7994): 385-392, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123683

RESUMO

Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.


Assuntos
Gorduras na Dieta , Enterócitos , Metabolismo dos Lipídeos , Mitocôndrias , Animais , Camundongos , Aspartato-tRNA Ligase/metabolismo , Quilomícrons/metabolismo , Gorduras na Dieta/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Retículo Endoplasmático/metabolismo , Enterócitos/metabolismo , Enterócitos/patologia , Células Epiteliais/metabolismo , Complexo de Golgi/metabolismo , Intestinos , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia
16.
Sci Adv ; 9(37): eadi2562, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703370

RESUMO

Norovirus is a leading cause of epidemic viral gastroenteritis, with no currently approved vaccines or antivirals. Murine norovirus (MNoV) is a well-characterized model of norovirus pathogenesis in vivo, and persistent strains exhibit lifelong intestinal infection. Interferon-λ (IFN-λ) is a potent antiviral that rapidly cures MNoV. We previously demonstrated that IFN-λ signaling in intestinal epithelial cells (IECs) controls persistent MNoV, and here demonstrate that IFN-λ acts on tuft cells, the exclusive site of MNoV persistence, to limit infection. While interrogating the source of IFN-λ to regulate MNoV, we confirmed that MDA5-MAVS signaling, required for IFN-λ induction to MNoV in vitro, controls persistent MNoV in vivo. We demonstrate that MAVS in IECs and not immune cells controls MNoV. MAVS in nonsusceptible enterocytes, but not in tuft cells, restricts MNoV, implicating noninfected cells as the IFN-λ source. Our findings indicate that host sensing of MNoV is distinct from cellular tropism, suggesting intercellular communication between IECs for antiviral signaling induction in uninfected bystander cells.


Assuntos
Infecções por Enterovirus , Norovirus , Animais , Camundongos , Enterócitos , Células Epiteliais , Transdução de Sinais , Antivirais/farmacologia , Interferon lambda
17.
Nature ; 623(7985): 122-131, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722602

RESUMO

A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the aetiology of chronic disorders such as inflammatory bowel diseases and cancer1. We used the Drosophila midgut2 to investigate this and discovered that during regeneration a subpopulation of cholinergic3 neurons triggers Ca2+ currents among intestinal epithelial cells, the enterocytes, to promote return to homeostasis. We found that downregulation of the conserved cholinergic enzyme acetylcholinesterase4 in the gut epithelium enables acetylcholine from specific Egr5 (TNF in mammals)-sensing cholinergic neurons to activate nicotinic receptors in innervated enterocytes. This activation triggers high Ca2+, which spreads in the epithelium through Innexin2-Innexin7 gap junctions6, promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki (YAP in humans) activation7, cell death and increase of inflammatory cytokines reminiscent of inflammatory bowel diseases8. Altogether, the conserved cholinergic pathway facilitates epithelial Ca2+ currents that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric9-dependent intestinal regeneration and advance our current understanding of how a tissue returns to homeostasis after injury.


Assuntos
Sinalização do Cálcio , Cálcio , Neurônios Colinérgicos , Drosophila melanogaster , Enterócitos , Intestinos , Animais , Humanos , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Cálcio/metabolismo , Neurônios Colinérgicos/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/metabolismo , Enterócitos/metabolismo , Homeostase , Inflamação/enzimologia , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Intestinos/citologia , Intestinos/metabolismo , Receptores Nicotínicos/metabolismo , Modelos Animais de Doenças
18.
Gastroenterology ; 165(4): 986-998.e11, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429363

RESUMO

BACKGROUND & AIMS: Acute diarrheal diseases are the second most common cause of infant mortality in developing countries. This is contributed to by lack of effective drug therapy that shortens the duration or lessens the volume of diarrhea. The epithelial brush border sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) accounts for a major component of intestinal Na+ absorption and is inhibited in most diarrheas. Because increased intestinal Na+ absorption can rehydrate patients with diarrhea, NHE3 has been suggested as a potential druggable target for drug therapy for diarrhea. METHODS: A peptide (sodium-hydrogen exchanger 3 stimulatory peptide [N3SP]) was synthesized to mimic the part of the NHE3 C-terminus that forms a multiprotein complex that inhibits NHE3 activity. The effect of N3SP on NHE3 activity was evaluated in NHE3-transfected fibroblasts null for other plasma membrane NHEs, a human colon cancer cell line that models intestinal absorptive enterocytes (Caco-2/BBe), human enteroids, and mouse intestine in vitro and in vivo. N3SP was delivered into cells via a hydrophobic fluorescent maleimide or nanoparticles. RESULTS: N3SP uptake stimulated NHE3 activity at nmol/L concentrations under basal conditions and partially reversed the reduced NHE3 activity caused by elevated adenosine 3',5'-cyclic monophosphate, guanosine 3',5'-cyclic monophosphate, and Ca2+ in cell lines and in in vitro mouse intestine. N3SP also stimulated intestinal fluid absorption in the mouse small intestine in vivo and prevented cholera toxin-, Escherichia coli heat-stable enterotoxin-, and cluster of differentiation 3 inflammation-induced fluid secretion in a live mouse intestinal loop model. CONCLUSIONS: These findings suggest pharmacologic stimulation of NHE3 activity as an efficacious approach for the treatment of moderate/severe diarrheal diseases.


Assuntos
Enterotoxinas , Trocadores de Sódio-Hidrogênio , Camundongos , Animais , Humanos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Enterotoxinas/farmacologia , Enterotoxinas/metabolismo , Células CACO-2 , Trocadores de Sódio-Hidrogênio/metabolismo , Enterócitos/metabolismo , Sódio/metabolismo , Diarreia/tratamento farmacológico , Diarreia/prevenção & controle , Diarreia/induzido quimicamente , Peptídeos/efeitos adversos , Microvilosidades/metabolismo
19.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445994

RESUMO

The enzyme transglutaminase 2 (TG2) plays a key role in celiac disease (CeD) pathogenesis. Active TG2 is located mainly extracellularly in the lamina propria but also in the villous enterocytes of the duodenum. The TG2 inhibitor ZED1227 is a promising drug candidate for treating CeD and is designed to block the TG2-catalyzed deamidation and crosslinking of gliadin peptides. Our aim was to study the accumulation of ZED1227 after oral administration of the drug. We studied duodenal biopsies derived from a phase 2a clinical drug trial using an antibody that detects ZED1227 when bound to the catalytic center of TG2. Human epithelial organoids were studied in vitro for the effect of ZED1227 on the activity of TG2 using the 5-biotin-pentylamine assay. The ZED1227-TG2 complex was found mainly in the villous enterocytes in post-treatment biopsies. The signal of ZED1227-TG2 was strongest in the luminal epithelial brush border, while the intensity of the signal in the lamina propria was only ~20% of that in the villous enterocytes. No signal specific to ZED1227 could be detected in pretreatment biopsies or in biopsies from patients randomized to the placebo treatment arm. ZED1227-TG2 staining co-localized with total TG2 and native and deamidated gliadin peptides on the enterocyte luminal surface. Inhibition of TG2 activity by ZED1227 was demonstrated in epithelial organoids. Our findings suggest that active TG2 is present at the luminal side of the villous epithelium and that inhibition of TG2 activity by ZED1227 occurs already there before gliadin peptides enter the lamina propria.


Assuntos
Doença Celíaca , Glutens , Humanos , Proteína 2 Glutamina gama-Glutamiltransferase , Enterócitos/metabolismo , Gliadina , Transglutaminases/metabolismo , Peptídeos
20.
Poult Sci ; 102(10): 102864, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37517361

RESUMO

Primary chicken intestinal epithelial cells or 3D enteroids are a powerful tool to study the different biological mechanisms that occur in the chicken intestine. Unfortunately, they are not ideal for large-scale screening or long-term studies due to their short lifespan. Moreover, they require expensive culture media, coatings, or the usage of live embryos for each isolation. The aim of this study was to establish and characterize an immortalized chicken intestinal epithelial cell line to help the study of host-pathogen interactions in poultry. This cell line was established by transducing into primary chicken enterocytes the SV40 large-T antigen through a lentiviral vector. The transduced cells grew without changes up to 40 passages maintaining, after a differentiation phase of 48 h with epidermal growth factor, the biological properties of mature enterocytes such as alkaline phosphatase activity and tight junction formation. Immortalized enterocytes were able to generate a cytokine response during an inflammatory challenge, and showed to be susceptible to Eimeria tenella sporozoites invasion and generate a proper immune response to parasitic and lipopolysaccharide (Escherichia coli) stimulation. This immortalized cell line could be a cost-effective and easy-to-maintain model for all the public health, food safety, or research and pharmaceutical laboratories that study host-pathogen interactions, foodborne pathogens, and food or feed science in vitro.


Assuntos
Galinhas , Células Epiteliais , Animais , Linhagem Celular , Enterócitos , Intestinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA