Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Pharmacol ; 83(2): 183-192, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37989146

RESUMO

ABSTRACT: N(6)-methyladenosine (m6A) methylation modification is involved in the progression of myocardial infarction (MI). In this study, we investigated the effects of demethylase alkylation repair homolog 5 (ALKBH5) on cell apoptosis and oxidative stress in MI. The ischemia/reperfusion (I/R) injury mouse model and hypoxia/reoxygenation (H/R) cell model were established. The levels of ALKBH5 and mitsugumin 53 (MG53) were measured by quantitative real-time polymerase chain reaction, immunohistochemical, and immunofluorescence analysis. Apoptosis was evaluated by TUNEL assay, flow cytometry, and western blot. Oxidative stress was assessed by antioxidant index kits. Methylation was analyzed by RNA binding protein immunoprecipitation (RIP), MeRIP, and dual-luciferase reporter assay. We observed that ALKBH5 and MG53 were highly expressed in MI. Overexpression of ALKBH5 inhibited H/R-induced cardiomyocyte apoptosis and oxidative stress in vitro, and it inhibited I/R-induced collagen deposition, cardiac function, and apoptosis in vivo. ALKBH5 could bind to MG53, inhibit m6A methylation of MG53, and increase its mRNA stability. Silencing of MG53 counteracted the inhibition of apoptosis and oxidative stress induced by ALKBH5. In conclusion, ALKBH5 suppressed m6A methylation of MG53 and inhibited MG53 degradation to inhibit apoptosis and oxidative stress of cardiomyocytes, thereby attenuating MI. The results provided a theoretical basis that ALKBH5 is a potential target for MI treatment.


Assuntos
Adenosina , Enzimas AlkB , Homólogo AlkB 5 da RNA Desmetilase , Infarto do Miocárdio , Estresse Oxidativo , Animais , Camundongos , Adenina/análogos & derivados , Adenosina/análogos & derivados , Enzimas AlkB/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Apoptose , Proteínas de Membrana , Metilação , Infarto do Miocárdio/metabolismo
2.
Pathol Res Pract ; 248: 154609, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37421841

RESUMO

BACKGROUND: The oncogenic role of circPUM1 has been revealed in multiple cancers. Nevertheless, the specific role and molecular mechanism of circPUM1 in neuroblastoma (NB) have never been reported. METHODS: The expression of genes was detected using RT-qPCR and Western Blot assay. The proliferation, migration, and invasion of NB cells were evaluated by CCK-8 and Transwell assays. Besides, mouse model was established to evaluate the effect of circPUM1 on the progression of NB. The interaction among genes was verified through RIP, MeRIP, or Luciferase reporter assay. RESULTS: Through our investigation, it was discovered that circPUM1 expression was abnormally elevated in NB tissues and the abundance of circPUM1 was correlated with unfavorable clinical outcomes in NB patients. Besides, the viability and mobility of NB cells as well as NB tumor growth were suppressed by silencing circPUM1. Moreover, bioinformatics prediction and experimental verification demonstrated that circPUM1 was a sponge for miR-423-5p which further targeted proliferation-associated protein 2G4 (PA2G4). The oncogenic effect of circPUM1 on NB was exerted through suppressing miR-423-5p to elevate PA2G4 expression. Finally, we investigated the transcriptional factor causing the upregulation of circPUM1 in NB. The result was that ALKB homolog 5 (ALKBH5), an m6A demethylase, suppressed the m6A modification of circPUM1 and caused the elevation of circPUM1 expression in NB. CONCLUSION: ALKBH5 induced the upregulation of circPUM1 to accelerate the development of NB through regulating miR-423-5p/PA2G4 axis.


Assuntos
MicroRNAs , Neuroblastoma , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação para Cima , Proliferação de Células/genética , Neuroblastoma/metabolismo , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral
3.
Lab Invest ; 103(7): 100134, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990154

RESUMO

Kinesin family member C1 (KIFC1) is a kinesin-14 motor protein, and its abnormal upregulation promotes the malignant behavior of cancer cells. N6-methyladenosine (m6A) RNA methylation is a common modification of eukaryotic messenger RNA and affects RNA expression. In this study, we explored how KIFC1 regulated head and neck squamous cell carcinoma (HNSCC) tumorigenesis and how m6A modification affected KIFC1 expression. A bioinformatics analysis was performed to screen for genes of interest, and in vitro and in vivo studies were carried out to investigate the function and mechanism of KIFC1 in HNSCC tissues. We observed that the expression of KIFC1 in HNSCC tissues was significantly higher than that in normal or adjacent normal tissues. Patients with cancer with higher KIFC1 expression have a lower tumor differentiation status. Demethylase alkB homolog 5, a cancer-promoting factor in HNSCC tissues, could interact with KIFC1 messenger RNA and posttranscriptionally activate KIFC1 through m6A modification. KIFC1 downregulation suppressed HNSCC cell growth and metastasis in vivo and in vitro. However, overexpression of KIFC1 promoted these malignant behaviors. We demonstrated that KIFC1 overexpression activated the oncogenic Wnt/ß-catenin pathway. KIFC1 interacted with the small GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1) at the protein level and increased its activity. The Rho GTPase Rac1 was indicated to be an upstream activator of the Wnt/ß-catenin signaling pathway, and its Rac1 inhibitor, NSC-23766, treatment reversed the effects caused by KIFC1 overexpression. Those observations demonstrate that abnormal expression of KIFC1 may be regulated by demethylase alkB homolog 5 in an m6A-dependent manner and promote HNSCC progression via the Rac1/Wnt/ß-catenin pathway.


Assuntos
Neoplasias de Cabeça e Pescoço , Via de Sinalização Wnt , Humanos , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Família , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Cinesinas/genética , Cinesinas/metabolismo , RNA , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Via de Sinalização Wnt/genética
4.
J Biol Chem ; 298(3): 101671, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120926

RESUMO

Human AlkB homolog 6, ALKBH6, plays key roles in nucleic acid damage repair and tumor therapy. However, no precise structural and functional information are available for this protein. In this study, we determined atomic resolution crystal structures of human holo-ALKBH6 and its complex with ligands. AlkB members bind nucleic acids by NRLs (nucleotide recognition lids, also called Flips), which can recognize DNA/RNA and flip methylated lesions. We found that ALKBH6 has unusual Flip1 and Flip2 domains, distinct from other AlkB family members both in sequence and conformation. Moreover, we show that its unique Flip3 domain has multiple unreported functions, such as discriminating against double-stranded nucleic acids, blocking the active center, binding other proteins, and in suppressing tumor growth. Structural analyses and substrate screening reveal how ALKBH6 discriminates between different types of nucleic acids and may also function as a nucleic acid demethylase. Structure-based interacting partner screening not only uncovered an unidentified interaction of transcription repressor ZMYND11 and ALKBH6 in tumor suppression but also revealed cross talk between histone modification and nucleic acid modification in epigenetic regulation. Taken together, these results shed light on the molecular mechanism underlying ALKBH6-associated nucleic acid damage repair and tumor therapy.


Assuntos
Enzimas AlkB , Proteínas de Ciclo Celular , Proteínas Correpressoras , Proteínas de Ligação a DNA , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Correpressoras/metabolismo , DNA/genética , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Proteínas de Escherichia coli/metabolismo , Humanos , Proteínas/metabolismo , RNA/metabolismo
5.
Phys Chem Chem Phys ; 23(39): 22227-22240, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34586107

RESUMO

DNA alkylation is used as the key epigenetic mark in eukaryotes, however, most alkylation in DNA can result in deleterious effects. Therefore, this process needs to be tightly regulated. The enzymes of the AlkB and Ten-Eleven Translocation (TET) families are members of the Fe and alpha-ketoglutarate-dependent superfamily of enzymes that are tasked with dealkylating DNA and RNA in cells. Members of these families span all species and are an integral part of transcriptional regulation. While both families catalyze oxidative dealkylation of various bases, each has specific preference for alkylated base type as well as distinct catalytic mechanisms. This perspective aims to provide an overview of computational work carried out to investigate several members of these enzyme families including AlkB, ALKB Homolog 2, ALKB Homolog 3 and Ten-Eleven Translocate 2. Insights into structural details, mutagenesis studies, reaction path analysis, electronic structure features in the active site, and substrate preferences are presented and discussed.


Assuntos
Enzimas AlkB/metabolismo , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Ácidos Cetoglutáricos/metabolismo , Simulação de Dinâmica Molecular , Enzimas AlkB/química , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Ferro/química , Ácidos Cetoglutáricos/química
6.
Nat Cell Biol ; 23(7): 684-691, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34253897

RESUMO

Members of the mammalian AlkB family are known to mediate nucleic acid demethylation1,2. ALKBH7, a mammalian AlkB homologue, localizes in mitochondria and affects metabolism3, but its function and mechanism of action are unknown. Here we report an approach to site-specifically detect N1-methyladenosine (m1A), N3-methylcytidine (m3C), N1-methylguanosine (m1G) and N2,N2-dimethylguanosine (m22G) modifications simultaneously within all cellular RNAs, and discovered that human ALKBH7 demethylates m22G and m1A within mitochondrial Ile and Leu1 pre-tRNA regions, respectively, in nascent polycistronic mitochondrial RNA4-6. We further show that ALKBH7 regulates the processing and structural dynamics of polycistronic mitochondrial RNAs. Depletion of ALKBH7 leads to increased polycistronic mitochondrial RNA processing, reduced steady-state mitochondria-encoded tRNA levels and protein translation, and notably decreased mitochondrial activity. Thus, we identify ALKBH7 as an RNA demethylase that controls nascent mitochondrial RNA processing and mitochondrial activity.


Assuntos
Enzimas AlkB/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mitocondrial/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Enzimas AlkB/genética , Citidina/análogos & derivados , Citidina/metabolismo , Guanosina/análogos & derivados , Guanosina/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Biossíntese de Proteínas , RNA Mitocondrial/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo
7.
Aging (Albany NY) ; 13(7): 9679-9692, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33744868

RESUMO

AlkB family of Fe (II) and α-ketoglutarate-dependent dioxygenases plays essential roles in development of ovarian serous carcinoma (OV). However, the molecular profiles of AlkB family in OV have not been clarified. The results indicated that the expression of ALKBH1/3/5/8 and FTO was lower in OV patients while ALKBH2/4/6/7 expression was higher. There was a strong correlation between ALKBH5/7 and pathological stage of OV patients. Kaplan-Meier plotter revealed that OV patients with high ALKBH4 level showed longer overall survival (OS). However, patients with high levels of ALKBH5/6 and FTO showed shorter OS and progression-free survival (PFS). Genetic alterations using cBioPortal revealed that the alteration rates of FTO were the highest. We also found that the functions of AlkB family were linked to several cancer-associated signaling pathways, including chemokine receptor signaling. TIMER database indicated that the AlkB family had a strong relationship with the infiltration of six types of immune cells (macrophages, neutrophils, CD8+ T-cells, B-cells, CD4+ T-cells and dendritic cells). Next, DiseaseMeth databases revealed that the global methylation levels of ALKBH1/2/3/4/5/6/7/8 and FTO were all lower in OV patients. Thus, our findings will enhance the understanding of AlkB family in OV pathology, and provide novel insights into AlkB-targeted therapy for OV patients.


Assuntos
Enzimas AlkB/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/metabolismo , Enzimas AlkB/genética , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Metilação de DNA , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico , Taxa de Sobrevida
8.
Genes Cells ; 25(8): 547-561, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32449584

RESUMO

Esophageal squamous cell carcinoma (ESCC) is one of the most fatal types of malignant tumors worldwide. Epitranscriptome, such as N6 -methyladenosine (m6 A) of mRNA, is an abundant post-transcriptional mRNA modification and has been recently implicated to play roles in several cancers, whereas the significance of m6 A modifications is virtually unknown in ESCC. Analysis of tissue microarray of the tumors in 177 ESCC patients showed that higher expression of m6 A demethylase ALKBH5 correlated with poor prognosis and that ALKBH5 was an independent prognostic factor of the survival of patients. There was no correlation between the other demethylase FTO and prognosis. siRNA knockdown of ALKBH5 but not FTO significantly suppressed proliferation and migration of human ESCC cells. ALKBH5 knockdown delayed progression of cell cycle and accumulated the cells to G0/G1 phase. Mechanistically, expression of CDKN1A (p21) was significantly up-regulated in ALKBH5-depleted cells, and m6 A modification and stability of CDKN1A mRNA were increased by ALKBH5 knockdown. Furthermore, depletion of ALKBH5 substantially suppressed tumor growth of ESCC cells subcutaneously transplanted in BALB/c nude mice. Collectively, we identify ALKBH5 as the first m6 A demethylase that accelerates cell cycle progression and promotes cell proliferation of ESCC cells, which is associated with poor prognosis of ESCC patients.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Adulto , Idoso , Enzimas AlkB/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Progressão da Doença , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Nucleic Acids Res ; 47(11): 5522-5529, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31114894

RESUMO

5-Methylcytosine (5mC) in DNA CpG islands is an important epigenetic biomarker for mammalian gene regulation. It is oxidized to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) by the ten-eleven translocation (TET) family enzymes, which are α-ketoglutarate (α-KG)/Fe(II)-dependent dioxygenases. In this work, we demonstrate that the epigenetic marker 5mC is modified to 5hmC, 5fC, and 5caC in vitro by another class of α-KG/Fe(II)-dependent proteins-the DNA repair enzymes in the AlkB family, which include ALKBH2, ALKBH3 in huamn and AlkB in Escherichia coli. Theoretical calculations indicate that these enzymes may bind 5mC in the syn-conformation, placing the methyl group comparable to 3-methylcytosine, the prototypic substrate of AlkB. This is the first demonstration of the AlkB proteins to oxidize a methyl group attached to carbon, instead of nitrogen, on a DNA base. These observations suggest a broader role in epigenetics for these DNA repair proteins.


Assuntos
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Enzimas AlkB/metabolismo , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Citosina/análogos & derivados , Enzimas AlkB/genética , Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Animais , Biologia Computacional , Ilhas de CpG , Citosina/metabolismo , DNA/genética , Metilação de DNA , Epigênese Genética , Humanos , Estrutura Molecular , Oxirredução
10.
Org Biomol Chem ; 17(8): 2223-2231, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30720838

RESUMO

N-Methylation of DNA/RNA bases can be regulatory or damaging and is linked to diseases including cancer and genetic disorders. Bacterial AlkB and human FTO are DNA/RNA demethylases belonging to the Fe(ii) and 2-oxoglutarate oxygenase superfamily. Modelling studies reveal conformational dynamics influence structure-function relationships of AlkB and FTO, e.g. why 1-methyladenine is a better substrate for AlkB than 6-methyladenine. Simulations show that the flexibility of the double stranded DNA substrate in AlkB influences correlated motions, including between the core jelly-roll fold and an active site loop involved in substrate binding. The FTO N- and C-terminal domains move in respect to one another in a manner likely important for substrate binding. Substitutions, including clinically observed ones, influencing catalysis contribute to the network of correlated motions in AlkB and FTO. Overall, the calculations highlight the importance of the overall protein environment and its flexibility to the geometry of the reactant complexes.


Assuntos
Enzimas AlkB/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Escherichia coli K12/enzimologia , Proteínas de Escherichia coli/química , Adenina/análogos & derivados , Adenina/metabolismo , Enzimas AlkB/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Metilação de DNA , DNA de Cadeia Simples/metabolismo , Escherichia coli K12/química , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
11.
Folia Biol (Praha) ; 64(2): 46-58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30338756

RESUMO

ALKB-8 is a 2-oxoglutarate-dependent dioxygenase homologous to bacterial AlkB, which oxidatively demethylates DNA substrates. The mammalian AlkB family contains AlkB homologues denominated ALKBH1 to 8 and FTO. The C. elegans genome includes five AlkB-related genes, homologues of ALKBH1, 4, 6, 7, and 8, but lacks homologues of ALKBH2, 3, and 5 and FTO. ALKBH8 orthologues differ from other AlkB family members by possessing an additional methyltransferase module and an RNA binding N-terminal module. The ALKBH8 methyltransferase domain generates the wobble nucleoside 5-methoxycarbonylmethyluridine from its precursor 5-carboxymethyluridine and its (R)- and (S)-5-methoxycarbonylhydroxymethyluridine hydroxylated forms in tRNA Arg/UCG and tRNA Gly/UCC. The ALKBH8/ALKB-8 methyltransferase domain is highly similar to yeast TRM9, which selectively modulates translation of mRNAs enriched with AGA and GAA codons under both normal and stress conditions. In this report, we studied the role of alkb-8 in C. elegans. We show that downregulation of alkb-8 increases detection of lysosome-related organelles visualized by Nile red in vivo. Reversely, forced expression of alkb-8 strongly decreases the detection of this compartment. In addition, overexpression of alkb-8 applied in a pulse during the L1 larval stage increases the C. elegans lifespan.


Assuntos
Envelhecimento/metabolismo , Enzimas AlkB/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Dioxigenases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Lisossomos/metabolismo , Metiltransferases/metabolismo , S-Adenosilmetionina/metabolismo , Enzimas AlkB/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulação para Baixo/genética , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/metabolismo , Larva/metabolismo , Longevidade , Óperon , Regiões Promotoras Genéticas , Interferência de RNA
12.
Curr Stem Cell Res Ther ; 13(2): 136-143, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29076432

RESUMO

BACKGROUND: The study of epigenetic regulation has made substantial progress in recent years. The AlkB family in E. coli was identified as a type of DNA repair enzyme that removes alkyl adducts from nucleobases. Recently, nine mammalian homologs, ALKBH1-9, have been successfully identified and defined as diverse demethylases. ALKBH1, ALKBH5, ALKBH8 and ALKBH9 act as RNA demethylases, while ALKBH2-3 and ALKBH7 correct methyl and etheno adducts in DNA. Moreover, ALKBH4 focuses primarily on actin. Disorders of AlkB family level in mammals induce many types of diseases. OBJECTIVE: In this review, we will elaborate on the structure and biological function of the members of the AlkB family. We will also focus on the latest progress of the research on the mammalian AlkB family, particularly on new breakthroughs, and present the relevant disorders or diseases induced by an abnormal level of the AlkB family. CONCLUSION: The AlkB family plays a crucial role in embryogenesis and differentiation. The aberrant level of the AlkB family leads to many types of diseases. The members of the AlkB family may serve as potential cancer markers and possible therapeutic targets in the future.


Assuntos
Enzimas AlkB/metabolismo , Desenvolvimento Embrionário/fisiologia , Epigênese Genética/genética , Proteínas Mitocondriais/metabolismo , Oxigenases de Função Mista/metabolismo , Animais , Metilação de DNA/fisiologia , Escherichia coli , Humanos
13.
Nature ; 551(7680): 389-393, 2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29144457

RESUMO

DNA repair is essential to prevent the cytotoxic or mutagenic effects of various types of DNA lesions, which are sensed by distinct pathways to recruit repair factors specific to the damage type. Although biochemical mechanisms for repairing several forms of genomic insults are well understood, the upstream signalling pathways that trigger repair are established for only certain types of damage, such as double-stranded breaks and interstrand crosslinks. Understanding the upstream signalling events that mediate recognition and repair of DNA alkylation damage is particularly important, since alkylation chemotherapy is one of the most widely used systemic modalities for cancer treatment and because environmental chemicals may trigger DNA alkylation. Here we demonstrate that human cells have a previously unrecognized signalling mechanism for sensing damage induced by alkylation. We find that the alkylation repair complex ASCC (activating signal cointegrator complex) relocalizes to distinct nuclear foci specifically upon exposure of cells to alkylating agents. These foci associate with alkylated nucleotides, and coincide spatially with elongating RNA polymerase II and splicing components. Proper recruitment of the repair complex requires recognition of K63-linked polyubiquitin by the CUE (coupling of ubiquitin conjugation to ER degradation) domain of the subunit ASCC2. Loss of this subunit impedes alkylation adduct repair kinetics and increases sensitivity to alkylating agents, but not other forms of DNA damage. We identify RING finger protein 113A (RNF113A) as the E3 ligase responsible for upstream ubiquitin signalling in the ASCC pathway. Cells from patients with X-linked trichothiodystrophy, which harbour a mutation in RNF113A, are defective in ASCC foci formation and are hypersensitive to alkylating agents. Together, our work reveals a previously unrecognized ubiquitin-dependent pathway induced specifically to repair alkylation damage, shedding light on the molecular mechanism of X-linked trichothiodystrophy.


Assuntos
Enzimas AlkB/metabolismo , Adutos de DNA/metabolismo , Reparo do DNA , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Síndromes de Tricotiodistrofia/genética , Ubiquitina/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Alquilantes/farmacologia , Alquilação , Sequência de Aminoácidos , Adutos de DNA/química , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Genes Ligados ao Cromossomo X , Humanos , Cinética , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Poliubiquitina/metabolismo , RNA Polimerase II/metabolismo , Splicing de RNA , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patologia , Ubiquitinação
14.
PLoS Biol ; 15(11): e2002810, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29107960

RESUMO

Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.


Assuntos
Enzimas AlkB/antagonistas & inibidores , Antineoplásicos Alquilantes/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Glutaminase/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Alquilação/efeitos dos fármacos , Animais , Antineoplásicos Alquilantes/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Inibidores Enzimáticos/farmacologia , Glutaminase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Interferência de RNA , Distribuição Aleatória , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Sci Rep ; 7(1): 12446, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28963537

RESUMO

In this study, time-series samples were taken from a gravel beach to ascertain whether a periodic oil input induced by tidal action at the early stage of an oil spill can be a trigger to stimulate the development of hydrocarbon-degrading bacteria under natural in situ attenuation. High-throughput sequencing shows that the microbial community in beach sediments is characterized by the enrichment of hydrocarbon-degrading bacteria, including Alcanivorax, Dietzia, and Marinobacter. Accompanying the periodic floating-oil input, dynamic successions of microbial communities and corresponding fluctuations in functional genes (alkB and RDH) are clearly indicated in a time sequence, which keeps pace with the ongoing biodegradation of the spilled oil. The microbial succession that accompanies tidal action could benefit from the enhanced exchange of oxygen and nutrients; however, regular inputs of floating oil can be a trigger to stimulate an in situ "seed bank" of hydrocarbon-degrading bacteria. This leads to the continued blooming of hydrocarbon-degrading consortia in beach ecosystems. The results provide new insights into the beach microbial community structure and function in response to oil spills.


Assuntos
Enzimas AlkB/genética , Genes Bacterianos , Hidrocarbonetos Aromáticos/metabolismo , Consórcios Microbianos/fisiologia , Água do Mar/microbiologia , Microbiologia do Solo , Alcanivoraceae/classificação , Alcanivoraceae/enzimologia , Alcanivoraceae/genética , Alcanivoraceae/isolamento & purificação , Enzimas AlkB/metabolismo , Baías , Biodegradação Ambiental , China , DNA Bacteriano/genética , Ecossistema , Expressão Gênica , Hidrocarbonetos Aromáticos/química , Marinobacter/classificação , Marinobacter/enzimologia , Marinobacter/genética , Marinobacter/isolamento & purificação , Petróleo/microbiologia , Poluição por Petróleo/análise , Filogenia
16.
Biochem J ; 474(11): 1837-1852, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28408432

RESUMO

1,N6-α-hydroxypropanoadenine (HPA) is an exocyclic DNA adduct of acrolein - an environmental pollutant and endocellular oxidative stress product. Escherichia coli AlkB dioxygenase belongs to the superfamily of α-ketoglutarate (αKG)- and iron-dependent dioxygenases which remove alkyl lesions from bases via an oxidative mechanism, thereby restoring native DNA structure. Here, we provide in vivo and in vitro evidence that HPA is mutagenic and is effectively repaired by AlkB dioxygenase. HPA generated in plasmid DNA caused A → C and A → T transversions and, less frequently, A → G transitions. The lesion was efficiently repaired by purified AlkB protein; the optimal pH, Fe(II), and αKG concentrations for this reaction were determined. In vitro kinetic data show that the protonated form of HPA is preferentially repaired by AlkB, albeit the reaction is stereoselective. Moreover, the number of reaction cycles carried out by an AlkB molecule remains limited. Molecular modeling of the T(HPA)T/AlkB complex demonstrated that the R stereoisomer in the equatorial conformation of the HPA hydroxyl group is strongly preferred, while the S stereoisomer seems to be susceptible to AlkB-directed oxidative hydroxylation only when HPA adopts the syn conformation around the glycosidic bond. In addition to the biochemical activity assays, substrate binding to the protein was monitored by differential scanning fluorimetry allowing identification of the active protein form, with cofactor and cosubstrate bound, and monitoring of substrate binding. In contrast FTO, a human AlkB homolog, failed to bind an ssDNA trimer carrying HPA.


Assuntos
Adenina/análogos & derivados , Enzimas AlkB/metabolismo , Carcinógenos Ambientais/metabolismo , Adutos de DNA/metabolismo , Reparo do DNA , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Mutagênicos/metabolismo , Adenina/química , Adenina/metabolismo , Adenina/toxicidade , Enzimas AlkB/química , Enzimas AlkB/genética , Sítios de Ligação , Biocatálise , Carcinógenos Ambientais/química , Carcinógenos Ambientais/toxicidade , Adutos de DNA/química , Adutos de DNA/toxicidade , DNA Bacteriano/química , DNA Bacteriano/efeitos dos fármacos , DNA Bacteriano/metabolismo , Estabilidade Enzimática , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidroxilação , Conformação Molecular , Simulação de Dinâmica Molecular , Mutagênese/efeitos dos fármacos , Mutagênicos/química , Mutagênicos/toxicidade , Oxirredução , Conformação Proteica , Teoria Quântica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato
17.
Methods Mol Biol ; 1562: 245-255, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28349465

RESUMO

N 1-Methyladenosine (m1A) is a prevalent posttranscriptional RNA modification and commonly found in tRNA and rRNA. Very recent works have also demonstrated the prevalence of m1A in mammalian mRNA. Hence, high-throughput methods that allow transcriptome-wide mapping of m1A will be important for further functional investigations. Here, we describe a technique called "m1A-ID-Seq", which is based on m1A immunoprecipitation and the inherent ability of m1A to stall reverse transcription, to map m1A in the transcriptome. Utilizing this technique, highly confident m1A peaks can be obtained on a transcriptome-wide level.


Assuntos
Adenosina/análogos & derivados , Epigênese Genética , Epigenômica/métodos , RNA Mensageiro/genética , Transcriptoma , Adenosina/química , Adenosina/genética , Adenosina/metabolismo , Enzimas AlkB/metabolismo , Biblioteca Gênica , Imunoprecipitação/métodos , Metilação , RNA Mensageiro/química , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA