Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 298
Filtrar
1.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 8): 183-190, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39052022

RESUMO

Enteroviruses cause a wide range of disorders with varying presentations and severities, and some enteroviruses have emerged as serious public health concerns. These include Coxsackievirus B3 (CVB3), an active causative agent of viral myocarditis, and Coxsackievirus B4 (CVB4), which may accelerate the progression of type 1 diabetes. The 3C proteases from CVB3 and CVB4 play important roles in the propagation of these viruses. In this study, the 3C proteases from CVB3 and CVB4 were expressed in Escherichia coli and purified by affinity chromatography and gel-filtration chromatography. The crystals of the CVB3 and CVB4 3C proteases diffracted to 2.10 and 2.01 Šresolution, respectively. The crystal structures were solved by the molecular-replacement method and contained a typical chymotrypsin-like fold and a conserved His40-Glu71-Cys147 catalytic triad. Comparison with the structures of 3C proteases from other enteroviruses revealed high similarity with minor differences, which will guide the design of 3C-targeting inhibitors with broad-spectrum properties.


Assuntos
Proteases Virais 3C , Sequência de Aminoácidos , Cisteína Endopeptidases , Enterovirus Humano B , Modelos Moleculares , Proteínas Virais , Proteases Virais 3C/química , Cristalografia por Raios X , Enterovirus Humano B/enzimologia , Enterovirus Humano B/química , Enterovirus Humano B/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Domínio Catalítico , Humanos , Conformação Proteica , Clonagem Molecular
2.
ACS Nano ; 18(5): 4241-4255, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38278522

RESUMO

Breast cancer's immunosuppressive environment hinders effective immunotherapy, but oncolytic viruses hold promise for addressing this challenge by targeting tumor cells and altering the microenvironment. Yet, neutralizing antibodies and immune clearance impede their clinical utility. This study explored microRNA-modified coxsackievirus B3 (miR-CVB3), an innovative oncolytic virus, and its potential in breast cancer treatment. It investigated miR-CVB3's impact on immune-related proteins and utilized exosomes as both protective shields and delivery carriers. Results demonstrated miR-CVB3's capacity to reshape immune-related protein profiles toward a more immunostimulatory state and enhance exosome-mediated immune cell activation. Notably, cancer cell-released exosomes encapsulating miR-CVB3 (ExomiR-CVB3) maintained its antitumor cytotoxicity and bolstered its immunostimulatory effects. Moreover, ExomiR-CVB3 shielded miR-CVB3 from neutralizing antibodies and rapid immune clearance when it was systemically administered. Building on these findings, ExomiR-CVB3 was engineered with the AS1411 aptamer and doxorubicin (ExomiR-CVB3/DoxApt), enhancing therapeutic efficacy. This notable approach, combining genomic modification, aptamer surface decoration, and doxorubicin addition, demonstrated safe delivery of CVB3 to cancer cells. Comprehensive in vitro and in vivo analyses revealed selective breast cancer cell targeting, cell death induction, and significant immune cell infiltration within the tumor microenvironment while sparing healthy organs. In summary, this study highlights ExomiR-CVB3/DoxApt as a pioneering breast cancer treatment strategy adaptable for diverse cancer types, offering a potent and versatile approach to reshaping cancer immunotherapy.


Assuntos
Neoplasias da Mama , Exossomos , MicroRNAs , Humanos , Feminino , Enterovirus Humano B/genética , Neoplasias da Mama/tratamento farmacológico , Imunização , MicroRNAs/genética , Anticorpos Neutralizantes , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Microambiente Tumoral
3.
J Virol ; 98(2): e0150423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289119

RESUMO

Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Infecções por Coxsackievirus , Enterovirus Humano B , Interações entre Hospedeiro e Microrganismos , MicroRNAs , Biossíntese de Proteínas , RNA Viral , Animais , Humanos , Camundongos , Regiões 5' não Traduzidas/genética , Antivirais/metabolismo , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Enterovirus Humano B/fisiologia , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Tropismo Viral/genética , Replicação Viral/genética , Cisteína Endopeptidases/metabolismo , Protocaderinas/deficiência , Protocaderinas/genética , Miocardite , Interações entre Hospedeiro e Microrganismos/genética
4.
Microbiol Spectr ; 11(6): e0171123, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819138

RESUMO

IMPORTANCE: This study is the first report of echovirus 5 (E5) associated with severe acute respiratory infection and obtained the first E5 whole-genome sequence in China. Combined with the sequences available in the GenBank database, the first genotyping, phylogenetic characteristics, recombination, and genetic evolutionary analysis of E5 was performed in this study. Our findings providing valuable information on global E5 molecular epidemiology.


Assuntos
Enterovirus Humano B , Recombinação Genética , Enterovirus Humano B/genética , Filogenia , China/epidemiologia , Genoma Viral
5.
Virol Sin ; 38(5): 699-708, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37543144

RESUMO

Long noncoding RNAs (lncRNAs) modulate many aspects of biological and pathological processes. Recent studies have shown that host lncRNAs participate in the antiviral immune response, but functional lncRNAs in coxsackievirus B5 (CVB5) infection remain unknown. Here, we identified a novel cytoplasmic lncRNA, LINC1392, which was highly inducible in CVB5 infected RD cells in a time- and dose-dependent manner, and also can be induced by the viral RNA and IFN-ß. Further investigation showed that LINC1392 promoted several important interferon-stimulated genes (ISGs) expression, including IFIT1, IFIT2, and IFITM3 by activating MDA5, thereby inhibiting the replication of CVB5 in vitro. Mechanistically, LINC1392 bound to ELAV like RNA binding protein 1 (ELAVL1) and blocked ELAVL1 interaction with MDA5. Functional study revealed that the 245-835 â€‹nt locus of LINC1392 exerted the antiviral effect and was also an important site for ELAVL1 binding. In mice, LINC1392 could inhibit CVB5 replication and alleviated the histopathological lesions of intestinal and brain tissues induced by viral infection. Our findings collectively reveal that the novel LINC1392 acts as a positive regulator in the IFN-I signaling pathway against CVB5 infection. Elucidating the underlying mechanisms on how lncRNA regulats the host innate immunity response towards CVB5 infection will lay the foundation for antiviral drug research.


Assuntos
Interferon Tipo I , RNA Longo não Codificante , Animais , Camundongos , Enterovirus Humano B/genética , Interações Hospedeiro-Patógeno/genética , Imunidade Inata , Interferon Tipo I/genética , RNA Longo não Codificante/genética , Transdução de Sinais/genética
6.
Birth Defects Res ; 115(2): 171-178, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36094067

RESUMO

BACKGROUND: Different serotypes of coxsackievirus B (CVB), which is the most common cause of viral myocarditis, target cardiomyocytes through Coxsackie and Adenovirus Receptor and Decay-Accelerating Factor. Both receptors are expressed in the fetal heart. We hypothesized that infection with different serotypes of CVB during early pregnancy plays a role in pathogenesis of congenital heart defect (CHD). METHODS: In this study, we use a murine model to infect with CVB1, CVB4, and combination of CVB3 + CVB4 during a critical period in gestation. We examined offspring of pregnant mice for fetal death and heart defects following viral infection. RESULT: Fetuses from uninfected control dams showed normal heart development, while maternal CVB infection precipitates CHD: majorly ventricular septal defects (VSD) and non-compaction of ventricular myocardium (NC), with some infrequent cases of double outlet right ventricle, left ventricle wall rupture, right ventricle hypertrophy, and thickened/dysplastic semilunar valves. Infection of pregnant dams with CVB1 leads to 44% VSD and 41.2% NC cases, while with CVB4 leads to 31.7% VSD and 13.3% NC cases. Co-infection with CVB3 + CVB4 increases fetal pathology to 51.3% VSD and 41% NC cases. Infection can also result in fetal death, with higher incidences with CVB3 + CVB4 with 46.2% cases, compared to 33.3% by CVB1 and 21.7% by CVB4. Male fetuses were more susceptible to all phenotypes. CONCLUSION: Our report shows that prenatal CVB infections can lead to pathogenesis of certain heart defects in mouse model, particularly exacerbated with co-infections. This data confirms a link between prenatal CVB infection and CHD development and highlights it is not unique to just one serotype of CVB.


Assuntos
Infecções por Coxsackievirus , Cardiopatias Congênitas , Miocardite , Complicações Infecciosas na Gravidez , Animais , Feminino , Masculino , Camundongos , Gravidez , Enterovirus Humano B/genética , Cardiopatias Congênitas/etiologia , Cardiopatias Congênitas/patologia , Miocardite/etiologia , Miocardite/patologia , Miocárdio/patologia , Miócitos Cardíacos , Infecções por Coxsackievirus/complicações , Infecções por Coxsackievirus/patologia
7.
Viruses ; 14(9)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36146840

RESUMO

Enteroviruses (EVs) are medically important RNA viruses that cause a broad spectrum of human illnesses for which limited therapy exists. Although EVs have been shown to usurp the cellular recycling process of autophagy for pro-viral functions, the precise manner by which this is accomplished remains to be elucidated. In the current manuscript, we sought to address the mechanism by which EVs subvert the autophagy pathway using Coxsackievirus B3 (CVB3) as a model. We showed that CVB3 infection selectively degrades the autophagy cysteine protease ATG4A but not other isoforms. Exogenous expression of an N-terminally Flag-labeled ATG4A demonstrated the emergence of a 43-kDa cleavage fragment following CVB3 infection. Furthermore, bioinformatics analysis coupled with site-directed mutagenesis and in vitro cleavage assays revealed that CVB3 protease 2A cleaves ATG4A before glycine 374. Using a combination of genetic silencing and overexpression studies, we demonstrated a novel pro-viral function for the autophagy protease ATG4A. Additionally, cleavage of ATG4A was associated with a loss of autophagy function of the truncated cleavage fragment. Collectively, our study identified ATG4A as a novel substrate of CVB3 protease, leading to disrupted host cellular function and sheds further light on viral mechanisms of autophagy dysregulation.


Assuntos
Infecções por Coxsackievirus , Cisteína Proteases , Infecções por Enterovirus , Autofagia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Endopeptidases/metabolismo , Enterovirus Humano B/genética , Infecções por Enterovirus/metabolismo , Glicina/metabolismo , Células HeLa , Humanos , Peptídeo Hidrolases/metabolismo
8.
Cancer Lett ; 548: 215849, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35995138

RESUMO

Coxsackievirus B3 (CVB3) displays great oncolytic activity against various cancer cells. Previously, we demonstrated that adding targeting sequences (TS) of miR-145/143, which are downregulated in cancer compared with normal cells, into CVB3 genome drastically attenuates tissue toxicity, while retaining its oncolytic activity towards lung tumor. Here we extended to assess miR-modified CVB3 in breast cancer therapy. We generated a new miRNA-CVB3 by inserting TS of muscle-specific miR-1 and pancreas-selective miR-216 into the above miR-145/143-modified CVB3. We found that this newly established CVB3 (termed miR-CVB3-1.1) is safe without triggering noticeable pathogenesis when applied to immunocompetent mice. In vitro studies revealed that miR-CVB3-1.1 can infect and lyse a wide range of breast cancer cells. Animal experiments using a syngeneic breast cancer mouse model showed that intratumoral inoculation of miR-CVB3-1.1 significantly suppresses tumor growth and metastasis, associated with productive viral growth and enhanced immune cell infiltration in the tumor microenvironment. Moreover, we observed substantially reduced toxicity and prolonged survival in mice treated with miR-CVB3-1.1 compared with wild-type CVB3. Together, our results support miR-CVB3-1.1 as a promising candidate, which can be further evaluated for clinical treatment of breast cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Neoplasias de Mama Triplo Negativas , Animais , Enterovirus Humano B/genética , Humanos , Camundongos , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/genética , Microambiente Tumoral
9.
Methods Mol Biol ; 2521: 259-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733003

RESUMO

The members of the picornavirus family include various viruses which, due to their impressive oncolytic activity, have the potential to be used for the treatment of cancer. However, the replication of these oncolytic viruses (OV) is not limited to tumor cells but can also take place in various normal tissues. To increase the safety of these OV, target sites (miR-TS) of microRNAs, which are expressed in normal tissues but are absent or only expressed at low levels in cancer cells, can be inserted into the viral genome. Here we describe how miR-TS can easily be inserted into the complementary DNA (cDNA) of coxsackievirus B3 (CVB3) RNA genome using the In-Fusion cloning technology. Here we provide the step-by-step protocol, how miR-TS containing recombinant CVB3 can be generated from these viral cDNA constructs, how the virus is amplified, purified and concentrated, and how the functionality of the miR-TS within the viral genome can be confirmed.


Assuntos
MicroRNAs , Vírus Oncolíticos , DNA Complementar , Enterovirus Humano B/genética , Genoma Viral , Células HeLa , Humanos , MicroRNAs/genética , Vírus Oncolíticos/genética , Replicação Viral/genética
10.
Viruses ; 14(3)2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35336934

RESUMO

Rigvir® is a cell-adapted, oncolytic virotherapy enterovirus, which derives from an echovirus 7 (E7) isolate. While it is claimed that Rigvir® causes cytolytic infection in several cancer cell lines, there is little molecular evidence for its oncolytic and oncotropic potential. Previously, we genome-sequenced Rigvir® and five echovirus 7 isolates, and those sequences are further analyzed in this paper. A phylogenetic analysis of the full-length data suggested that Rigvir® was most distant from the other E7 isolates used in this study, placing Rigvir® in its own clade at the root of the phylogeny. Rigvir® contained nine unique mutations in the viral capsid proteins VP1-VP4 across the whole data set, with a structural analysis showing six of the mutations concerning residues with surface exposure on the cytoplasmic side of the viral capsid. One of these mutations, E/Q/N162G, was located in the region that forms the contact interface between decay-accelerating factor (DAF) and E7. Rigvir® and five other isolates were also subjected to cell infectivity assays performed on eight different cell lines. The used cell lines contained both cancer and non-cancer cell lines for observing Rigvir®'s claimed properties of being both oncolytic and oncotropic. Infectivity assays showed that Rigvir® had no discernable difference in the viruses' oncolytic effect when compared to the Wallace prototype or the four other E7 isolates. Rigvir® was also seen infecting non-cancer cell lines, bringing its claimed effect of being oncotropic into question. Thus, we conclude that Rigvir®'s claim of being an effective treatment against multiple different cancers is not warranted under the evidence presented here. Bioinformatic analyses do not reveal a clear mechanism that could elucidate Rigvir®'s function at a molecular level, and cell infectivity tests do not show a discernable difference in either the oncolytic or oncotropic effect between Rigvir® and other clinical E7 isolates used in the study.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Vírus não Classificados , Vírus de DNA , Enterovirus Humano B/genética , Humanos , Neoplasias/terapia , Vírus Oncolíticos/genética , Filogenia
11.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163412

RESUMO

Protein kinase B2 (AKT2) is involved in various cardiomyocyte signaling processes, including those important for survival and metabolism. Coxsackievirus B3 (CVB3) is one of the most common pathogens that cause myocarditis in humans. The role of AKT2 in CVB3 infection is not yet well understood. We used a cardiac-specific AKT2 knockout (KO) mouse to determine the role of AKT2 in CVB3-mediated myocarditis. CVB3 was injected intraperitoneally into wild-type (WT) and KO mice. The mice's survival rate was recorded: survival in KO mice was significantly decreased compared with WT mice (WT vs. KO: 73.3 vs. 27.1%). Myocardial damage and inflammation were significantly increased in the hearts of KO mice compared with those of WT mice. Moreover, from surface ECG, AKT2 KO mice showed a prolonged atria and ventricle conduction time (PR interval, WT vs. KO: 47.27 ± 1.17 vs. 64.79 ± 7.17 ms). AKT2 deletion induced severe myocarditis and cardiac dysfunction due to CVB3 infection. According to real-time PCR, the mRNA level of IL-1, IL-6, and TNF-α decreased significantly in KO mice compared with WT mice on Days 5 after infection. In addition, innate immune response antiviral effectors, Type I interferon (interferon-α and ß), and p62, were dramatically suppressed in the heart of KO mice. In particular, the adult cardiac myocytes isolated from the heart showed high induction of TLR4 protein in KO mice in comparison with WT. AKT2 deletion suppressed the activation of Type I interferon and p62 transcription in CVB3 infection. In cardiac myocytes, AKT2 is a key signaling molecule for the heart from damage through the activation of innate immunity during acute myocarditis.


Assuntos
Enterovirus Humano B/imunologia , Infecções por Enterovirus/imunologia , Imunidade Inata , Miocardite/imunologia , Miocárdio/imunologia , Proteínas Proto-Oncogênicas c-akt/imunologia , Doença Aguda , Animais , Enterovirus Humano B/genética , Infecções por Enterovirus/genética , Células HeLa , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/virologia , Camundongos , Camundongos Knockout , Miocardite/genética , Miocardite/virologia , Proteínas Proto-Oncogênicas c-akt/genética
12.
FEBS J ; 289(13): 3826-3838, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35066984

RESUMO

RNA viruses in the Picornaviridae family express a large 250 kDa viral polyprotein that is processed by virus-encoded proteinases into mature functional proteins with specific functions for virus replication. One of these proteins is the highly conserved enteroviral transmembrane protein 3A that assists in reorganizing cellular membranes associated with the Golgi apparatus. Here, we studied the molecular properties of the Coxsackievirus B3 (CVB3) protein 3A with regard to its dimerization and its functional stability. By applying mutational analysis and biochemical characterization, we demonstrate that protein 3A forms DTT-sensitive disulfide-linked dimers via a conserved cytosolic cysteine residue at position 38 (Cys38). Homodimerization of CVB3 protein 3A via Cys38 leads to profound stabilization of the protein, whereas a C38A mutation promotes a rapid proteasome-dependent elimination of its monomeric form. The lysosomotropic agent chloroquine (CQ) exerted only minor stabilizing effects on the 3A monomer but resulted in enrichment of the homodimer. Our experimental data demonstrate that disulfide linkages via a highly conserved Cys-residue in enteroviral protein 3A have an important role in the dimerization of this viral protein, thereby preserving its stability and functional integrity.


Assuntos
Dissulfetos , Enterovirus Humano B , Dimerização , Dissulfetos/metabolismo , Enterovirus Humano B/genética , Enterovirus Humano B/metabolismo , Células HeLa , Humanos , Proteínas Virais/metabolismo , Replicação Viral
13.
Viruses ; 13(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198859

RESUMO

Oncolytic viruses have emerged as a promising strategy for cancer therapy due to their dual ability to selectively infect and lyse tumor cells and to induce systemic anti-tumor immunity. Among various candidate viruses, coxsackievirus group B (CVBs) have attracted increasing attention in recent years. CVBs are a group of small, non-enveloped, single-stranded, positive-sense RNA viruses, belonging to species human Enterovirus B in the genus Enterovirus of the family Picornaviridae. Preclinical studies have demonstrated potent anti-tumor activities for CVBs, particularly type 3, against multiple cancer types, including lung, breast, and colorectal cancer. Various approaches have been proposed or applied to enhance the safety and specificity of CVBs towards tumor cells and to further increase their anti-tumor efficacy. This review summarizes current knowledge and strategies for developing CVBs as oncolytic viruses for cancer virotherapy. The challenges arising from these studies and future prospects are also discussed in this review.


Assuntos
Enterovirus Humano B/genética , Engenharia Genética , Vetores Genéticos/genética , Vírus Oncolíticos/genética , Animais , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Enterovirus Humano B/fisiologia , Engenharia Genética/métodos , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Humanos , Neoplasias/terapia , Terapia Viral Oncolítica/efeitos adversos , Terapia Viral Oncolítica/métodos , Resultado do Tratamento , Replicação Viral
14.
Sci Rep ; 11(1): 12432, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127684

RESUMO

Coxsackievirus B3 (CVB3), is commonly implicated in myocarditis, which can lead to dilated cardiomyopathy, in addition to causing acute pancreatitis and meningitis. Yet, no vaccines are currently available to prevent this infection. Here, we describe the derivation of a live attenuated vaccine virus, termed mutant (Mt) 10, encoding a single amino acid substitution H790A within the viral protein 1, that prevents CVB3 infection in mice and protects from both myocarditis and pancreatitis in challenge studies. We noted that animals vaccinated with Mt 10 developed virus-neutralizing antibodies, predominantly containing IgG2a and IgG2b, and to a lesser extent IgG3 and IgG1. Furthermore, by using major histocompatibility complex class II dextramers and tetramers, we demonstrated that Mt 10 induces antigen-specific T cell responses that preferentially produce interferon-γ. Finally, neither vaccine recipients nor those challenged with the wild-type virus revealed evidence of autoimmunity or cardiac injury as determined by T cell response to cardiac myosin and measurement of circulating cardiac troponin I levels, respectively. Together, our data suggest that Mt 10 is a vaccine candidate that prevents CVB3 infection through the induction of neutralizing antibodies and antigen-specific T cell responses, the two critical components needed for complete protection against virus infections in vaccine studies.


Assuntos
Infecções por Coxsackievirus/prevenção & controle , Enterovirus Humano B/imunologia , Miocardite/prevenção & controle , Pancreatite/prevenção & controle , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Antígenos Virais/imunologia , Sítios de Ligação/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Enterovirus Humano B/genética , Feminino , Humanos , Imunogenicidade da Vacina/genética , Masculino , Camundongos , Mutação , Miocardite/virologia , Pancreatite/virologia , Linfócitos T/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
15.
Virus Res ; 294: 198292, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33388395

RESUMO

An understanding of how viruses interact with their receptors is vital as this step is a major determinant of host susceptibility and disease. The enterovirus coxsackievirus A9 (CVA9) is an important pathogen responsible for respiratory infections, myocarditis, infections of the central nervous system, chronic dilated cardiomyopathy and possibly type I diabetes. CVA9 harbours an integrin- recognition motif, RGD (Arg-Gly-Asp), in the capsid protein VP1 and this motif is believed to be primarily responsible for binding to integrins αvß6 and/or αvß3 during cell entry. Despite the consistent conservation of RGD-flanking amino acids in multiple RGD-containing picornaviruses, the significance of these amino acids to cell tropism has not been thoroughly investigated. In this study we used 10 CVA9 mutants and a panel of cells to analyse cell tropism. We showed that CVA9 infection proceeds by either an RGD- dependent or an apparently RGD- independent pathway. Differences in the amino acid found at the +1 position of the RGD motif affect the cell tropism of CVA9 when an RGD- dependent pathway is used. Naturally occurring CVA9 isolates have either the sequence RGDM and RGDL and we found that the corresponding viruses in our panel infected cells most efficiently. There was also a strong selection pressure for RGDL in adaptation experiments. However, there was also an unexpected selection of an RGDL variant in an apparently RGD- independent cell line. There was also no simple relationship between infection of cells and expression of integrins αvß3 and αvß6. The results obtained have greatly improved our understanding of how CVA9 infects cells. This will be useful in the design of antivirus drugs and also gives a framework for the modification of CVA9 or other RGD containing picornaviruses for specific targeting of cancer cells for oncolytic therapy.


Assuntos
Ácido Aspártico , Proteínas do Capsídeo , Arginina , Proteínas do Capsídeo/metabolismo , Enterovirus Humano B/genética , Enterovirus Humano B/metabolismo , Glicina , Integrinas/genética , Integrinas/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Tropismo
16.
Anticancer Res ; 41(1): 81-89, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33419801

RESUMO

BACKGROUND/AIM: Breast cancer is the most common cancer in women worldwide, and triple-negative breast cancer (TNBC) is highly refractory to current standard therapies. Oncolytic virotherapy has recently gathered attention as a new treatment candidate for refractory cancers. MATERIALS AND METHODS: We previously developed a new Coxsackievirus B3 (CVB3) virotherapy targeting lung cancers, and demonstrated that miRNA target sequence insertion into CVB3 reduced its pathogenicity, retaining its original oncolytic activity. In this study, we examined the oncolytic effects of CVB3 against breast cancer cells including TNBC cells. RESULTS: CVB3 infection killed breast cancer cells in a time- and titer-dependent manner, and induced apoptosis. Nude mice transplanted with human TNBC cells were successfully treated with both CVB3-WT and CVB3-HP. Importantly, mice treated with CVB3-HP showed very few adverse events. CONCLUSION: CVB3-HP is a strong oncolytic virus candidate for breast cancer, including TNBC, due to its remarkable oncolytic efficacy and improved safety profile.


Assuntos
Neoplasias da Mama/genética , Enterovirus Humano B/genética , Terapia Genética , Vetores Genéticos/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Células Cultivadas , Efeito Citopatogênico Viral , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Humanos , Imuno-Histoquímica , Camundongos , Terapia Viral Oncolítica/métodos , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Viruses ; 12(11)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143071

RESUMO

Here we present a set of new structural elements formed within the open reading frame of the virus, which are highly probable, evolutionarily conserved and may interact with host proteins. This work focused on the coding regions of the CVB3 genome (particularly the V4-, V1-, 2C-, and 3D-coding regions), which, with the exception of the cis-acting replication element (CRE), have not yet been subjected to experimental analysis of their structures. The SHAPE technique, chemical modification with DMS and RNA cleavage with Pb2+, were performed in order to characterize the RNA structure. The experimental results were used to improve the computer prediction of the structural models, whereas a phylogenetic analysis was performed to check universality of the newly identified structural elements for twenty CVB3 genomes and 11 other enteroviruses. Some of the RNA motifs turned out to be conserved among different enteroviruses. We also observed that the 3'-terminal region of the genome tends to dimerize in a magnesium concentration-dependent manner. RNA affinity chromatography was used to confirm RNA-protein interactions hypothesized by database searches, leading to the discovery of several interactions, which may be important for virus propagation.


Assuntos
Enterovirus Humano B/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/química , RNA Viral/genética , Humanos , Células MCF-7 , Conformação de Ácido Nucleico , Replicação Viral
18.
Cell Rep Med ; 1(7): 100125, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33205075

RESUMO

Enteroviruses are suspected to contribute to insulin-producing ß cell loss and hyperglycemia-induced diabetes. However, mechanisms are not fully defined. Here, we show that coxsackievirus B type 4 (CVB4) infection in human islet-engrafted mice and in rat insulinoma cells displays loss of unconventional prefoldin RPB5 interactor (URI) and PDX1, affecting ß cell function and identity. Genetic URI ablation in the mouse pancreas causes PDX1 depletion in ß cells. Importantly, diabetic PDX1 heterozygous mice overexpressing URI in ß cells are more glucose tolerant. Mechanistically, URI loss triggers estrogen receptor nuclear translocation leading to DNA methyltransferase 1 (DNMT1) expression, which induces Pdx1 promoter hypermethylation and silencing. Consequently, demethylating agent procainamide-mediated DNMT1 inhibition reinstates PDX1 expression and protects against diabetes in pancreatic URI-depleted mice . Finally, the ß cells of human diabetes patients show correlations between viral protein 1 and URI, PDX1, and DNMT1 levels. URI and DNMT1 expression and PDX1 silencing provide a causal link between enterovirus infection and diabetes.


Assuntos
Proteínas do Capsídeo/genética , Infecções por Coxsackievirus/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Diabetes Mellitus Tipo 2/genética , Enterovirus Humano B/genética , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Transativadores/genética , Animais , Proteínas do Capsídeo/metabolismo , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/virologia , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/virologia , Modelos Animais de Doenças , Enterovirus Humano B/metabolismo , Enterovirus Humano B/patogenicidade , Feminino , Regulação da Expressão Gênica , Glucose/metabolismo , Glucose/farmacologia , Proteínas de Homeodomínio/metabolismo , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/transplante , Masculino , Camundongos , Camundongos Transgênicos , Procainamida/farmacologia , Ratos , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Transplante Heterólogo
19.
Viruses ; 12(10)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992749

RESUMO

Enteroviruses manipulate host membranes to form replication organelles, which concentrate viral and host factors to allow for efficient replication. However, this process has not been well-studied in living cells throughout the course of infection. To define the dynamic process of enterovirus membrane remodeling of major secretory pathway organelles, we have developed plasmid-based reporter systems that utilize viral protease-dependent release of a nuclear-localized fluorescent protein from the endoplasmic reticulum (ER) membrane during infection, while retaining organelle-specific fluorescent protein markers such as the ER and Golgi. This system thus allows for the monitoring of organelle-specific changes induced by infection in real-time. Using long-term time-lapse imaging of living cells infected with coxsackievirus B3 (CVB), we detected reporter translocation to the nucleus beginning ~4 h post-infection, which correlated with a loss of Golgi integrity and a collapse of the peripheral ER. Lastly, we applied our system to study the effects of a calcium channel inhibitor, 2APB, on virus-induced manipulation of host membranes. We found that 2APB treatment had no effect on the kinetics of infection or the percentage of infected cells. However, we observed aberrant ER structures in CVB-infected cells treated with 2APB and a significant decrease in viral-dependent cell lysis, which corresponded with a decrease in extracellular virus titers. Thus, our system provides a tractable platform to monitor the effects of inhibitors, gene silencing, and/or gene editing on viral manipulation of host membranes, which can help determine the mechanism of action for antivirals.


Assuntos
Enterovirus Humano B/fisiologia , Membranas Intracelulares/metabolismo , Imagem Óptica , Bloqueadores dos Canais de Cálcio/farmacologia , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Enterovirus Humano B/efeitos dos fármacos , Enterovirus Humano B/genética , Genes Reporter/genética , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/virologia , Cinética , Plasmídeos/genética , Via Secretória/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
20.
Viruses ; 12(9)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839386

RESUMO

Group-B enteroviruses (EV-B) are ubiquitous naked single-stranded positive RNA viral pathogens that are responsible for common acute or persistent human infections. Their genome is composed in the 5' end by a non-coding region, which is crucial for the initiation of the viral replication and translation processes. RNA domain-I secondary structures can interact with viral or cellular proteins to form viral ribonucleoprotein (RNP) complexes regulating viral genomic replication, whereas RNA domains-II to -VII (internal ribosome entry site, IRES) are known to interact with cellular ribosomal subunits to initiate the viral translation process. Natural 5' terminally deleted viral forms lacking some genomic RNA domain-I secondary structures have been described in EV-B induced murine or human infections. Recent in vitro studies have evidenced that the loss of some viral RNP complexes in the RNA domain-I can modulate the viral replication and infectivity levels in EV-B infections. Moreover, the disruption of secondary structures of RNA domain-I could impair viral RNA sensing by RIG-I (Retinoic acid inducible gene I) or MDA5 (melanoma differentiation-associated protein 5) receptors, a way to overcome antiviral innate immune response. Overall, natural 5' terminally deleted viral genomes resulting in the loss of various structures in the RNA domain-I could be major key players of host-cell interactions driving the development of acute or persistent EV-B infections.


Assuntos
Enterovirus Humano B/genética , Infecções por Enterovirus/virologia , RNA não Traduzido/genética , RNA Viral/química , RNA Viral/genética , Animais , Enterovirus Humano B/fisiologia , Genoma Viral , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA não Traduzido/química , RNA não Traduzido/metabolismo , RNA Viral/metabolismo , Transdução de Sinais , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA