Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.349
Filtrar
1.
Sci Total Environ ; 931: 172846, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703858

RESUMO

The development of low-cost, highly efficient adsorbent materials is of significant importance for environmental remediation. In this study, a novel material, sulfurized nano zero-valent iron loaded biomass carbon (S-nZVI/BC), was successfully synthesized by a simple manufacturing process. The preparation of S-nZVI/BC does not require the use of expensive and hazardous chemicals. Instead, residual sludge, a solid waste product, is used as feedstock. The sludge is rich in Sulfate-Reducing Bacteria (SRB), which can provide carbon and sulfur sources for the synthesis of S-nZVI/BC. It was observed that S-nZVI particles formed in situ were dispersed within BC and covered by it. Additionally, S-nZVI/BC inherited the large specific surface area and porosity of BC. The adsorption capacity of S-nZVI/BC can reach 857.55 mg g-1 Hg (II) during the remediation of mercury-polluted water. This research offers new perspectives for developing composites in terms of the low cost and harmlessness of raw materials.


Assuntos
Biomassa , Ferro , Mercúrio , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/análise , Adsorção , Enxofre/química , Recuperação e Remediação Ambiental/métodos , Bactérias Redutoras de Enxofre/metabolismo , Sulfatos/química
2.
Molecules ; 29(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731499

RESUMO

Carbon nanodots (CDs) are commonly found in food products and have attracted significant attention from food scientists. There is a high probability of CD exposure in humans, but its impacts on health are unclear. Therefore, health effects associated with CD consumption should be investigated. In this study, we attempted to create a model system of the Maillard reaction between cystine and glucose using a simple cooking approach. The CDs (CG-CDs) were isolated from cystine-glucose-based Maillard reaction products and characterized using fluorescence spectroscopy, X-ray diffractometer (XRD), and transmission electron microscope (TEM). Furthermore, human mesenchymal stem cells (hMCs) were used as a model to unravel the CDs' cytotoxic properties. The physiochemical assessment revealed that CG-CDs emit excitation-dependent fluorescence and possess a circular shape with sizes ranging from 2 to 13 nm. CG-CDs are predominantly composed of carbon, oxygen, and sulfur. The results of the cytotoxicity evaluation indicate good biocompatibility, where no severe toxicity was observed in hMCs up to 400 µg/mL. The DPPH assay demonstrated that CDs exert potent antioxidant abilities. The qPCR analysis revealed that CDs promote the downregulation of the key regulatory genes, PPARγ, C/EBPα, SREBP-1, and HMGCR, coupled with the upregulation of anti-inflammatory genes. Our findings suggested that, along with their excellent biocompatibility, CG-CDs may offer positive health outcomes by modulating critical genes involved in lipogenesis, homeostasis, and obesity pathogenesis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Carbono , Reação de Maillard , Células-Tronco Mesenquimais , PPAR gama , Proteína de Ligação a Elemento Regulador de Esterol 1 , Humanos , Carbono/química , PPAR gama/genética , PPAR gama/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Pontos Quânticos/química , Regulação para Baixo/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Enxofre/química
3.
Molecules ; 29(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675602

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disease that can lead to the loss of cognitive function. The progression of AD is regulated by multiple signaling pathways and their associated targets. Therefore, multitarget strategies theoretically have greater potential for treating AD. In this work, a series of new hybrids were designed and synthesized by the hybridization of tacrine (4, AChE: IC50 = 0.223 µM) with pyrimidone compound 5 (GSK-3ß: IC50 = 3 µM) using the cysteamine or cystamine group as the connector. The biological evaluation results demonstrated that most of the compounds exhibited moderate to good inhibitory activities against acetylcholinesterase (AChE) and glycogen synthase kinase 3ß (GSK-3ß). The optimal compound 18a possessed potent dual AChE/GSK-3ß inhibition (AChE: IC50 = 0.047 ± 0.002 µM, GSK-3ß: IC50 = 0.930 ± 0.080 µM). Further molecular docking and enzymatic kinetic studies revealed that this compound could occupy both the catalytic anionic site and the peripheral anionic site of AChE. The results also showed a lack of toxicity to SH-SY5Y neuroblastoma cells at concentrations of up to 25 µM. Collectively, this work explored the structure-activity relationships of novel tetrahydroacridin hybrids with sulfur-inserted linkers, providing a reference for the further research and development of new multitarget anti-AD drugs.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Inibidores da Colinesterase , Desenho de Fármacos , Glicogênio Sintase Quinase 3 beta , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Linhagem Celular Tumoral , Enxofre/química , Relação Estrutura-Atividade , Acridinas/química , Acridinas/farmacologia , Acridinas/síntese química , Tacrina/química , Tacrina/farmacologia , Tacrina/síntese química , Estrutura Molecular
4.
Mar Pollut Bull ; 202: 116356, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604079

RESUMO

In this study, we focus on the development and validation of a deep learning (long short-term memory, LSTM)-based algorithm to predict the accidental spreading of LSFO (low sulfur fuel oil) on the water surface. The data for the training was obtained by numerical simulations of artificial geometries with different configurations of islands and shorelines and wind speeds (2.0-8.0 m/s). For simulating the spread of oils in O(102) km scales, the volume of fluid and discrete phase models were adopted, and the kinematic variables of particle location, particle velocity, and water velocity were collected as input features for LSTM model. The predicted spreading pattern of LSFO matched well with the simulation (less than 10 % in terms of the mean absolute error for the untrained data). Finally, we applied the model to the Wakashio LSFO spill accident, considering actual geometry and weather information, which confirmed the practical feasibility of the present model.


Assuntos
Óleos Combustíveis , Enxofre/química , Poluição por Petróleo , Poluentes Químicos da Água , Algoritmos , Modelos Teóricos , Simulação por Computador
5.
J Phys Chem Lett ; 15(16): 4263-4267, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38607253

RESUMO

A novel covalent post-translational modification (lysine-NOS-cysteine) was discovered in proteins, initially in the enzyme transaldolase of Neisseria gonorrhoeae (NgTAL) [Nature 2021, 593, 460-464], acting as a redox switch. The identification of this novel linkage in solution was unprecedented until now. We present detection of the NOS redox switch in solution using sulfur K-edge X-ray absorption spectroscopy (XAS). The oxidized NgTAL spectrum shows a distinct shoulder on the low-energy side of the rising edge, corresponding to a dipole-allowed transition from the sulfur 1s core to the unoccupied σ* orbital of the S-O group in the NOS bridge. This feature is absent in the XAS spectrum of reduced NgTAL, where Lys-NOS-Cys is absent. Our experimental and calculated XAS data support the presence of a NOS bridge in solution, thus potentially facilitating future studies on enzyme activity regulation mediated by the NOS redox switches, drug discovery, biocatalytic applications, and protein design.


Assuntos
Oxirredução , Transaldolase , Espectroscopia por Absorção de Raios X , Cisteína/química , Cisteína/metabolismo , Lisina/química , Lisina/metabolismo , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/química , Processamento de Proteína Pós-Traducional , Soluções , Enxofre/química , Enxofre/metabolismo , Transaldolase/metabolismo , Transaldolase/química
6.
Waste Manag ; 182: 44-54, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636125

RESUMO

Pyrolysis can effectively convert waste tires into high-value products. However, the sulfur-containing compounds in pyrolysis oil and gas would significantly reduce the environmental and economic feasibility of this technology. Here, the desulfurization and upgrade of waste tire pyrolysis oil and gas were performed by adding different metal oxides (Fe2O3, CuO, and CaO). Results showed that Fe2O3 exhibited the highest removal efficiency of 87.7 % for the sulfur-containing gas at 600 °C with an outstanding removal efficiency of 99.5 % for H2S. CuO and CaO were slightly inferior to Fe2O3, with desulfurization efficiencies of 75.9 % and 45.2 % in the gas when added at 5 %. Fe2O3 also demonstrated a notable efficacy in eliminating benzothiophene, the most abundant sulfur compound in pyrolysis oil, with a removal efficiency of 78.1 %. Molecular dynamics simulations and experiments showed that the desulfurization mechanism of Fe2O3 involved the bonding of Fe-S, the breakage of C-S, dehydrogenation and oxygen migration process, which promoted the conversion of Fe2O3 to FeO, FeS and Fe2(SO4)3. Meanwhile, Fe2O3 enhanced the cyclization and dehydrogenation reaction, facilitating the upgrade of oil and gas (monocyclic aromatics to 57.4 % and H2 to 22.3 %). This study may be helpful for the clean and high-value conversion of waste tires.


Assuntos
Óxidos , Pirólise , Óxidos/química , Enxofre/química , Incineração/métodos , Compostos Férricos/química , Gases/química , Borracha/química , Compostos de Cálcio/química , Cobre
7.
Bioresour Technol ; 400: 130699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615966

RESUMO

Proposing recovery strategies to recover heavy-metal-inhibited sulfur-driven denitrification, as well as disclosing recovery mechanisms, can provide technical support for the stable operation of bio-systems. This study proposed an effective bio-promoter (mediator-promoter composed of L-cysteine, biotin, cytokinin, and anthraquinone-2,6-disulfonate) to recover Cr(VI) inhibited sulfur-driven denitrification, which effectively reduced the recovery time of NO3--N reduction (18-21 cycles) and NO2--N reduction (27-42 cycles) compared with self-recovery. The mediator-promoter repaired microbial damage by promoting intracellular chromium efflux. Moreover, the mediator-promoter reduced the accumulated reactive oxygen species by stimulating the secretion of antioxidant enzymes, reaching equilibrium in the oxidative-antioxidant system. To improve electron transmission, the mediator-promoter restored S2O32- oxidation to provide adequate electron donors and increased electron transfer rate by increasing cytochrome c levels. Mediator-promoter boosted the abundance of Thiobacillus (sulfur-oxidizing bacterium) and Simplicispira (denitrifying bacterium), which were positively correlated, facilitating the rapid denitrification recovery and the long-term stable operation of recovered systems.


Assuntos
Cromo , Desnitrificação , Enxofre , Cromo/metabolismo , Enxofre/farmacologia , Enxofre/química , Transporte de Elétrons , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Thiobacillus/metabolismo , Antraquinonas/farmacologia , Cisteína/farmacologia , Cisteína/metabolismo
8.
Dalton Trans ; 53(18): 7866-7879, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38632950

RESUMO

Rhenium(I) tricarbonyl complexes are widely studied for their cell imaging properties and anti-cancer and anti-microbial activities, but the complexes with S-donor ligands remain relatively unexplored. A series of six fac-[Re(NN)(CO)3(SR)] complexes, where (NN) is 2,2'-bipyridyl (bipy) or 1,10-phenanthroline (phen), and RSH is a series of thiocarboxylic acid methyl esters, have been synthesized and characterized. Cellular uptake and anti-proliferative activities of these complexes in human breast cancer cell lines (MDA-MB-231 and MCF-7) were generally lower than those of the previously described fac-[Re(NN)(CO)3(OH2)]+ complexes; however, one of the complexes, fac-[Re(CO)3(phen)(SC(Ph)CH2C(O)OMe)] (3b), was active (IC50 ∼ 10 µM at 72 h treatment) in thiol-depleted MDA-MB-231 cells. Moreover, unlike fac-[Re(CO)3(phen)(OH2)]+, this complex did not lose activity in the presence of extracellular glutathione. Taken together these properties show promise for further development of 3b and its analogues as potential anti-cancer drugs for co-treatment with thiol-depleting agents. Conversely, the stable and non-toxic complex, fac-[Re(bipy)(CO)3(SC(Me)C(O)OMe)] (1a), predominantly localized in the lysosomes of MDA-MB-231 cells, as shown by live cell confocal microscopy (λex = 405 nm, λem = 470-570 nm). It is strongly localized in a subset of lysosomes (25 µM Re, 4 h treatment), as shown by co-localization with a Lysotracker dye. Longer treatment times with 1a (25 µM Re for 48 h) resulted in partial migration of the probe into the mitochondria, as shown by co-localization with a Mitotracker dye. These properties make complex 1a an attractive target for further development as an organelle probe for multimodal imaging, including phosphorescence, carbonyl tag for vibrational spectroscopy, and Re tag for X-ray fluorescence microscopy.


Assuntos
Antineoplásicos , Proliferação de Células , Complexos de Coordenação , Rênio , Enxofre , Humanos , Rênio/química , Rênio/farmacologia , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Ligantes , Enxofre/química , Enxofre/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
9.
J Biol Chem ; 300(2): 105612, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159858

RESUMO

NCOA4 is a selective cargo receptor for ferritinophagy, the autophagic turnover of ferritin (FTH), a process critical for regulating intracellular iron bioavailability. However, how ferritinophagy flux is controlled through NCOA4 in iron-dependent processes needs to be better understood. Here, we show that the C-terminal FTH-binding domain of NCOA4 harbors a [3Fe-4S]-binding site with a stoichiometry of approximately one labile [3Fe-4S] cluster per NCOA4 monomer. By analyzing the interaction between NCOA4 and HERC2 ubiquitin ligase or NCOA4 and FTH, we demonstrate that NCOA4 regulates ferritinophagy by sensing the intracellular iron-sulfur cluster levels. Under iron-repletion conditions, HERC2 recognizes and recruits holo-NCOA4 as a substrate for polyubiquitination and degradation, favoring ferritin iron storage. Under iron-depletion conditions, NCOA4 exists in the form of apo-protein and binds ferritin to promote the occurrence of ferritinophagy and release iron. Thus, we identify an iron-sulfur cluster [3Fe-4S] as a critical cofactor in determining the fate of NCOA4 in favoring iron storage in ferritin or iron release via ferritinophagy and provide a dual mechanism for selective interaction between HERC2 and [3Fe-4S]-NCOA4 for proteasomal degradation or between ferritin and apo-NCOA4 for ferritinophagy in the control of iron homeostasis.


Assuntos
Homeostase , Ferro , Coativadores de Receptor Nuclear , Autofagia , Ferritinas/metabolismo , Ferro/química , Ferro/metabolismo , Coativadores de Receptor Nuclear/genética , Coativadores de Receptor Nuclear/metabolismo , Enxofre/química , Enxofre/metabolismo , Humanos , Animais , Camundongos , Domínios Proteicos , Linhagem Celular , Células Cultivadas , Ubiquitina-Proteína Ligases/metabolismo , Estabilidade Proteica , Complexo de Endopeptidases do Proteassoma/metabolismo
10.
Protein Sci ; 33(2): e4874, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100250

RESUMO

Several essential cellular metabolites, such as enzyme cofactors, contain sulfur atoms and their biosynthesis requires specific thiolation enzymes. LarE is an ATP-dependent sulfur insertase, which catalyzes the sequential conversion of the two carboxylate groups of the precursor of the lactate racemase cofactor into thiocarboxylates. Two types of LarE enzymes are known, one that uses a catalytic cysteine as a sacrificial sulfur donor, and the other one that uses a [4Fe-4S] cluster as a cofactor. Only the crystal structure of LarE from Lactobacillus plantarum (LpLarE) from the first class has been solved. We report here the crystal structure of LarE from Methanococcus maripaludis (MmLarE), belonging to the second class, in the cluster-free (apo-) and cluster-bound (holo-) forms. The structure of holo-MmLarE shows that the [4Fe-4S] cluster is chelated by three cysteines only, leaving an open coordination site on one Fe atom. Moreover, the fourth nonprotein-bonded iron atom was able to bind an anionic ligand such as a phosphate group or a chloride ion. Together with the spectroscopic analysis of holo-MmLarE and the previously reported biochemical investigations of holo-LarE from Thermotoga maritima, these crystal structures support the hypothesis of a reaction mechanism, in which the [4Fe-4S] cluster binds a hydrogenosulfide ligand in place of the chloride anion, thus generating a [4Fe-5S] intermediate, and transfers it to the substrate, as in the case of [4Fe-4S]-dependent tRNA thiolation enzymes.


Assuntos
Cloretos , Proteínas Ferro-Enxofre , Cloretos/metabolismo , Ligantes , Cisteína/química , Catálise , Enxofre/química , Enxofre/metabolismo , Proteínas Ferro-Enxofre/química
11.
Environ Res ; 239(Pt 1): 117251, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37783323

RESUMO

To investigate the effect of ibuprofen (IBU) on the sulfur-based and calcined pyrite-based autotrophic denitrification (SCPAD) systems, two individual reactors with the layered filling (L-SCPAD) and mixed filling (M-SCPAD) systems were established via sulfur and calcined pyrite. Effluent NO3--N concentration of the L-SCPAD and M-SCPAD systems was first increased to 6.44, 0.93 mg/L under 0.5 mg/L IBU exposure and gradually decreased to 1.66 mg/L, 0 mg/L under 4.0 mg/L IBU exposure, indicating that NO3--N removal performance of the M-SCPAD system was better than that of the L-SCPAD system. The variation of extracellular polymeric substances (EPS) characteristics demonstrated that more EPS was secreted in the M-SCPAD system compared to the L-SCPAD system, which contributed to forming a more stable biofilm structure and protecting microorganisms against the toxicity of IBU in the M-SCPAD system. Moreover, the increased electron transfer impedance and decreased cytochrome c implied that IBU inhibited the electron transfer efficiency of the L-SCPAD and M-SCPAD systems. The decreased adenosine triphosphate (ATP) and electron transfer system activity (ETSA) content showed that IBU inhibited metabolic activity, but the M-SCPAD system exhibited higher metabolic activity compared to the L-SCPAD system. In addition, the analysis of the bacterial community indicated a more stable abundance of nitrogen removal function bacteria (Bacillus) in the M-SCPAD system compared to the L-SCPAD system, which was conducive to maintaining a stable denitrification performance. The toxic response mechanism based on the biogeobattery effect was proposed in the SCPAD systems under IBU exposure. This study provided an important reference for the long-term toxic effect of IBU on the SCPAD systems.


Assuntos
Desnitrificação , Ibuprofeno , Ibuprofeno/toxicidade , Reatores Biológicos , Nitratos , Enxofre/química , Nitrogênio , Bactérias/metabolismo
12.
Anal Chim Acta ; 1279: 341788, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827636

RESUMO

Alpha-glucosidase (α-Glu) plays a crucial role in regulating the normal physiological function of the body; therefore, α-Glu activity detection is crucial in clinical studies. In this study, a nickel-based metal-organic framework (Ni-MOF) co-doped with sulfur dots (SDs) and iron (Fe) was designed and constructed for the colorimetric detection of α-Glu. The SDs/Fe/Ni-MOF shows a very low Michaelis-Menten constant (0.0466 mM) for H2O2, suggesting a very high affinity for H2O2. Additionally, the free radicals generated by the nanozyme-catalyzed reaction were analyzed, and the feasibility of the nanozyme-catalyzed process was further verified using density functional theory. The bimetallic (Fe and Ni) can improve the catalytic activity of the material, and sulfur can improve the affinity with the substrate to further enhance the catalytic performance. Notably, hydroquinone (HQ) inhibits nanozyme activity, whereas α-Glu hydrolyzes alpha-arbutin (α-Arb) and subsequently produces HQ. Therefore, this study developed a method for detecting α-Glu activity using α-Arb as a substrate. This method has high selectivity, a wide detection range (1.00-100 U L-1), and a low detection limit (0.525 U L-1). Finally, the method was used to α-Glu activity detected in serum samples with good accuracy. This study provides a new method for the detection of α-Glu.


Assuntos
Peróxido de Hidrogênio , Estruturas Metalorgânicas , alfa-Glucosidases , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Colorimetria/métodos , Ferro , Níquel , Enxofre/química , Nanopartículas/química
13.
Int J Pharm ; 645: 123409, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37722496

RESUMO

Fluorescent sulfur- and nitrogen-doped carbon nanodots (CDs) are zero-dimensional nanoparticles that mediate ROS production in cancer cells, displaying inherent anticancer properties. Thus, they have been proposed as nanotheranostic tools useful in image-guided cancer therapy. Here, we try to show that cancerous cells (high PDE-5 expression) receiving sildenafil delivered by CDs-based nanostructures promote positive reinforcement of PDE-5-mediated cell death via the overexpression of genes involved in the production of ROS. We explored the regioselective Huisgen cycloaddition between azide-ß-cyclodextrin and CDs-alkyne to synthetize homogeneous nanostructures, named CDs-PEG4-ß-Cdx, consisting of CDs functionalized at the surface with ß-cyclodextrins capable of including high amount drugs such as sildenafil (>20 % w/w), and releasing them in a controlled manner. We investigated how CDs-PEG4-ß-Cdx bearing sildenafil enter cells, enhancing ROS production and cell death specifically in cancer cells overexpressing PDE-5. These nanoplatforms go beyond the bounds of EPR-based nanomedicines in which carriers are conceived as inert vehicles of toxic drugs. Our findings enable the development of clever anticancer nanoplatforms that synergistically combine nanomedicines that perturb the mitochondrial electron transport chain (ROS production) with PDE-5 inhibitors which trigger oxidative stress specifically in cancer cells regardless of their location.


Assuntos
Neoplasias , beta-Ciclodextrinas , Humanos , Citrato de Sildenafila , Espécies Reativas de Oxigênio/metabolismo , Carbono/química , beta-Ciclodextrinas/química , Enxofre/química
14.
Nucleic Acids Res ; 51(19): 10782-10794, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37702119

RESUMO

Phosphorothioate (PT)-modification was discovered in prokaryotes and is involved in many biological functions such as restriction-modification systems. PT-modification can be recognized by the sulfur binding domains (SBDs) of PT-dependent restriction endonucleases, through coordination with the sulfur atom, accompanied by interactions with the DNA backbone and bases. The unique characteristics of PT recognition endow SBDs with the potential to be developed into gene-targeting tools, but previously reported SBDs display sequence-specificity for PT-DNA, which limits their applications. In this work, we identified a novel sequence-promiscuous SBDHga from Hahella ganghwensis. We solved the crystal structure of SBDHga complexed with PT-DNA substrate to 1.8 Å resolution and revealed the recognition mechanism. A shorter L4 loop of SBDHga interacts with the DNA backbone, in contrast with previously reported SBDs, which interact with DNA bases. Furthermore, we explored the feasibility of using SBDHga and a PT-oligonucleotide as targeting tools for site-directed adenosine-to-inosine (A-to-I) RNA editing. A GFP non-sense mutant RNA was repaired at about 60% by harnessing a chimeric SBD-hADAR2DD (deaminase domain of human adenosine deaminase acting on RNA), comparable with currently available RNA editing techniques. This work provides insights into understanding the mechanism of sequence-specificity for SBDs and for developing new tools for gene therapy.


Assuntos
Edição de RNA , Humanos , Adenosina Desaminase/metabolismo , DNA/química , Edição de Genes , RNA/metabolismo , Enxofre/química
15.
Anal Chem ; 95(33): 12427-12434, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37560995

RESUMO

Reactive sulfur species (RSS) are emerging as a potential key gasotransmitter in diverse physiological processes linking two signaling molecules H2S and SO2. However, the exact roles of H2S and SO2 remain unclear. A major hurdle is the shortage of accurate and robust approaches for sensing of H2S and SO2 in biological systems. Herein, we report a reaction-mediated dual-recognition strategy-based nanosensor, silver nanoparticles (AgNPs)-loaded MIL-101 (Fe) (ALM) hybrids, for the simultaneous detection of H2S and SO2 in a living cell. Upon exposure to H2S, AgNPs can be oxidized to form Ag2S, causing a decrease of surface enhanced Raman spectroscopy (SERS) signals of p,p'-dimercaptoazobenzene. Moreover, SO2 reacts with the amino moiety of MIL-101 to form charge-transfer complexes, resulting in an increment of fluorescent (FL) intensity. The ALM with dual-modal signals can simultaneously analyze H2S and SO2 at a concentration as low as 2.8 × 10-6 and 0.003 µM, respectively. Most importantly, the ALM sensing platform enables targeting mitochondria and detection multiple RSS simultaneously in living cells under external stimulation, as well as displays indiscernible crosstalk between SERS and FL signals, which is very beneficial for the comprehension of physiological issues related with RSS.


Assuntos
Espaço Intracelular , Espaço Intracelular/química , Enxofre/química , Humanos , Linhagem Celular Tumoral , Prata/química , Nanopartículas Metálicas , Dióxido de Enxofre/química
16.
Curr Opin Chem Biol ; 76: 102358, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399745

RESUMO

The infected host deploys generalized oxidative stress caused by small inorganic reactive molecules as antibacterial weapons. An emerging consensus is that hydrogen sulfide (H2S) and forms of sulfur with sulfur-sulfur bonds termed reactive sulfur species (RSS) provide protection against oxidative stressors and antibiotics, as antioxidants. Here, we review our current understanding of RSS chemistry and its impact on bacterial physiology. We start by describing the basic chemistry of these reactive species and the experimental approaches developed to detect them in cells. We highlight the role of thiol persulfides in H2S-signaling and discuss three structural classes of ubiquitous RSS sensors that tightly regulate cellular H2S/RSS levels in bacteria, with a specific focus on the chemical specificity of these sensors.


Assuntos
Sulfeto de Hidrogênio , Estresse Oxidativo , Oxirredução , Enxofre/química , Bactérias
17.
ACS Chem Biol ; 18(7): 1534-1547, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37410592

RESUMO

The mitochondrial cysteine desulfurase NFS1 is an essential PLP-dependent enzyme involved in iron-sulfur cluster assembly. The enzyme catalyzes the desulfurization of the l-Cys substrate, producing a persulfide and l-Ala as products. In this study, we set the measurement of the product l-Ala by NMR in vitro by means of 1H NMR spectra acquisition. This methodology provided us with the possibility of monitoring the reaction in both fixed-time and real-time experiments, with high sensitivity and accuracy. By studying I452A, W454A, Q456A, and H457A NFS1 variants, we found that the C-terminal stretch (CTS) of the enzyme is critical for function. Specifically, mutation of the extremely conserved position W454 resulted in highly decreased activity. Additionally, we worked on two singular variants: "GGG" and C158A. In the former, the catalytic Cys-loop was altered by including two Gly residues to increase the flexibility of this loop. This variant had significantly impaired activity, indicating that the Cys-loop motions are fine-tuned in the wild-type enzyme. In turn, for C158A, we found an unanticipated increase in l-Cys desulfurase activity. Furthermore, we carried out molecular dynamics simulations of the supercomplex dedicated to iron-sulfur cluster biosynthesis, which includes NFS1, ACP, ISD11, ISCU2, and FXN subunits. We identified CTS as a key element that established interactions with ISCU2 and FXN concurrently; we found specific interactions that are established when FXN is present, reinforcing the idea that FXN not only forms part of the iron-sulfur cluster assembly site but also modulates the internal motions of ISCU2.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Enxofre/química , Ferro/química , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123040, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37354858

RESUMO

Herein, a simple hydrothermal synthesis is used to prepare multiple heteroatom-doped photoluminescent carbon dots (CDs) from thiourea (N and S source) and boric acid (B source) as precursors. The optical and physicochemical properties of the as-synthesized NSB-CDs were studied using UV-Vis, photoluminescence, TEM, FT-IR, XRD, Raman, and XPS analyses. The NSB-CDs exhibited excellent stability, high photostability, pH, and ionic strength tolerance; they retained their excellent stability independent of excitation. The NSB-CDs featured small sizes of approximately 3.2 ± 0.4 nm (range: 2.0-5.0 nm) as evidenced using TEM measurements. The NSB-CDs were used as a photoluminescent sensing platform to detect Fe3+ as well as cysteine (Cys) molecules. The competitive binding of Cys to Fe3+ resulted in NSB-CDs that retained their photoluminescence. For the rapid identification and quantification of Fe3+ and Cys, NSB-CDs were developed as a "switch-on" dual-function sensing platform. The linear detection range of Fe3+ was 0-20 µM (limit of detection [LOD]: 54.4 nM) and that of Cys was 0-50 µM (LOD: 4.9 nM). We also introduced a smartphone RGB analysis method for detecting low-concentration solutions based on digital images. The NSB-CDs showed no toxicity at 100 µg/mL. Photoluminescent probes for multicolor live-cell imaging can be used with NSB-CDs at this concentration, suggesting that NSB-CDs may be promising photoluminescent probes.


Assuntos
Cisteína , Pontos Quânticos , Cisteína/análise , Boro/química , Carbono/química , Nitrogênio/química , Espectroscopia de Infravermelho com Transformada de Fourier , Pontos Quânticos/química , Enxofre/química , Corantes Fluorescentes/química
19.
Expert Opin Drug Discov ; 18(7): 725-735, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37243622

RESUMO

INTRODUCTION: Covalent drug discovery has traditionally focused on targeting cysteine, but the amino acid is often absent in protein binding sites. This review makes the case to move beyond cysteine labeling using sulfur (VI) fluoride exchange (SuFEx) chemistry to expand the druggable proteome. AREAS COVERED: Recent advances in SuFEx medicinal chemistry and chemical biology are described, which have enabled the development of covalent chemical probes that site-selectively engage amino acid residues (including tyrosine, lysine, histidine, serine, and threonine) in binding pockets. Areas covered include chemoproteomic mapping of the targetable proteome, structure-based design of covalent inhibitors and molecular glues, metabolic stability profiling, and synthetic methodologies that have expedited the delivery of SuFEx modulators. EXPERT OPINION: Despite recent innovations in SuFEx medicinal chemistry, focused preclinical research is required to ensure the field moves from early chemical probe discovery to the delivery of transformational covalent drug candidates. The authors believe that covalent drug candidates designed to engage residues beyond cysteine using sulfonyl exchange warheads will likely enter clinical trials in the coming years.


Assuntos
Fluoretos , Proteoma , Humanos , Fluoretos/química , Cisteína , Enxofre/química , Descoberta de Drogas
20.
Environ Res ; 228: 115808, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37011794

RESUMO

As a novel energy device, microbial fuel cells (MFCs) have attracted much attention for their dual functions of electricity generation and sewage treatment. However, the sluggish oxygen reduction reaction (ORR) kinetic on the cathode have hindered the practical application of MFCs. In this work, metallic organic framework derived carbon framework co-doped by Fe, S, N tri-elements was used as alternative electrocatalyst to the conventional Pt/C cathode catalyst in pH-universal electrolytes. The amount of thiosemicarbazide from 0.3 to 3 g determined the surface chemical property, and therefore the ORR activity of FeSNC catalysts. The sulfur/nitrogen doping and Fe/Fe3C embedded in carbon shell was characterized by X-ray photoelectron spectroscopy and transmission electron microscopy. The synergy of iron salt and thiosemicarbazide contributed to the improvement of nitrogen and sulfur doping. Sulfur atoms were successfully doped into the carbon matrix and formed a certain amount of thiophene- and oxidized-sulfur. The optimal FeSNC-3 catalyst synthesized with 1.5 g of thiosemicarbazide exhibited the highest ORR activity with a positive half wave potential of 0.866 V in alkaline and 0.691 V (vs. Reversible Hydrogen Electrode) in neutral electrolyte, which both outperformed the commercial Pt/C catalyst. However, as the amount of thiosemicarbazide surpassed 1.5 g, the catalytic performance of FeSNC-4 was lowered, and this could be assigned to the decreased defects and low specific surface area. The excellent ORR performance in neutral medium urged FeSNC-3 as good cathode catalyst in single chambered MFC (SCMFC). It showed the highest maximum power density of 2126 ± 100 mW m-2, excellent output stability of 8.14% decline in 550 h, chemical oxygen demand removal of 90.7 ± 1.6% and coulombic efficiency of 12.5 ± 1.1%, all superior to those of benchmark SCMFC-Pt/C (1637 ± 35 mW m-2, 15.4%, 88.9 ± 0.9%, and 10.2 ± 1.1%). These outstanding results were associated to the large specific surface area and synergistic interaction of multiple active sites, like Fe/Fe3C, Fe-N4, pyridinic N, graphite N and thiophene-S.


Assuntos
Fontes de Energia Bioelétrica , Carbono/química , Porosidade , Ferro/química , Oxigênio/química , Oxirredução , Nitrogênio , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA