Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 408
Filtrar
1.
J Histochem Cytochem ; 72(2): 71-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38189179

RESUMO

Human intestinal spirochetosis (HIS) is a colorectal bacterial infection caused by the Brachyspira species. Griffonia simplicifolia-II (GS-II) is a lectin specific to terminal α/ßGlcNAc residues. Here, we investigated terminal ßGlcNAc residues in the context of HIS infection using GS-II-horseradish peroxidase staining and HIK1083 immunostaining specific to terminal αGlcNAc residues. Fourteen of 15 HIS cases were GS-II-positive on the bacterial body. No cases showed HIK1083 positivity. The percentage of bacterial bodies staining positively for GS-II based on comparison with anti-Treponema immunostaining was ≤30% in seven cases, 30-70% in two, and >70% in six. Of 15 HIS cases analyzed, none were comorbid with tubular adenomas, and three were comorbid with sessile serrated lesions (SSLs). To determine the species of spirochete infected, the B. aalborgi-specific or B. pilosicoli-specific NADPH oxidase genes were amplified by PCR. After direct sequencing of the PCR products, all nine cases in which PCR products were observed were found to be infected with B. aalborgi alone. These results indicate that the HIS bacterial body, especially of B. aalborgi, is characterized by terminal ßGlcNAc and also indicate that terminal ßGlcNAc on the HIS bacterial body is associated with HIS preference for SSLs.


Assuntos
Brachyspira , Enteropatias , Infecções por Spirochaetales , Humanos , Brachyspira/genética , Intestinos , Infecções por Spirochaetales/microbiologia , Infecções por Spirochaetales/patologia , Spirochaetales , Enteropatias/microbiologia , Enteropatias/patologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-37076331

RESUMO

OBJECTIVES: To describe the clinical features, history and association with intestinal disease in central nervous system (CNS) S. bovis infections. METHODS: Four cases of S. bovis CNS infections from our institution are presented. Additionally a systematic literature review of articles published between 1975 and 2021 in PubMed/MEDLINE was conducted. RESULTS: 52 studies with 65 cases were found; five were excluded because of incomplete data. In total 64 cases were analyzed including our four cases: 55 with meningitis and 9 with intracranial focal infections. Both infections were frequently associated with underlying conditions (70.3%) such as immunosuppression (32.8%) or cancer (10.9%). In 23 cases a biotype was identified, with biotype II being the most frequent (69.6%) and S. pasteurianus the most common within this subgroup. Intestinal diseases were found in 60.9% of cases, most commonly neoplasms (41.0%) and Strongyloides infestation (30.8%). Overall mortality was 17.1%, with a higher rate in focal infection (44.4% vs 12.7%; p=0.001). CONCLUSIONS: CNS infections due to S. bovis are infrequent and the most common clinical form is meningitis. Compared with focal infections, meningitis had a more acute course, was less associated with endocarditis and had a lower mortality. Immunosuppression and intestinal disease were frequent in both infections.


Assuntos
Infecções do Sistema Nervoso Central , Infecções Estreptocócicas , Streptococcus bovis , Adulto , Humanos , Sistema Nervoso Central , Infecções do Sistema Nervoso Central/microbiologia , Infecções do Sistema Nervoso Central/patologia , Infecção Focal/microbiologia , Infecção Focal/patologia , Enteropatias/microbiologia , Enteropatias/patologia , Meningite/microbiologia , Meningite/patologia , Infecções Estreptocócicas/complicações , Infecções Estreptocócicas/epidemiologia , Streptococcus bovis/fisiologia
4.
Front Immunol ; 13: 897395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911699

RESUMO

Intestinal epithelial barrier injury disrupts immune homeostasis and leads to many intestinal disorders. Lactobacillus reuteri (L. reuteri) strains can influence immune system development and intestinal function. However, the underlying mechanisms of L. reuteri LR1 that regulate inflammatory response and intestinal integrity are still unknown. The present study aimed to determine the effects of LR1 on the ETEC K88-induced intestinal epithelial injury on the inflammatory response, intestinal epithelial barrier function, and the MLCK signal pathway and its underlying mechanism. Here, we showed that the 1 × 109 cfu/ml LR1 treatment for 4 h dramatically decreased interleukin-8 (IL-8) and IL-6 expression. Then, the data indicated that the 1 × 108 cfu/ml ETEC K88 treatment for 4 h dramatically enhanced IL-8, IL-6, and tumor necrosis factor-α (TNF-α) expression. Furthermore, scanning electron microscope (SEM) data indicated that pretreatment with LR1 inhibited the ETEC K88 that adhered on IPEC-J2 and alleviated the scratch injury of IPEC J2 cells. Moreover, LR1 pretreatment significantly reversed the declined transepithelial electrical resistance (TER) and tight junction protein level, and enhanced the induction by ETEC K88 treatment. Additionally, LR1 pretreatment dramatically declined IL-8, IL-17A, IL-6, and TNF-α levels compared with the ETEC K88 group. Then, ETEC K88-treated IPEC-J2 cells had a higher level of myosin light-chain kinase (MLCK), higher MLC levels, and a lower Rho-associated kinase (ROCK) level than the control group, while LR1 pretreatment significantly declined the MLCK and MLC expression and enhanced ROCK level in the ETEC K88-challenged IPEC-J2 cells. Mechanistically, depletion of MLCK significantly declined MLC expression in IPEC-J2 challenged with ETEC K88 compared to the si NC+ETEC K88 group. On the other hand, the TER of the si MLCK+ETEC K88 group was higher and the FD4 flux in the si MLCK+ETEC K88 group was lower compared with the si NC+ETEC K88 group. In addition, depletion of MLCK significantly enhanced Claudin-1 level and declined IL-8 and TNF-α levels in IPEC-J2 pretreated with LR1 followed by challenging with ETEC K88. In conclusion, our work indicated that L. reuteri LR1 can decline inflammatory response and improve intestinal epithelial barrier function through suppressing the MLCK signal pathway in the ETEC K88-challenged IPEC-J2.


Assuntos
Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Mucosa Intestinal , Limosilactobacillus reuteri , Animais , Linhagem Celular , Escherichia coli Enterotoxigênica/imunologia , Infecções por Escherichia coli/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Enteropatias/microbiologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiologia , Limosilactobacillus reuteri/fisiologia , Quinase de Cadeia Leve de Miosina/metabolismo , Transdução de Sinais , Suínos , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054790

RESUMO

Intestinal homeostasis is a dynamic balance involving the interaction between the host intestinal mucosa, immune barrier, intestinal microecology, nutrients, and metabolites. Once homeostasis is out of balance, it will increase the risk of intestinal diseases and is also closely associated with some systemic diseases. Probiotics (Escherichia coli Nissle 1917, Akkermansia muciniphila, Clostridium butyricum, lactic acid bacteria and Bifidobacterium spp.), maintaining the gut homeostasis through direct interaction with the intestine, can also exist as a specific agent to prevent, alleviate, or cure intestinal-related diseases. With genetic engineering technology advancing, probiotics can also show targeted therapeutic properties. The aims of this review are to summarize the roles of potential native and engineered probiotics in oncology, inflammatory bowel disease, and obesity, discussing the therapeutic applications of these probiotics.


Assuntos
Diabetes Mellitus/microbiologia , Enteropatias/microbiologia , Mucosa Intestinal/fisiologia , Obesidade/microbiologia , Probióticos/uso terapêutico , Akkermansia , Animais , Bifidobacterium , Clostridium butyricum , Diabetes Mellitus/terapia , Escherichia coli , Homeostase , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/terapia , Enteropatias/terapia , Mucosa Intestinal/microbiologia , Lactobacillales , Obesidade/terapia
6.
Life Sci ; 289: 120243, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34922941

RESUMO

Intestinal mucositis (IM) is a critical side-effect associated with antineoplastic therapy. Treatment available is only palliative and often not effective. However, alternative therapeutic strategies, such as probiotics, have attracted significant attention due to their immune-modulatory action in several diseases. Thus, the present study aims to elucidate the therapeutic potential of the probiotic strain Bifidobacterium longum 51A in a murine model of mucositis induced by irinotecan. Due to the scarcity of studies on dose-response and viability (probiotic vs paraprobiotic), we first evaluated which dose and cell viability would be most effective in treating mucositis. In this study, the oral pretreatment with viable B. longum 51A at a concentration of 1 × 109 CFU/mL reduced the daily disease activity index (p < 0.01), protected the intestinal architecture, preserved the length of the intestine (p < 0.05), and reduced intestinal permeability (p < 0.01), inflammation, and oxidative damage (p < 0.01) induced by irinotecan. Also, treatment with B. longum 51A increased the production of secretory immunoglobulin A (p < 0.05) in the intestinal fluid of mice with mucositis. Furthermore, B. longum 51A reversed the mucositis-induced increase in Enterobacteriaceae bacterial group in the gut (p < 0.01). In conclusion, these results showed that oral administration of B. longum 51A protects mice against intestinal damage caused by irinotecan, suggesting its use as a potential probiotic in therapy during mucositis.


Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal/efeitos dos fármacos , Enteropatias , Irinotecano/efeitos adversos , Mucosite , Probióticos/farmacologia , Animais , Feminino , Enteropatias/induzido quimicamente , Enteropatias/microbiologia , Enteropatias/terapia , Irinotecano/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Mucosite/induzido quimicamente , Mucosite/microbiologia , Mucosite/terapia
7.
Microbiol Spectr ; 9(3): e0065421, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34908474

RESUMO

The present study aimed to explore the protective effects of exogenous catalase (CAT) from microorganisms against lipopolysaccharide (LPS)-induced intestinal injury and its molecular mechanism in weaned pigs. Fifty-four weaned pigs (21 days of age) were randomly allocated to CON, LPS, and LPS+CAT groups. The pigs in CON and LPS groups were fed a basal diet, whereas the pigs in LPS+CAT group fed the basal diet with 2,000 mg/kg CAT supplementation for 35 days. On day 36, six pigs were selected from each group, and LPS and LPS+CAT groups were administered with LPS (50 µg/kg body weight). Meanwhile, CON group was injected with an equivalent amount of sterile saline. Results showed that LPS administration damaged intestinal mucosa morphology and barrier. However, CAT supplementation alleviated the deleterious effects caused by LPS challenge through enhancing intestinal antioxidant capacity which was benefited to decrease proinflammatory cytokines concentrations and suppress enterocyte apoptosis. Besides, LPS-induced gut microbiota dysbiosis was significantly shifted by CAT through decreasing mainly Streptococcus and Escherichia-Shigella. Our study suggested that dietary supplemented with 2,000 mg/kg catalase was conducive to improve intestinal development and protect against LPS-induced intestinal mucosa injury via enhancing intestinal antioxidant capacity and altering microbiota composition in weaned pigs. IMPORTANCE Exogenous CAT derived from microorganisms has been widely used in food, medicine, and other industries. Recent study also found that exogenous CAT supplementation could improve growth performance and antioxidant capacity of weaned pigs. However, it is still unknown that whether dietary exogenous CAT supplementation can provide a defense against the oxidative stress-induced intestinal damage in weaned pigs. Our current study suggested that dietary supplemented with 2,000 mg/kg CAT was conducive to improve intestinal development and protect against LPS-induced intestinal mucosa injury via enhancing intestinal antioxidant capacity and altering microbiota composition in weaned pigs. Moreover, this study will also assist in developing of CAT produced by microorganisms to attenuate various oxidative stress-induced injury or diseases.


Assuntos
Antioxidantes/metabolismo , Catalase/administração & dosagem , Proteínas Fúngicas/administração & dosagem , Enteropatias/veterinária , Intestinos/metabolismo , Penicillium chrysogenum/enzimologia , Doenças dos Suínos/tratamento farmacológico , Animais , Suplementos Nutricionais/análise , Terapia Enzimática , Microbioma Gastrointestinal/efeitos dos fármacos , Enteropatias/tratamento farmacológico , Enteropatias/metabolismo , Enteropatias/microbiologia , Intestinos/efeitos dos fármacos , Intestinos/lesões , Intestinos/microbiologia , Lipopolissacarídeos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Penicillium chrysogenum/química , Suínos , Doenças dos Suínos/etiologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia
8.
Oxid Med Cell Longev ; 2021: 6221012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34950418

RESUMO

Antioxidant polyphenols from plants are potential dietary supplementation to alleviate early weaning-induced intestinal disorders in piglets. Recent evidences showed polyphenol quercetin could reshape gut microbiota when it functioned as anti-inflammation or antioxidation agents in rodent models. However, the effect of dietary quercetin supplementation on intestinal disorders and gut microbiota of weanling piglets, along with the role of gut microbiota in this effect, both remain unclear. Here, we determined the quercetin's effect on attenuating diarrhea, intestinal damage, and redox imbalance, as well as the role of gut microbiota by transferring the quercetin-treated fecal microbiota to the recipient piglets. The results showed that dietary quercetin supplementation decreased piglets' fecal scores improved intestinal damage by increasing tight junction protein occludin, villus height, and villus height/crypt depth ratio but decreased crypt depth and intestinal epithelial apoptosis (TUNEL staining). Quercetin also increased antioxidant capacity indices, including total antioxidant capacity, catalase, and glutathione/oxidized glutathione disulfide but decreased oxidative metabolite malondialdehyde in the jejunum tissue. Fecal microbiota transplantation (FMT) from quercetin-treated piglets had comparable effects on improving intestinal damage and antioxidative capacity than dietary quercetin supplementation. Further analysis of gut microbiota using 16S rDNA sequencing showed that dietary quercetin supplementation or FMT shifted the structure and increased the diversity of gut microbiota. Especially, anaerobic trait and carbohydrate metabolism functions of gut microbiota were enriched after dietary quercetin supplementation and FMT, which may owe to the increased antioxidative capacity of intestine. Quercetin increased the relative abundances of Fibrobacteres, Akkermansia muciniphila, Clostridium butyricum, Clostridium celatum, and Prevotella copri but decreased the relative abundances of Proteobacteria, Lactobacillus coleohominis, and Ruminococcus bromii. Besides, quercetin-shifted bacteria and carbohydrate metabolites short chain fatty acids were significantly related to the indices of antioxidant capacity and intestinal integrity. Overall, dietary quercetin supplementation attenuated diarrhea and intestinal damage by enhancing the antioxidant capacity and regulating gut microbial structure and metabolism in piglets.


Assuntos
Diarreia/prevenção & controle , Suplementos Nutricionais , Disbiose/prevenção & controle , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal , Enteropatias/prevenção & controle , Quercetina/administração & dosagem , Ração Animal/análise , Animais , Antioxidantes/administração & dosagem , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Diarreia/microbiologia , Diarreia/patologia , Disbiose/microbiologia , Disbiose/patologia , Feminino , Enteropatias/microbiologia , Enteropatias/patologia , Suínos , Desmame
9.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830269

RESUMO

Clostridium perfringens (C. perfringens) causes intestinal injury through overgrowth and the secretion of multiple toxins, leading to diarrhea and necrotic enteritis in animals, including pigs, chickens, and sheep. This study aimed to investigate the protective effects of Lactobacillus plantarum (L. plantarum) Lac16 on C. perfringens infection-associated injury in intestinal porcine epithelial cell line (IPEC-J2). The results showed that L. plantarum Lac16 significantly inhibited the growth of C. perfringens, which was accompanied by a decrease in pH levels. In addition, L. plantarum Lac16 significantly elevated the mRNA expression levels of host defense peptides (HDPs) in IPEC-J2 cells, decreased the adhesion of C. perfringens to IPEC-J2 cells, and attenuated C. perfringens-induced cellular cytotoxicity and intestinal barrier damage. Furthermore, L. plantarum Lac16 significantly suppressed C. perfringens-induced gene expressions of proinflammatory cytokines and pattern recognition receptors (PRRs) in IPEC-J2 cells. Moreover, L. plantarum Lac16 preincubation effectively inhibited the phosphorylation of p65 caused by C. perfringens infection. Collectively, probiotic L. plantarum Lac16 exerts protective effects against C. perfringens infection-associated injury in IPEC-J2 cells.


Assuntos
Infecções por Clostridium/metabolismo , Clostridium perfringens/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Enteropatias/metabolismo , Enteropatias/veterinária , Mucosa Intestinal/metabolismo , Lactobacillus plantarum/metabolismo , Probióticos/farmacologia , Substâncias Protetoras/farmacologia , Doenças dos Suínos/metabolismo , Animais , Aderência Bacteriana , Linhagem Celular , Infecções por Clostridium/microbiologia , Clostridium perfringens/metabolismo , Técnicas de Cocultura/métodos , Células Epiteliais/microbiologia , Enteropatias/microbiologia , Mucosa Intestinal/microbiologia , Probióticos/metabolismo , Substâncias Protetoras/metabolismo , Suínos , Doenças dos Suínos/microbiologia
10.
Cell Host Microbe ; 29(12): 1744-1756.e5, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34678170

RESUMO

Interactions between the microbiota and mammalian host are essential for defense against infection, but the microbial-derived cues that mediate this relationship remain unclear. Here, we find that intestinal epithelial cell (IEC)-associated commensal bacteria, segmented filamentous bacteria (SFB), promote early protection against the pathogen Citrobacter rodentium, independent of CD4+ T cells. SFB induced histone modifications in IECs at sites enriched for retinoic acid receptor motifs, suggesting that SFB may enhance defense through retinoic acid (RA). Consistent with this, inhibiting RA signaling suppressed SFB-induced protection. Intestinal RA levels were elevated in SFB mice, despite the inhibition of mammalian RA production, indicating that SFB directly modulate RA. Interestingly, RA was produced by intestinal bacteria, and the loss of bacterial-intrinsic aldehyde dehydrogenase activity decreased the RA levels and increased infection. These data reveal RA as an unexpected microbiota-derived metabolite that primes innate defense and suggests that pre- and probiotic approaches to elevate RA could prevent or combat infections.


Assuntos
Bactérias/metabolismo , Enteropatias/metabolismo , Simbiose , Tretinoína/metabolismo , Animais , Bacillus cereus , Bifidobacterium bifidum , Linfócitos T CD4-Positivos , Citrobacter rodentium , Células Epiteliais , Código das Histonas , Interações entre Hospedeiro e Microrganismos , Enteropatias/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Óxido Nítrico , Transdução de Sinais
11.
Anim Sci J ; 92(1): e13619, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34409681

RESUMO

Heat stress in poultry is deleterious to productive performance. Chlorogenic acid (CGA) exerts antibacterial, anti-inflammatory, and antioxidant properties. This study was conducted to evaluate the effects of dietary supplemental CGA on the intestinal health and cecal microbiota composition of young hens challenged with acute heat stress. 100-day-old Hy-line brown pullets were randomly divided into four groups. The control group (C) and heat stress group (HS) received a basal diet. HS + CGA300 group and HS + CGA600 group received a basal diet supplemented with 300- and 600-mg/kg CGA, respectively, for 2 weeks before heat stress exposure. Pullets of HS, HS + CGA300 , and HS + CGA600 group were exposed to 38°C for 4 h while the control group was maintained at 25°C. In this study, dietary CGA supplementation had effect on mitigate the decreased T-AOC and T-SOD activities and the increasing of IL-1ß and TNFα induced by acute heat stress. Dietary supplementation with 600 mg/kg CGA had better effect on increasing the relative abundance of beneficial bacterial genera, such as Rikenellaceae RC9_gut_group, Ruminococcaceae UCG-005, and Christensenellaceae R-7_group, and deceasing bacteria genera involved in inflammation, such as Sutterella species. Therefore, CGA can ameliorate acute heat stress damage through suppressing inflammation and improved antioxidant capacity and cecal microbiota composition.


Assuntos
Antioxidantes/metabolismo , Ácido Clorogênico/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais , Microbioma Gastrointestinal , Transtornos de Estresse por Calor/dietoterapia , Transtornos de Estresse por Calor/veterinária , Enteropatias/dietoterapia , Enteropatias/veterinária , Microbiota , Doenças das Aves Domésticas/dietoterapia , Doenças das Aves Domésticas/microbiologia , Doença Aguda , Animais , Galinhas , Feminino , Transtornos de Estresse por Calor/metabolismo , Transtornos de Estresse por Calor/microbiologia , Inflamação , Enteropatias/metabolismo , Enteropatias/microbiologia , Doenças das Aves Domésticas/metabolismo
12.
J Infect Dis ; 224(12 Suppl 2): S856-S863, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34273148

RESUMO

Environmental enteric dysfunction (EED) is a syndrome characterized by impairments of digestion and absorption and intestinal barrier failure in people living in insanitary or tropical environments. There is substantial evidence that it contributes to impaired linear growth of millions of children in low- and middle-income countries, to slowed neurocognitive development, and to diminished responses to oral vaccines. It represents the functional consequences of environmental enteropathy, an asymptomatic inflammatory disorder of the mucosa, and there is considerable overlap with the enteropathy observed in severe clinical malnutrition. The majority of studies of EED have employed functional tests based on lactulose permeation to define the presence of abnormal leak in the gut. However, where intestinal biopsies can safely be collected the opportunity then arises to study the underlying enteropathy in cellular and molecular detail, as well as to measure important functional elements such as enzyme expression. The purpose of this narrative review is to summarize the current understanding of environmental enteropathy obtained from small intestinal biopsies, and prospects for future work. We review histology, electron microscopy, transcription and protein expression, physiological measures, and the microbiome. We conclude that while noninvasive biomarkers of enteropathy and intestinal dysfunction permit large-scale studies of unquestionable value, intestinal biopsies are still required to investigate pathophysiology in depth.


Assuntos
Biópsia , Meio Ambiente , Enteropatias/patologia , Intestino Delgado/patologia , Biomarcadores/análise , Criança , Exposição Ambiental , Humanos , Enteropatias/microbiologia , Mucosa Intestinal , Intestino Delgado/microbiologia , Vacinas
14.
Front Immunol ; 12: 644982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815399

RESUMO

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for many hematological disorders and autoimmune diseases, but acute graft-versus-host disease (aGVHD) has remained a major obstacle that limits allo-HSCT and exhibits a daunting mortality rate. The gastrointestinal system is among the most common sites affected by aGVHD. Experimental advances in the field of intestinal microbiota research enhanced our understanding - not only of the quantity and diversity of intestinal microbiota - but also their association with homeostasis of the immune system and disease pathogenesis, including that of aGVHD. Meanwhile, ever-growing clinical evidence suggest that the intestinal microbiota is dysregulated in patients who develop aGVHD and that the imbalance may affect clinical outcomes, indicating a potential predictive role for microbiota dysregulation in aGVHD severity and prognosis. The current animal and human studies investigating the intestinal microbiota in aGVHD and the understanding of the influence and management of the microbiota in the clinic are reviewed herein. Taken together, monitoring and remodeling the intestinal microecology following allo-HSCT may provide us with promising avenues for diagnosing, preventing or treating aGVHD in the clinic.


Assuntos
Microbioma Gastrointestinal/imunologia , Doença Enxerto-Hospedeiro , Doenças Hematológicas , Transplante de Células-Tronco Hematopoéticas , Enteropatias , Intestinos , Animais , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/microbiologia , Doença Enxerto-Hospedeiro/mortalidade , Doenças Hematológicas/imunologia , Doenças Hematológicas/microbiologia , Doenças Hematológicas/mortalidade , Doenças Hematológicas/terapia , Humanos , Enteropatias/imunologia , Enteropatias/microbiologia , Enteropatias/mortalidade , Intestinos/imunologia , Intestinos/microbiologia , Transplante Homólogo
15.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801524

RESUMO

Tight junctions play a major role in maintaining the integrity and impermeability of the intestinal barrier. As such, they act as an ideal target for pathogens to promote their translocation through the intestinal mucosa and invade their host. Different strategies are used by pathogens, aimed at directly destabilizing the junctional network or modulating the different signaling pathways involved in the modulation of these junctions. After a brief presentation of the organization and modulation of tight junctions, we provide the state of the art of the molecular mechanisms leading to permeability breakdown of the gut barrier as a consequence of tight junctions' attack by pathogens, including bacteria, viruses, fungi, and parasites.


Assuntos
Bactérias/patogenicidade , Células Epiteliais/fisiologia , Infecções/fisiopatologia , Enteropatias/fisiopatologia , Mucosa Intestinal/fisiologia , Junções Íntimas/fisiologia , Animais , Permeabilidade da Membrana Celular , Humanos , Infecções/microbiologia , Enteropatias/microbiologia , Transdução de Sinais
17.
Artigo em Inglês | MEDLINE | ID: mdl-33571672

RESUMO

Butyrate, propionate, and acetate are short-chain fatty acids (SCFAs) mainly produced by bacterial metabolism in the human gut after dietary fiber intake. SCFAs are considered important for health maintenance by promoting lipid, glucose, and immune homeostasis with an adequate composition of intestinal microbiota, including other beneficial effects like providing protection against colorectal cancer. Therapies with exogenous SCFAs have been proposed to reduce inflammation in intestinal diseases that result from SCFA dysbiosis and cause mucosal inflammation. The aim of this mini-review was to provide an overview of the importance of SCFAs on metabolic and inflammatory processes as well as their role in treating chronic inflammatory disorders.


Assuntos
Bactérias/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Enteropatias/metabolismo , Enteropatias/microbiologia , Metabolismo dos Lipídeos , Glucose/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/microbiologia
18.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573273

RESUMO

After their synthesis from cholesterol in hepatic tissues, bile acids (BAs) are secreted into the intestinal lumen. Most BAs are subsequently re-absorbed in the terminal ileum and are transported back for recycling to the liver. Some of them, however, reach the colon and change their physicochemical properties upon modification by gut bacteria, and vice versa, BAs also shape the composition and function of the intestinal microbiota. This mutual interplay of both BAs and gut microbiota regulates many physiological processes, including the lipid, carbohydrate and energy metabolism of the host. Emerging evidence also implies an important role of this enterohepatic BA circuit in shaping mucosal colonization resistance as well as local and distant immune responses, tissue physiology and carcinogenesis. Subsequently, disrupted interactions of gut bacteria and BAs are associated with many disorders as diverse as Clostridioides difficile or Salmonella Typhimurium infection, inflammatory bowel disease, type 1 diabetes, asthma, metabolic syndrome, obesity, Parkinson's disease, schizophrenia and epilepsy. As we cannot address all of these interesting underlying pathophysiologic mechanisms here, we summarize the current knowledge about the physiologic and pathogenic interplay of local site microbiota and the enterohepatic BA metabolism using a few selected examples of liver and gut diseases.


Assuntos
Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal/fisiologia , Enteropatias/metabolismo , Hepatopatias/metabolismo , Animais , Metabolismo dos Carboidratos/fisiologia , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Enteropatias/imunologia , Enteropatias/microbiologia , Enteropatias/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Metabolismo dos Lipídeos/fisiologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias/imunologia , Hepatopatias/microbiologia , Hepatopatias/patologia
19.
Zhonghua Wei Chang Wai Ke Za Zhi ; 24(1): 94-100, 2021 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-33461259

RESUMO

Intestinal failure (IF) is defined as the critical reduction of functional intestines below the minimum needed to absorb nutrients and fluids, so that intravenous supplementation with parenteral nutrition (PN) is required to maintain health and/or growth. Although the benefits are evident, patients receiving PN can suffer from serious cholestasis due to lack of enteral feeding and small intestinal bacterial overgrowth (SIBO). One such complication that may arise is intestinal failure-associated liver disease (IFALD). Evidences from recent studies suggest that alterations in the intestinal microbiota, as well as intraluminal bile acid driven signaling, may play a critical role in both hepatic and intestinal injury. Since Marshall first proposed the concept of the gut-liver axis in 1998, the role of gut-liver axis disorders in the development of IFALD has received considerable attention. The conversation between gut and liver is the key to maintain liver metabolism and intestinal homeostasis, which influences each other and is reciprocal causation. However, as a "forgotten organ" , intestinal microbiota on the pathogenesis of IFALD has not been well reflected. As such, we propose, for the first time, the concept of gut-microbiota-liver axis to emphasize the importance of intestinal microbiota in the interaction of gut-liver axis. Analysis and research on gut-microbiota-liver axis will be of great significance for understanding the pathogenesis of IFALD and improving the prevention and treatment measures.


Assuntos
Microbioma Gastrointestinal , Enteropatias , Hepatopatias , Fígado/fisiopatologia , Nutrição Parenteral/efeitos adversos , Síndrome do Intestino Curto/fisiopatologia , Infecções Bacterianas/etiologia , Infecções Bacterianas/fisiopatologia , Ácidos e Sais Biliares/fisiologia , Colestase/etiologia , Colestase/microbiologia , Colestase/fisiopatologia , Nutrição Enteral , Microbioma Gastrointestinal/fisiologia , Humanos , Enteropatias/etiologia , Enteropatias/microbiologia , Enteropatias/fisiopatologia , Intestinos/microbiologia , Intestinos/fisiologia , Intestinos/fisiopatologia , Fígado/microbiologia , Fígado/fisiologia , Hepatopatias/etiologia , Hepatopatias/microbiologia , Hepatopatias/fisiopatologia , Síndrome do Intestino Curto/complicações , Síndrome do Intestino Curto/dietoterapia , Transdução de Sinais
20.
Dig Dis Sci ; 66(1): 88-104, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32034605

RESUMO

BACKGROUND: Environmental enteropathy (EE) is associated with stunting, impairment of responses to oral vaccines, and other adverse health consequences in young children throughout the developing world. EE is characterized by chronic low-grade intestinal inflammation and disrupted epithelial barrier integrity, partly resulting from dysregulation of tight junction proteins, observed in other enteropathies such as celiac disease. During EE, this dysregulation of tight junction expression amplifies translocation of pathogenic bacteria across the intestinal mucosa. AIMS: The aim was to determine whether enteropathogen-mediated epithelial barrier failure can be ameliorated using contra-pathogenicity therapies. METHODS: Intestinal epithelial barrier damage was assessed in Caco-2 cells incubated with three important enteropathogens identified in EE patients: Enteropathogenic Escherichia coli (EPEC), Citrobacter rodentium (C. rodentium), and Cryptosporidium parvum (C. parvum). Potential therapeutic molecules were tested to detect effects on transepithelial resistance (TER), bacterial translocation (BT), claudin-4 expression, and regulation of the inflammatory cytokine response. RESULTS: All three enteropathogens compared to uninfected cells, reduced TER (EPEC; p < 0.0001, C. rodentium; p < 0.0001, C. parvum; p < 0.0007), reduced claudin-4 expression, and permitted BT (EPEC; p < 0.0001, C. rodentium; p < 0.0001, C. parvum; p < 0.0003) through the monolayer. Zinc, colostrum, epidermal growth factor, trefoil factor 3, resistin-like molecule-ß, hydrocortisone, and the myosin light chain kinase inhibitor ML7 (Hexahydro-1-[(5-iodo-1-naphthalenyl)sulfonyl]-1H-1,4-diazepine hydrochloride); ML7) improved TER (up to 70%) and decreased BT (as much as 96%). Only zinc demonstrated modest antimicrobial activity. CONCLUSION: The enteropathogens impaired intestinal-epithelial barrier integrity with dysregulation of claudin-4 and increased bacterial translocation. Enteropathogen-mediated damage was reduced using contra-pathogenicity agents which mitigated the effects of pathogens without direct antimicrobial activity.


Assuntos
Translocação Bacteriana/fisiologia , Citrobacter rodentium/metabolismo , Cryptosporidium parvum/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Translocação Bacteriana/efeitos dos fármacos , Células CACO-2 , Citrobacter rodentium/efeitos dos fármacos , Cryptosporidium parvum/efeitos dos fármacos , Escherichia coli Enteropatogênica/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/uso terapêutico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Humanos , Hidrocortisona/farmacologia , Hidrocortisona/uso terapêutico , Enteropatias/tratamento farmacológico , Enteropatias/metabolismo , Enteropatias/microbiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Migração Transendotelial e Transepitelial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA