Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 908
Filtrar
1.
Blood ; 143(15): 1496-1512, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38170178

RESUMO

ABSTRACT: Patients with Sézary syndrome (SS), a leukemic variant of cutaneous T-cell lymphoma (CTCL), are prone to Staphylococcus aureus infections and have a poor prognosis due to treatment resistance. Here, we report that S aureus and staphylococcal enterotoxins (SE) induce drug resistance in malignant T cells against therapeutics commonly used in CTCL. Supernatant from patient-derived, SE-producing S aureus and recombinant SE significantly inhibit cell death induced by histone deacetylase (HDAC) inhibitor romidepsin in primary malignant T cells from patients with SS. Bacterial killing by engineered, bacteriophage-derived, S aureus-specific endolysin (XZ.700) abrogates the effect of S aureus supernatant. Similarly, mutations in major histocompatibility complex (MHC) class II binding sites of SE type A (SEA) and anti-SEA antibody block induction of resistance. Importantly, SE also triggers resistance to other HDAC inhibitors (vorinostat and resminostat) and chemotherapeutic drugs (doxorubicin and etoposide). Multimodal single-cell sequencing indicates T-cell receptor (TCR), NF-κB, and JAK/STAT signaling pathways (previously associated with drug resistance) as putative mediators of SE-induced drug resistance. In support, inhibition of TCR-signaling and Protein kinase C (upstream of NF-κB) counteracts SE-induced rescue from drug-induced cell death. Inversely, SE cannot rescue from cell death induced by the proteasome/NF-κB inhibitor bortezomib. Inhibition of JAK/STAT only blocks rescue in patients whose malignant T-cell survival is dependent on SE-induced cytokines, suggesting 2 distinct ways SE can induce drug resistance. In conclusion, we show that S aureus enterotoxins induce drug resistance in primary malignant T cells. These findings suggest that S aureus enterotoxins cause clinical treatment resistance in patients with SS, and antibacterial measures may improve the outcome of cancer-directed therapy in patients harboring S aureus.


Assuntos
Linfoma Cutâneo de Células T , Síndrome de Sézary , Neoplasias Cutâneas , Infecções Estafilocócicas , Humanos , Síndrome de Sézary/tratamento farmacológico , Síndrome de Sézary/patologia , Staphylococcus aureus , NF-kappa B , Linfócitos T , Enterotoxinas/farmacologia , Linfoma Cutâneo de Células T/patologia , Receptores de Antígenos de Linfócitos T , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Resistência a Medicamentos
2.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511553

RESUMO

As a biological macromolecule, the superantigen staphylococcal enterotoxin C2 (SEC2) is one of the most potent known T-cell activators, and it induces massive cytotoxic granule production. With this property, SEC2 and its mutants are widely regarded as immunomodulating agents for cancer therapy. In a previous study, we constructed an MHC-II-independent mutant of SEC2, named ST-4, which exhibits enhanced immunocyte stimulation and antitumor activity. However, tumor cells have different degrees of sensitivity to SEC2/ST-4. The mechanisms of immune resistance to SEs in cancer cells have not been investigated. Herein, we show that ST-4 could activate more powerful human lymphocyte granule-based cytotoxicity than SEC2. The results of RNA-seq and atomic force microscopy (AFM) analysis showed that, compared with SKOV3 cells, the softer ES-2 cells could escape from SEC2/ST-4-induced cytotoxic T-cell-mediated apoptosis by regulating cell softness through the CDC42/MLC2 pathway. Conversely, after enhancing the stiffness of cancer cells by a nonmuscle myosin-II-specific inhibitor, SEC2/ST-4 exhibited a significant antitumor effect against ES-2 cells by promoting perforin-dependent apoptosis and the S-phase arrest. Taken together, these data suggest that cell stiffness could be a key factor of resistance to SEs in ovarian cancer, and our findings may provide new insight for SE-based tumor immunotherapy.


Assuntos
Antineoplásicos , Enterotoxinas , Humanos , Enterotoxinas/farmacologia , Enterotoxinas/metabolismo , Superantígenos/farmacologia , Antineoplásicos/farmacologia , Linfócitos T , Ativação Linfocitária
3.
Gastroenterology ; 165(4): 986-998.e11, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429363

RESUMO

BACKGROUND & AIMS: Acute diarrheal diseases are the second most common cause of infant mortality in developing countries. This is contributed to by lack of effective drug therapy that shortens the duration or lessens the volume of diarrhea. The epithelial brush border sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) accounts for a major component of intestinal Na+ absorption and is inhibited in most diarrheas. Because increased intestinal Na+ absorption can rehydrate patients with diarrhea, NHE3 has been suggested as a potential druggable target for drug therapy for diarrhea. METHODS: A peptide (sodium-hydrogen exchanger 3 stimulatory peptide [N3SP]) was synthesized to mimic the part of the NHE3 C-terminus that forms a multiprotein complex that inhibits NHE3 activity. The effect of N3SP on NHE3 activity was evaluated in NHE3-transfected fibroblasts null for other plasma membrane NHEs, a human colon cancer cell line that models intestinal absorptive enterocytes (Caco-2/BBe), human enteroids, and mouse intestine in vitro and in vivo. N3SP was delivered into cells via a hydrophobic fluorescent maleimide or nanoparticles. RESULTS: N3SP uptake stimulated NHE3 activity at nmol/L concentrations under basal conditions and partially reversed the reduced NHE3 activity caused by elevated adenosine 3',5'-cyclic monophosphate, guanosine 3',5'-cyclic monophosphate, and Ca2+ in cell lines and in in vitro mouse intestine. N3SP also stimulated intestinal fluid absorption in the mouse small intestine in vivo and prevented cholera toxin-, Escherichia coli heat-stable enterotoxin-, and cluster of differentiation 3 inflammation-induced fluid secretion in a live mouse intestinal loop model. CONCLUSIONS: These findings suggest pharmacologic stimulation of NHE3 activity as an efficacious approach for the treatment of moderate/severe diarrheal diseases.


Assuntos
Enterotoxinas , Trocadores de Sódio-Hidrogênio , Camundongos , Animais , Humanos , Trocador 3 de Sódio-Hidrogênio/metabolismo , Enterotoxinas/farmacologia , Enterotoxinas/metabolismo , Células CACO-2 , Trocadores de Sódio-Hidrogênio/metabolismo , Enterócitos/metabolismo , Sódio/metabolismo , Diarreia/tratamento farmacológico , Diarreia/prevenção & controle , Diarreia/induzido quimicamente , Peptídeos/efeitos adversos , Microvilosidades/metabolismo
4.
Front Immunol ; 14: 1176432, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377961

RESUMO

Patients with relapsed T cell acute lymphoblastic leukemia (T-ALL) have limited therapeutic options and poor prognosis. The finding of efficient strategies against this refractory neoplasm is a medical priority. Superantigens (SAgs) are viral and bacterial proteins that bind to major histocompatibility complex class II molecules as unprocessed proteins and subsequently interact with a high number of T cells expressing particular T cell receptor Vß chains. Although on mature T cells, SAgs usually trigger massive cell proliferation producing deleterious effects on the organism, in contrast, on immature T cells, they may trigger their death by apoptosis. On this basis, it was hypothesized that SAgs could also induce apoptosis in neoplastic T cells that are usually immature cells that probably conserve their particular Vß chains. In this work, we investigated the effect of the SAg Staphylococcus aureus enterotoxin E (SEE) (that specifically interacts with cells that express Vß8 chain), on human Jurkat T- leukemia line, that expresses Vß8 in its T receptor and it is a model of the highly aggressive recurrent T-ALL. Our results demonstrated that SEE could induce apoptosis in Jurkat cells in vitro. The induction of apoptosis was specific, correlated to the down regulation of surface Vß8 TCR expression and was triggered, at least in part, through the Fas/FasL extrinsic pathway. The apoptotic effect induced by SEE on Jurkat cells was therapeutically relevant. In effect, upon transplantation of Jurkat cells in the highly immunodeficient NSG mice, SEE treatment reduced dramatically tumor growth, decreased the infiltration of neoplastic cells in the bloodstream, spleen and lymph nodes and, most importantly, increased significantly the survival of mice. Taken together, these results raise the possibility that this strategy can be, in the future, a useful option for the treatment of recurrent T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Superantígenos , Humanos , Camundongos , Animais , Enterotoxinas/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Apoptose , Receptores de Antígenos de Linfócitos T
5.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982569

RESUMO

Claudin-4 (CLDN4) is a key component of tight junctions (TJs) in epithelial cells. CLDN4 is overexpressed in many epithelial malignancies and correlates with cancer progression. Changes in CLDN4 expression have been associated with epigenetic factors (such as hypomethylation of promoter DNA), inflammation associated with infection and cytokines, and growth factor signaling. CLDN4 helps to maintain the tumor microenvironment by forming TJs and acts as a barrier to the entry of anticancer drugs into tumors. Decreased expression of CLDN4 is a potential marker of epithelial-mesenchymal transition (EMT), and decreased epithelial differentiation due to reduced CLDN4 activity is involved in EMT induction. Non-TJ CLDN4 also activates integrin beta 1 and YAP to promote proliferation, EMT, and stemness. These roles in cancer have led to investigations of molecular therapies targeting CLDN4 using anti-CLDN4 extracellular domain antibodies, gene knockdown, clostridium perfringens enterotoxin (CPE), and C-terminus domain of CPE (C-CPE), which have demonstrated the experimental efficacy of this approach. CLDN4 is strongly involved in promoting malignant phenotypes in many epithelial cancers and is regarded as a promising molecular therapeutic target.


Assuntos
Antineoplásicos , Neoplasias , Claudina-4/genética , Claudina-4/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Junções Íntimas/metabolismo , Células Epiteliais/metabolismo , Transdução de Sinais , Claudina-3/genética , Enterotoxinas/farmacologia , Linhagem Celular Tumoral , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
6.
Cell Commun Signal ; 20(1): 29, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264183

RESUMO

CRS with nasal polyps (CRSwNP) is a multifactorial disease, and various etiological factors like bacterial superantigens are known to develop this disease. Recent studies reported that Staphylococcus aureus nasal colonization was detected in 67% of the patients with CRSwNP. Moreover, it was reported that specific IgE against S. aureus enterotoxins are discovered in almost half of the nasal tissue homogenates from nasal polyps. Thus, investigations have highlighted the role of staphylococcal enterotoxins, especially enterotoxin B (SEB), in pathogenesis of CRSwNP. The destruction of mucosal integrity was reported as a main SEB-related pathogenic mechanisms in CRSwNP. SEB activates Toll Like Receptor 2 and triggers the production of pro-inflammatory cytokines; furthermore, it induces reactive oxygen species and endoplasmic reticulum stress-induced inflammation that may cause epithelial cell integrity disruption and enhance their permeability. SEB-induced Type 2/Th2 pathway results in degranulation of eosinophils, cationic proteins production, and localized eosinophilic inflammation. Furthermore, SEB may be involved in the expression of RORC and HIF-1α in Tregs and by maintaining the inflammation in sinonasal mucosa that could have a main role in the pathogenesis of nasal polyposis. Different in vitro findings were confirmed in animal studies; however, in vivo analysis of SEB-induced nasal polyps and CRS remains unfulfilled due to the lack of appropriate animal models. Finally, after elucidating different aspects of SEB pathogenesis in CRSwNP, therapeutic agents have been tested in recent studies with some encouraging results. The purpose of this article is to summarize the most important findings regarding SEB-induced CRS and nasal polyposis. Video Abstract.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Animais , Doença Crônica , Enterotoxinas/farmacologia , Humanos , Inflamação/complicações , Pólipos Nasais/complicações , Pólipos Nasais/metabolismo , Rinite/complicações , Rinite/microbiologia , Sinusite/complicações , Sinusite/microbiologia , Staphylococcus aureus
7.
Bull Exp Biol Med ; 174(2): 259-264, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36602602

RESUMO

We explored the potential link between RelA and BCL11B transcription factors. To this end, Jurkat and Raji cells (Jurkat:Raji 10:1), as well as normal human peripheral blood T cells, were activated by staphylococcal enterotoxin A (SEA) and the expressions of both BCL11B and RelA mRNA and proteins were detected. BCL11B small interfering RNA was then transduced into Jurkat cells. Under the effect of SEA stimulation, the expression of BCL11B and RelA mRNA increased in two types of T cell lines over time, and the results were comparable with the levels of expression of BCL11B and RelA proteins. In the BCL11B-knockdown cells, the expression of RelA protein did not increase. These findings suggest that BCL11B regulates RelA expression in Jurkat cells and human peripheral blood T cells from healthy donors via the T-cell receptor signaling pathway.


Assuntos
Proteínas Repressoras , Linfócitos T , Fator de Transcrição RelA , Proteínas Supressoras de Tumor , Humanos , Enterotoxinas/farmacologia , Proteínas Repressoras/genética , RNA Mensageiro , Fator de Transcrição RelA/genética , Proteínas Supressoras de Tumor/genética , Células Jurkat , Linfócitos T/metabolismo
8.
Int J Mol Sci ; 22(22)2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34830170

RESUMO

Claudin (CLDN) proteins are commonly expressed in cancers and targeted in novel therapeutic approaches. The C-terminal of Clostridium perfringens enterotoxin (C-CPE) efficiently binds several claudins. In this study, recombinant C-CPE conjugated to gold nanoparticles (AuNPs) has been used for prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) cell killing in vitro using gold-nanoparticle-mediated laser perforation (GNOME-LP). A PAC and TCC cell lines, as well as red fluorescence variants, allowing deep tissue imaging, were used. CLDN-3, -4, and -7 expression was confirmed by qPCR and immunofluorescences. The binding of C-CPE-AuNPs complexes on the cell surface was examined by scanning electron microscopy (SEM). Further, transcriptome analysis was carried out to evaluate the effect of C-CPE binder on the biological response of treated cells. Directed C-CPE-AuNP binding verified the capability to target CLDN receptors. Transcriptome analysis showed that C-CPE binding may activate immune and inflammatory responses but does not directly affect cell survival. Cancer cells ablation was demonstrated using a combination of GNOME-LP and C-CPE-AuNPs treatment reducing tumor cell viability to less than 10% depending on cell line. The fluorescent cell lines and the verified proof of concept in vitro provide the basis for perspective xenograft studies in an animal model.


Assuntos
Adenocarcinoma , Carcinoma de Células de Transição , Doenças do Cão , Enterotoxinas , Ouro , Terapia a Laser , Nanopartículas Metálicas , Neoplasias da Próstata , Adenocarcinoma/metabolismo , Adenocarcinoma/terapia , Adenocarcinoma/veterinária , Animais , Carcinoma de Células de Transição/metabolismo , Carcinoma de Células de Transição/terapia , Carcinoma de Células de Transição/veterinária , Linhagem Celular Tumoral , Clostridium perfringens/química , Doenças do Cão/metabolismo , Doenças do Cão/terapia , Cães , Enterotoxinas/química , Enterotoxinas/farmacologia , Ouro/química , Ouro/farmacologia , Masculino , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Neoplasias da Próstata/veterinária
9.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830494

RESUMO

Cytotoxic necrotizing factor 1 (CNF1) is a bacterial virulence factor, the target of which is represented by Rho GTPases, small proteins involved in a huge number of crucial cellular processes. CNF1, due to its ability to modulate the activity of Rho GTPases, represents a widely used tool to unravel the role played by these regulatory proteins in different biological processes. In this review, we summarized the data available in the scientific literature concerning the observed in vitro effects induced by CNF1. An article search was performed on electronic bibliographic resources. Screenings were performed of titles, abstracts, and full-texts according to PRISMA guidelines, whereas eligibility criteria were defined for in vitro studies. We identified a total of 299 records by electronic article search and included 76 original peer-reviewed scientific articles reporting morphological or biochemical modifications induced in vitro by soluble CNF1, either recombinant or from pathogenic Escherichia coli extracts highly purified with chromatographic methods. Most of the described CNF1-induced effects on cultured cells are ascribable to the modulating activity of the toxin on Rho GTPases and the consequent effects on actin cytoskeleton organization. All in all, the present review could be a prospectus about the CNF1-induced effects on cultured cells reported so far.


Assuntos
Toxinas Bacterianas/genética , Infecções por Escherichia coli/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/genética , Toxinas Bacterianas/farmacologia , Linhagem Celular , Enterotoxinas/genética , Enterotoxinas/farmacologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/patologia , Proteínas de Escherichia coli/farmacologia , Humanos , Proteínas rho de Ligação ao GTP/genética
10.
Biomed Pharmacother ; 143: 112204, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34560552

RESUMO

As a member of superantigens, Staphylococcal Enterotoxin C2 (SEC2) can potently activate T cells expressing specific Vß repertoires and has been applied in clinic for tumor immunotherapy in China for more than 20 years. However, excessive activation of T cells by over-stimulation with superantigen are always followed by eliciting regulatory T cells (Tregs) induction and functional immunosuppression, which brings uncertainties to SEC2 application in tumor immunotherapy. In this study, we found that SEC2 could induce CD4+CD25+Foxp3+ Tregs from the murine splenocytes in dose and time related manners. The induced Tregs with high expression of GITR and CTLA-4 and low expression of CD127 were TCR Vß8.2-specific and have character of IL-10 production in a SEC2 dose-depended manner. Importantly, SEC2-induced CD4+ Tregs showed the potent capacity of suppressing proliferation of intact murine splenocytes response to SEC2. Furthermore, by using specific inhibitors or neutralizing antibody, we proved that the signaling pathways of TCR-NFAT/AP-1, IL-2-STAT5, and TGF-ß-Smad3 play crucial roles in Tregs induction by SEC2. These findings will help us better understand the balance of immune stimulation and immunosuppression mediated by SEC2 and provide valuable guidance for SEC2 application in antitumor immunology.


Assuntos
Enterotoxinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Células Cultivadas , Feminino , Imunofenotipagem , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Camundongos Endogâmicos BALB C , Fatores de Transcrição NFATC/metabolismo , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteína Smad3/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator de Crescimento Transformador beta/metabolismo
11.
Cells ; 10(8)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34440679

RESUMO

The liver with resident tissue macrophages is the site of vivid innate immunity, activated also by pathogen-associated molecular patterns (PAMPs) leaking through the intestinal barrier. As gut-derived inflammatory diseases are of outstanding importance in broiler chickens, the present study aimed to establish a proper hepatic inflammatory model by comparing the action of different PAMPs from poultry pathogens on chicken 2D and 3D primary hepatocyte-non-parenchymal cell co-cultures, the latter newly developed with a magnetic bioprinting method. The cultures were challenged by the bacterial endotoxins lipopolysaccharide (LPS) from Escherichia coli, lipoteichoic acid (LTA) from Staphylococcus aureus and by enterotoxin (ETxB) from Escherichia coli, Salmonella Typhimurium derived flagellin, phorbol myristate acetate (PMA) as a model proinflammatory agent and polyinosinic polycytidylic acid (poly I:C) for mimicking viral RNA exposure. Cellular metabolic activity was assessed with the CCK-8 test, membrane damage was monitored with the lactate dehydrogenase (LDH) leakage assay and interleukin-6 and -8 (Il-6 and -8) concentrations were measured in cell culture medium with a chicken specific ELISA. Both LPS and LTA increased the metabolic activity of the 3D cultures, concomitantly decreasing the LDH leakage, while in 2D cultures ETxB stimulated, PMA and poly I:C depressed the metabolic activity. Based on the moderately increased extracellular LDH activity, LTA seemed to diminish cell membrane integrity in 2D and poly I:C in both cell culture models. The applied endotoxins remarkably reduced the IL-8 release of 3D cultured cells, suggesting the effective metabolic adaptation and the presumably initiated anti-inflammatory mechanisms of the 3D spheroids. Notwithstanding that the IL-6 and IL-8 production of 2D cells was mostly not influenced by the endotoxins used, only the higher LTA dose was capable to evoke an IL-8 surge. Flagellin, PMA and poly I:C exerted proinflammatory action in certain concentrations in both 2D and 3D cultures, reflected by the increased cellular IL-6 release. Based on these data, LTA, flagellin, PMA and poly I:C can be considered as potent candidates to induce inflammation in chicken primary hepatic cell cultures, while LPS failed to trigger proinflammatory cytokine production, suggesting the relatively high tolerance of avian liver cells to certain bacterial endotoxins. These results substantiate that the established 3D co-cultures seemed to be proper tools for testing potential proinflammatory molecules; however, the remarkable differences between 2D and 3D models should be addressed and further studied.


Assuntos
Galinhas/imunologia , Imunidade Inata/efeitos dos fármacos , Fígado/efeitos dos fármacos , Moléculas com Motivos Associados a Patógenos/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Galinhas/metabolismo , Técnicas de Cocultura , Enterotoxinas/farmacologia , Flagelina/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/imunologia , Fígado/metabolismo , Masculino , Poli I-C/farmacologia , Esferoides Celulares , Ácidos Teicoicos/farmacologia , Acetato de Tetradecanoilforbol/farmacologia
12.
mSphere ; 6(4): e0060821, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34319127

RESUMO

Atopic dermatitis (AD) is a condition affecting 30 million persons in the United States. AD patients are heavily infected with Staphylococcus aureus on the skin. A particularly severe form of AD is eczema herpeticum (ADEH), where the patients' AD is complicated by S. aureus and herpes simplex virus (HSV) infection. This study examined the S. aureus strains from 15 ADEH patients, provided blinded, and showed a high association of ADEH with strains that produce toxic shock syndrome toxin-1 (TSST-1; 73%) compared to 10% production by typical AD isolates from patients without EH and those from another unrelated condition, cystic fibrosis. The ADEH isolates produced the superantigens associated with TSS (TSST-1 and staphylococcal enterotoxins A, B, and C). This association may in part explain the potential severity of ADEH. We also examined the effect of TSST-1 and HSV-1 on human epithelial cells and keratinocytes. TSST-1 used CD40 as its receptor on epithelial cells, and HSV-1 either directly or indirectly interacted with CD40. The consequence of these interactions was chemokine production, which is capable of causing harmful inflammation, with epidermal/keratinocyte barrier disruption. Human epithelial cells treated first with TSST-1 and then HSV-1 resulted in enhanced chemokine production. Finally, we showed that TSST-1 modestly increased HSV-1 replication but did not increase viral plaque size. Our data suggest that ADEH is associated with production of the major TSS-associated superantigens, together with HSV reactivation. The superantigens plus HSV may damage the skin barrier by causing harmful inflammation, thereby leading to increased symptoms. IMPORTANCE Atopic dermatitis (eczema, AD) with concurrent herpes simplex virus infection (eczema herpeticum, ADEH) is a severe form of AD. We show that ADEH patients are colonized with Staphylococcus aureus that primarily produces the superantigen toxic shock syndrome toxin-1 (TSST-1); however, significantly but to a lesser extent the superantigens staphylococcal enterotoxins A, B, and C are also represented in ADEH. Our studies showed that TSST-1 uses the immune costimulatory molecule CD40 as its epithelial cell receptor. Herpes simplex virus (HSV) also interacted directly or indirectly with CD40 on epithelial cells. Treatment of epithelial cells with TSST-1 and then HSV-1 resulted in enhanced chemokine production. We propose that this combination of exposures (TSST-1 and then HSV) leads to opening of epithelial and skin barriers to facilitate potentially serious ADEH.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Enterotoxinas/genética , Enterotoxinas/metabolismo , Herpesvirus Humano 1/metabolismo , Erupção Variceliforme de Kaposi/microbiologia , Staphylococcus aureus/patogenicidade , Superantígenos/genética , Superantígenos/metabolismo , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/farmacologia , Antígenos CD40/imunologia , Quimiocinas/imunologia , Enterotoxinas/imunologia , Enterotoxinas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/virologia , Células HaCaT , Herpesvirus Humano 1/imunologia , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Queratinócitos/microbiologia , Queratinócitos/virologia , Staphylococcus aureus/metabolismo , Superantígenos/imunologia , Superantígenos/farmacologia
13.
Toxicol Appl Pharmacol ; 427: 115656, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34329641

RESUMO

Bacterial superantigens potently activate conventional T-cells to induce massive cytokine production and mediate tumor cell death. To engineer superantigens for immunotherapy against tumors in clinic, we previously generated SAM-1, a staphylococcal enterotoxins C2 (SEC2) mutant, that exhibited significantly reduced toxicity but maintained the superantigen activity in animal models. This present study aimed to investigate whether SAM-1 activates T cells and induces apoptosis in human tumor cells. We found that SAM-1 induced the maturation of dendritic cells (DCs) with upregulating expression of the surface markers CD80, CD86 and HLA-DR, which secreted high levels of IL-12p70 by activating TLR2-NF-κB signaling pathways. SAM-1 could activate human CD4+ subgroup T cells and CD8+ subgroup T cells in the presence of mature dendritic cells (DCs), leading to the productions of cytokines TRAIL, IL-2, IFN-γ and TNF-α. We observed that TRAIL mediated the apoptosis and S-phase and G2/M-phase arrest in HGC-27 tumor cells via binding to upregulated death receptors DR4 and DR5. Using shRNA knockdown in HGC-27 cells or constitutive overexpression in ES2 cells for DR4 and DR5, we demonstrated the vital requirement of DR4 and DR5 in apoptosis of tumor cells in response to TRAIL secreted from SAM-1-activated T cells. Collectively, our results will facilitate better understanding of SAM-1-based immunotherapies for cancer.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Enterotoxinas/farmacologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/biossíntese , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Células A549 , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Enterotoxinas/genética , Células HeLa , Humanos , Células K562 , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
14.
Toxins (Basel) ; 13(5)2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922450

RESUMO

Staphylococcal enterotoxin type B (SEB) is associated with food poisoning. Current methods for the detection of biologically active SEB rely upon its ability to cause emesis when administered to live kittens or monkeys. This technique suffers from poor reproducibility and low sensitivity and is ethically disfavored over concerns for the welfare of laboratory animals. The data presented here show the first successful implementation of an alternative method to live animal testing that utilizes SEB super-antigenic activity to induce cytokine production for specific novel cell-based assays for quantifiable detection of active SEB. Rather than using or sacrificing live animals, we found that SEB can bind to the major histocompatibility complex (MHC) class II molecules on Raji B-cells. We presented this SEB-MHC class II complex to specific Vß5.3 regions of the human T-cell line HPB-ALL, which led to a dose-dependent secretion of IL-2 that is capable of being quantified and can further detect 10 pg/mL of SEB. This new assay is 100,000 times more sensitive than the ex vivo murine splenocyte method that achieved a detection limit of 1 µg/mL. The data presented here also demonstrate that SEB induced proliferation in a dose-dependent manner for cells obtained by three different selection methods: by splenocyte cells containing 22% of CD4+ T-cells, by CD4+ T-cells enriched to >90% purity by negative selection methods, and by CD4+ T-cells enriched to >95% purity by positive selection methods. The highly enriched and positively isolated CD4+ T-cells with the lowest concentration of antigen-presenting cells (APC) (below 5%) provided higher cell proliferation than the splenocyte cells containing the highest concentration of APC cells.


Assuntos
Alternativas aos Testes com Animais/métodos , Testes Imunológicos de Citotoxicidade/métodos , Enterotoxinas/farmacologia , Leucemia de Células T , Animais , Linhagem Celular Tumoral , Enterotoxinas/análise , Antígenos de Histocompatibilidade Classe II/efeitos dos fármacos , Humanos , Limite de Detecção , Sensibilidade e Especificidade
15.
PLoS One ; 16(3): e0246393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33690604

RESUMO

Evidence link bacterial enterotoxins to apparent crypt-cell like cells (CCLCs), and Alpha Defensin 5 (DEFA5) expansion in the colonic mucosa of Crohn's colitis disease (CC) patients. These areas of ectopic ileal metaplasia, positive for Paneth cell (PC) markers are consistent with diagnosis of CC. Retrospectively, we: 1. Identified 21 patients with indeterminate colitis (IC) between 2000-2007 and were reevaluation their final clinical diagnosis in 2014 after a followed-up for mean 8.7±3.7 (range, 4-14) years. Their initial biopsies were analyzed by DEFA5 bioassay. 2. Differentiated ulcer-associated cell lineage (UACL) analysis by immunohistochemistry (IHC) of the CC patients, stained for Mucin 6 (MUC6) and DEFA5. 3. Treated human immortalized colonic epithelial cells (NCM460) and colonoids with pure DEFA5 on the secretion of signatures after 24hr. The control colonoids were not treated. 4. Treated colonoids with/without enterotoxins for 14 days and the spent medium were collected and determined by quantitative expression of DEFA5, CCLCs and other biologic signatures. The experiments were repeated twice. Three statistical methods were used: (i) Univariate analysis; (ii) LASSO; and (iii) Elastic net. DEFA5 bioassay discriminated CC and ulcerative colitis (UC) in a cohort of IC patients with accuracy. A fit logistic model with group CC and UC as the outcome and the DEFA5 as independent variable differentiator with a positive predictive value of 96 percent. IHC staining of CC for MUC6 and DEFA5 stained in different locations indicating that DEFA5 is not co-expressed in UACL and is therefore NOT the genesis of CC, rather a secretagogue for specific signature(s) that underlie the distinct crypt pathobiology of CC. Notably, we observed expansion of signatures after DEFA5 treatment on NCM460 and colonoids cells expressed at different times, intervals, and intensity. These factors are key stem cell niche regulators leading to DEFA5 secreting CCLCs differentiation 'the colonic ectopy ileal metaplasia formation' conspicuously of pathogenic importance in CC.


Assuntos
Colite Ulcerativa/metabolismo , Colo/citologia , Doença de Crohn/metabolismo , Enterotoxinas/farmacologia , Organoides/citologia , alfa-Defensinas/metabolismo , Idoso , Linhagem da Célula , Células Cultivadas , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Colo/efeitos dos fármacos , Colo/metabolismo , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Modelos Logísticos , Masculino , Mucina-6/metabolismo , Técnicas de Cultura de Órgãos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Proteômica , Estudos Retrospectivos
16.
Clin Exp Allergy ; 51(1): 87-98, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33090566

RESUMO

BACKGROUND: Staphylococcus aureus colonization and release of enterotoxin B (SEB) has been associated with severe chronic rhinosinusitis with nasal polyps (CRSwNP). The pathogenic mechanism of SEB on epithelial barriers, however, is largely unexplored. OBJECTIVE: We investigated the effect of SEB on nasal epithelial barrier function. METHODS: SEB was apically administered to air-liquid interface (ALI) cultures of primary polyp and nasal epithelial cells of CRSwNP patients and healthy controls, respectively. Epithelial cell integrity and tight junction expression were evaluated. The involvement of Toll-like receptor 2 (TLR2) activation was studied in vitro with TLR2 monoclonal antibodies and in vivo in tlr2-/- knockout mice. RESULTS: SEB applied to ALI cultures of polyp epithelial cells decreased epithelial cell integrity by diminishing occludin and zonula occludens (ZO)-1 protein expression. Antagonizing TLR2 prevented SEB-induced barrier disruption. SEB applied in the nose of control mice increased mucosal permeability and decreased mRNA expression of occludin and ZO-1, whereas mucosal integrity and tight junction expression remained unaltered in tlr2-/- mice. Furthermore, in vitro SEB stimulation resulted in epithelial production of IL-6 and IL-8, which was prevented by TLR2 antagonization. CONCLUSION & CLINICAL RELEVANCE: SEB damages nasal polyp epithelial cell integrity by triggering TLR2 in CRSwNP. Our results suggest that SEB might represent a driving factor of disease exacerbation, rather than a causal factor for epithelial defects in CRSwNP. Interfering with TLR2 triggering might provide a way to avoid the pathophysiological consequences of S. aureus on inflammation in CRSwNP.


Assuntos
Enterotoxinas/farmacologia , Mucosa Nasal/efeitos dos fármacos , Pólipos Nasais/metabolismo , Permeabilidade/efeitos dos fármacos , Rinite/metabolismo , Sinusite/metabolismo , Junções Íntimas/efeitos dos fármacos , Adolescente , Adulto , Idoso , Animais , Estudos de Casos e Controles , Linhagem Celular , Feminino , Humanos , Técnicas In Vitro , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Ocludina/efeitos dos fármacos , Ocludina/genética , Cultura Primária de Células , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Staphylococcus aureus/patogenicidade , Junções Íntimas/genética , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 2 Toll-Like/genética , Adulto Jovem , Proteína da Zônula de Oclusão-1/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/genética
17.
Front Immunol ; 11: 527310, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193301

RESUMO

Adjuvants enhance magnitude and duration of immune responses induced by vaccines. In this study we assessed in neonatal mice if and how the adjuvant LT-K63 given with a pneumococcal conjugate vaccine, Pnc1-TT, could affect the expression of tumor necrosis factor receptor (TNF-R) superfamily members, known to be involved in the initiation and maintenance of antibody responses; B cell activating factor receptor (BAFF-R) and B cell maturation antigen (BCMA) and their ligands, BAFF, and a proliferation inducing ligand (APRIL). Initially we assessed the maturation status of different B cell populations and their expression of BAFF-R and BCMA. Neonatal mice had dramatically fewer B cells than adult mice and the composition of different subsets within the B cell pool differed greatly. Proportionally newly formed B cells were most abundant, but they had diminished BAFF-R expression which could explain low proportions of marginal zone and follicular B cells observed. Limited BCMA expression was also detected in neonatal pre-plasmablasts/plasmablasts. LT-K63 enhanced vaccine-induced BAFF-R expression in splenic marginal zone, follicular and newly formed B cells, leading to increased plasmablast/plasma cells, and their enhanced expression of BCMA in spleen and bone marrow. Additionally, the induction of BAFF and APRIL expression occurred early in neonatal mice immunized with Pnc1-TT either with or without LT-K63. However, BAFF+ and APRIL+ cells in spleens were maintained at a higher level in mice that received the adjuvant. Furthermore, the early increase of APRIL+ cells in bone marrow was more profound in mice immunized with vaccine and adjuvant. Finally, we assessed, for the first time in neonatal mice, accessory cells of the plasma cell niche in bone marrow and their secretion of APRIL. We found that LT-K63 enhanced the frequency and APRIL expression of eosinophils, macrophages, and megakaryocytes, which likely contributed to plasma cell survival, even though APRIL+ cells showed a fast decline. All this was associated with enhanced, sustained vaccine-specific antibody-secreting cells in bone marrow and persisting vaccine-specific serum antibodies. Our study sheds light on the mechanisms behind the adjuvanticity of LT-K63 and identifies molecular pathways that should be triggered by vaccine adjuvants to induce sustained humoral immunity in early life.


Assuntos
Linfócitos B/imunologia , Toxinas Bacterianas/farmacologia , Enterotoxinas/farmacologia , Proteínas de Escherichia coli/farmacologia , Imunidade Humoral/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Linfócitos B/citologia , Camundongos
18.
PLoS One ; 15(1): e0227047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31929548

RESUMO

Enterotoxin-based proteins are powerful manipulators of mucosal immunity. The A1 domain of heat-labile enterotoxin from E. coli, or LTA1, is a newer adjuvant from this family under investigation for intranasal vaccines. Although LTA1 has been examined in mouse vaccination studies, its ability to directly stimulate immune cells compared to related adjuvant proteins has not been well explored. Here, we perform the first rigorous examination of LTA1's effect on antigen presenting cells (APC) using a human monocyte cell line THP-1. To better understand LTA1's stimulatory effects, we compared it to dmLT, or LT-R192G/L211A, a related AB5 adjuvant in clinical trials for oral or parenteral vaccines. LTA1 and dmLT both activated APCs to upregulate MHC-II (HLA-DR), CD86, cytokine secretion (e.g., IL-1ß) and inflammasome activation. The effect of LTA1 on surface marker changes (e.g., MHC-II) was highly dose-dependent whereas dmLT exhibited high MHC-II expression regardless of dose. In contrast, cytokine secretion profiles were similar and dose-dependent after both LTA1 and dmLT treatment. Cellular activation by LTA1 was independent of ganglioside binding, as pre-treatment with purified GM1 blocked the effect of dmLT but not LTA1. Unexpectedly, while activation of the inflammasome and cytokine secretion by LTA1 or dmLT was blocked by the protein kinase A inhibitor H89 (similar to previous reports), these responses were not inhibited by a more specific PKA peptide inhibitor or antagonist; thus Indicating that a novel and unknown mechanism is responsible for inflammasome activation and cytokine secretion by LT proteins. Lastly, LTA1 stimulated a similar cytokine profile in primary human monocytes as it did in THP1 cells, including IL-1ß, IL-6, IL-8, MIP-1α, MIP-1ß, and TNFα. Thus, we report that LTA1 protein programs a dendritic cell-like phenotype in APCs similar to dmLT in a mechanism that is independent of PKA activation and GM1 binding and entry.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Enterotoxinas/farmacologia , Lipopolissacarídeos/farmacologia , Ácidos Teicoicos/farmacologia , Adjuvantes Imunológicos , Células Apresentadoras de Antígenos/efeitos dos fármacos , Linhagem Celular , Permeabilidade da Membrana Celular , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Enterotoxinas/imunologia , Humanos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Lipopolissacarídeos/imunologia , Monócitos/patologia , Células THP-1 , Ácidos Teicoicos/imunologia
19.
Mol Oncol ; 14(2): 261-276, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825142

RESUMO

Clostridium perfringens enterotoxin (CPE) can be used to eliminate carcinoma cells that overexpress on their cell surface CPE receptors - a subset of claudins (e.g., Cldn3 and Cldn4). However, CPE cannot target tumors expressing solely CPE-insensitive claudins (such as Cldn1 and Cldn5). To overcome this limitation, structure-guided modifications were used to generate CPE variants that can strongly bind to Cldn1, Cldn2 and/or Cldn5, while maintaining the ability to bind Cldn3 and Cldn4. This enabled (a) targeting of the most frequent endocrine malignancy, namely, Cldn1-overexpressing thyroid cancer, and (b) improved targeting of the most common cancer type worldwide, non-small-cell lung cancer (NSCLC), which is characterized by high expression of several claudins, including Cldn1 and Cldn5. Different CPE variants, including the novel mutant CPE-Mut3 (S231R/S313H), were applied on thyroid cancer (K1 cells) and NSCLC (PC-9 cells) models. In vitro, CPE-Mut3, but not CPEwt, showed Cldn1-dependent binding and cytotoxicity toward K1 cells. For PC-9 cells, CPE-Mut3 improved claudin-dependent cytotoxic targeting, when compared to CPEwt. In vivo, intratumoral injection of CPE-Mut3 in xenograft models bearing K1 or PC-9 tumors induced necrosis and reduced the growth of both tumor types. Thus, directed modification of CPE enables eradication of tumor entities that cannot be targeted by CPEwt, for instance, Cldn1-overexpressing thyroid cancer by using the novel CPE-Mut3.


Assuntos
Antineoplásicos/farmacologia , Claudinas/metabolismo , Clostridium perfringens/metabolismo , Enterotoxinas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Claudina-1/química , Claudina-1/genética , Claudina-1/metabolismo , Claudina-3/química , Claudina-3/genética , Claudina-3/metabolismo , Claudina-4/química , Claudina-4/genética , Claudina-4/metabolismo , Claudina-5/química , Claudina-5/genética , Claudina-5/metabolismo , Claudinas/química , Claudinas/genética , Enterotoxinas/química , Enterotoxinas/uso terapêutico , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Necrose/induzido quimicamente , Ligação Proteica , Proteínas Recombinantes , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/terapia , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Proc Natl Acad Sci U S A ; 116(50): 25229-25235, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767744

RESUMO

Responses of solid tumors to chimeric antigen receptor (CAR) T cell therapy are often minimal. This is potentially due to a lack of sustained activation and proliferation of CAR T cells when encountering antigen in a profoundly immunosuppressive tumor microenvironment. In this study, we investigate if inducing an interaction between CAR T cells and antigen-presenting cells (APCs) in lymphoid tissue, away from an immunosuppressive microenvironment, could enhance solid-tumor responses. We combined CAR T cell transfer with the bacterial enterotoxin staphylococcal enterotoxin-B (SEB), which naturally links a proportion of T cell receptor (TCR) Vß subtypes to MHC-II, present on APCs. CAR T cell proliferation and function was significantly enhanced by SEB. Solid tumor-growth inhibition in mice was increased when CAR T cells were administered in combination with SEB. CAR T cell expansion in lymphoid tissue was demonstrated, and inhibition of lymphocyte egress from lymph nodes using FTY720 abrogated the benefit of SEB. We also demonstrate that a bispecific antibody, targeting a c-Myc tag on CAR T cells and cluster of differentiation 40 (CD40), could also enhance CAR T cell activity and mediate increased antitumor activity of CAR T cells. These model systems serve as proof-of-principle that facilitating the interaction of CAR T cells with APCs can enhance their ability to mediate antitumor activity.


Assuntos
Enterotoxinas/farmacologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Antígenos CD40/imunologia , Proliferação de Células/efeitos dos fármacos , Humanos , Imunoterapia Adotiva , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA