Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Exp Dermatol ; 33(3): e15040, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429888

RESUMO

The effect of persistent skin inflammation on extracutaneous organs and blood is not well studied. Patients with recessive dystrophic epidermolysis bullosa (RDEB), a severe form of the inherited blistering skin disorder, have widespread and persistent skin ulcers, and they develop various complications including anaemia, hyperglobulinaemia, hypoalbuminaemia and secondary amyloidosis. These complications are associated with the bioactivities of IL-6, and the development of secondary amyloidosis requires the persistent elevation of serum amyloid A (SAA) level. We found that patients with RDEB had significantly higher serum levels of IL-6 and SAA compared to healthy volunteers and patients with psoriasis or atopic dermatitis. Both IL-6 and SAA were highly expressed in epidermal keratinocytes and dermal fibroblasts of the skin ulcer lesions. Keratinocytes and fibroblasts surrounding the ulcer lesions are continuously exposed to Toll-like receptor (TLR) ligands, pathogen-associated and damage-associated molecular pattern molecules. In vitro, TLR ligands induced IL-6 expression via NF-κB in normal human epidermal keratinocytes (NHEKs) and dermal fibroblasts (NHDFs). SAA further induced the expression of IL-6 via TLR1/2 and NF-κB in NHEKs and NHDFs. The limitation of this study is that NHEKs and NHDFs were not derived from RDEB patients. These observations suggest that TLR-mediated persistent skin inflammation might increase the risk of IL-6-related systemic complications, including RDEB.


Assuntos
Amiloidose , Epidermólise Bolhosa Distrófica , Interleucina-6 , Humanos , Amiloidose/metabolismo , Amiloidose/patologia , Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Fibroblastos/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Queratinócitos/metabolismo , NF-kappa B/metabolismo , Proteína Amiloide A Sérica/metabolismo , Receptores Toll-Like/metabolismo
2.
Front Immunol ; 14: 1211505, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37809094

RESUMO

Inflammation is known to play a critical role in all stages of tumorigenesis; however, less is known about how it predisposes the tissue microenvironment preceding tumor formation. Recessive dystrophic epidermolysis bullosa (RDEB), a skin-blistering disease secondary to COL7A1 mutations and associated with chronic wounding, inflammation, fibrosis, and cutaneous squamous cell carcinoma (cSCC), models this dynamic. Here, we used single-cell RNA sequencing (scRNAseq) to analyze gene expression patterns in skin cells from a mouse model of RDEB. We uncovered a complex landscape within the RDEB dermal microenvironment that exhibited altered metabolism, enhanced angiogenesis, hyperproliferative keratinocytes, infiltration and activation of immune cell populations, and inflammatory fibroblast priming. We demonstrated the presence of activated neutrophil and Langerhans cell subpopulations and elevated expression of PD-1 and PD-L1 in T cells and antigen-presenting cells, respectively. Unsupervised clustering within the fibroblast population further revealed two differentiation pathways in RDEB fibroblasts, one toward myofibroblasts and the other toward a phenotype that shares the characteristics of inflammatory fibroblast subsets in other inflammatory diseases as well as the IL-1-induced inflammatory cancer-associated fibroblasts (iCAFs) reported in various cancer types. Quantitation of inflammatory cytokines indicated dynamic waves of IL-1α, TGF-ß1, TNF, IL-6, and IFN-γ concentrations, along with dermal NF-κB activation preceding JAK/STAT signaling. We further demonstrated the divergent and overlapping roles of these cytokines in inducing inflammatory phenotypes in RDEB patients as well as RDEB mouse-derived fibroblasts together with their healthy controls. In summary, our data have suggested a potential role of inflammation, driven by the chronic release of inflammatory cytokines such as IL-1, in creating an immune-suppressed dermal microenvironment that underlies RDEB disease progression.


Assuntos
Carcinoma de Células Escamosas , Epidermólise Bolhosa Distrófica , Neoplasias Cutâneas , Camundongos , Animais , Humanos , Carcinoma de Células Escamosas/genética , Neoplasias Cutâneas/patologia , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Colágeno/metabolismo , Fibroblastos/metabolismo , Citocinas/metabolismo , Interleucina-1/metabolismo , Microambiente Tumoral , Colágeno Tipo VII
3.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613507

RESUMO

The ATP-binding cassette superfamily member ABCB5 identifies a subset of skin-resident mesenchymal stem cells (MSCs) that exhibit potent immunomodulatory and wound healing-promoting capacities along with superior homing ability. The ABCB5+ MSCs can be easily accessed from discarded skin samples, expanded, and delivered as a highly homogenous medicinal product with standardized potency. A range of preclinical studies has suggested therapeutic efficacy of ABCB5+ MSCs in a variety of currently uncurable skin and non-skin inflammatory diseases, which has been substantiated thus far by distinct clinical trials in chronic skin wounds or recessive dystrophic epidermolysis bullosa. Therefore, skin-derived ABCB5+ MSCs have the potential to provide a breakthrough at the forefront of MSC-based therapies striving to fulfill current unmet medical needs. The most recent milestones in this regard are the approval of a phase III pivotal trial of ABCB5+ MSCs for treatment of recessive dystrophic and junctional epidermolysis bullosa by the US Food and Drug Administration, and national market access of ABCB5+ MSCs (AMESANAR®) for therapy-refractory chronic venous ulcers under the national hospital exemption pathway in Germany.


Assuntos
Epidermólise Bolhosa Distrófica , Células-Tronco Mesenquimais , Estados Unidos , Humanos , Células-Tronco Mesenquimais/metabolismo , Epidermólise Bolhosa Distrófica/metabolismo , Alemanha , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
4.
Int J Mol Sci ; 22(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065916

RESUMO

Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a devastating skin blistering disease caused by mutations in the gene encoding type VII collagen (C7), leading to epidermal fragility, trauma-induced blistering, and long term, hard-to-heal wounds. Fibrosis develops rapidly in RDEB skin and contributes to both chronic wounds, which emerge after cycles of repetitive wound and scar formation, and squamous cell carcinoma-the single biggest cause of death in this patient group. The molecular pathways disrupted in a broad spectrum of fibrotic disease are also disrupted in RDEB, and squamous cell carcinomas arising in RDEB are thus far molecularly indistinct from other sub-types of aggressive squamous cell carcinoma (SCC). Collectively these data demonstrate RDEB is a model for understanding the molecular basis of both fibrosis and rapidly developing aggressive cancer. A number of studies have shown that RDEB pathogenesis is driven by a radical change in extracellular matrix (ECM) composition and increased transforming growth factor-beta (TGFß) signaling that is a direct result of C7 loss-of-function in dermal fibroblasts. However, the exact mechanism of how C7 loss results in extensive fibrosis is unclear, particularly how TGFß signaling is activated and then sustained through complex networks of cell-cell interaction not limited to the traditional fibrotic protagonist, the dermal fibroblast. Continued study of this rare disease will likely yield paradigms relevant to more common pathologies.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/complicações , Transdução de Sinais , Neoplasias Cutâneas/metabolismo , Carcinoma de Células Escamosas/etiologia , Carcinoma de Células Escamosas/genética , Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Matriz Extracelular/metabolismo , Fibrose , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/genética , Fator de Crescimento Transformador beta/metabolismo , Cicatrização
5.
Exp Dermatol ; 30(5): 664-675, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33595864

RESUMO

Squamous cell carcinoma (SCC) develops in more than 80% of individuals with the skin blistering disorder recessive dystrophic epidermolysis bullosa (RDEB). In contrast with UV-induced SCC, RDEB-SCC results from skin damage and has a high proliferative and metastatic rate with 5-year survival near zero. Our objective is to determine the mechanisms underlying the increased metastatic tendencies of RDEB-SCC. RDEB-SCC cultured cell lines were treated with RDEB and non-RDEB fibroblast conditioned media and assayed for migration and invasion with and without small molecule inhibitors for TGFß and other downstream signal transduction pathways. TGFß1 secreted by RDEB dermal fibroblasts has been found to induce migration and invasion and to increase expression of epithelial-to-mesenchymal transition markers in an RDEB-SCC line. These effects were reversed upon inhibition of TGFß signalling and its downstream pathways MEK/ERK, P38 kinase and SMAD3. A number of small molecule inhibitors for these pathways are in different phases of various clinical trials and may be applicable to RDEB-SCC patients. Studying the mechanisms of the extreme form RDEB-SCC may inform studies of other types of SCC, as well as lead to better therapies for RDEB patients.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Epidermólise Bolhosa Distrófica/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Cutâneas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias Cutâneas/patologia
6.
Stem Cells ; 39(7): 897-903, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33609408

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare, incurable blistering skin disease caused by biallelic mutations in type VII collagen (C7). Advancements in treatment of RDEB have come from harnessing the immunomodulatory potential of mesenchymal stem cells (MSCs). Although human bone marrow-derived MSC (BM-MSC) trials in RDEB demonstrate improvement in clinical severity, the mechanisms of MSC migration to and persistence in injured skin and their contributions to wound healing are not completely understood. A unique subset of MSCs expressing ATP-binding cassette subfamily member 5 (ABCB5) resides in the reticular dermis and exhibits similar immunomodulatory characteristics to BM-MSCs. Our work aimed to test the hypothesis that skin-derived ABCB5+ dermal MSCs (DSCs) possess superior skin homing ability compared to BM-MSCs in immunodeficient NOD-scid IL2rgammanull (NSG) mice. Compared to BM-MSCs, peripherally injected ABCB5+ DSCs demonstrated superior homing and engraftment of wounds. Furthermore, ABCB5+ DSCs vs BM-MSCs cocultured with macrophages induced less anti-inflammatory interleukin-1 receptor antagonist (IL-1RA) production. RNA sequencing of ABCB5+ DSCs compared to BM-MSCs showed unique expression of major histocompatibility complex class II and Homeobox (Hox) genes, specifically HOXA3. Critical to inducing migration of endothelial and epithelial cells for wound repair, increased expression of HOXA3 may explain superior skin homing properties of ABCB5+ DSCs. Further discernment of the immunomodulatory mechanisms among MSC populations could have broader regenerative medicine implications beyond RDEB treatment.


Assuntos
Epidermólise Bolhosa Distrófica , Células-Tronco Mesenquimais , Subfamília B de Transportador de Cassetes de Ligação de ATP , Animais , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/terapia , Proteínas de Homeodomínio/metabolismo , Imunomodulação , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Pele/metabolismo
7.
J Invest Dermatol ; 140(1): 121-131.e6, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31326396

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a debilitating genodermatosis caused by loss-of-function mutations in COL7A1 encoding type VII collagen (C7), the main component of anchoring fibrils at the dermal-epidermal junction. With no curative treatments presently available, retrovirally transduced autologous epidermal grafts and intradermal lentivirally engineered fibroblast injections are being investigated. Alternative approaches aim to infuse allogeneic mesenchymal stromal cells (MSCs) to provide a more generalized treatment for RDEB. We investigated whether healthy human MSCs could be engineered to overexpress C7 and correct RDEB in a human:murine chimeric model. Initially, engineered MSCs incorporated ex vivo into RDEB grafts, their presence confirmed by fluorescence in situ hybridization, revealed recovery of function of the dermal-epidermal junction with no signs of blister formation. Importantly, the detection of anchoring fibrils by transmission electron microscopy corroborated structural recovery. Next, MSCs cotransduced to express C7 and luciferase were delivered intradermally into grafted RDEB skin, resulting in localized MSC persistence with deposition of de novo C7 at the site. Notably, C7 expression was sufficient to restore anchoring fibril density to normal levels. In contrast, intravenously injected engineered MSCs were undetectable within grafts and lacked anchoring fibril reconstitution. Our data suggest that although localized correction may be achievable using engineered MSCs, strategies for systemic administration require further modeling.


Assuntos
Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa Distrófica/metabolismo , Células-Tronco Mesenquimais/fisiologia , Reticulina/metabolismo , Pele/patologia , Animais , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Engenharia Genética , Humanos , Camundongos , Camundongos SCID , Microscopia Eletrônica de Transmissão , Mutação/genética , Reticulina/ultraestrutura , Transplante de Pele , Junções Íntimas/metabolismo , Junções Íntimas/ultraestrutura , Quimeras de Transplante
8.
J Invest Dermatol ; 139(7): 1497-1505.e5, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30684555

RESUMO

Mutations in the gene encoding collagen VII cause the devastating blistering disease recessive dystrophic epidermolysis bullosa (RDEB). RDEB is characterized by severe skin fragility and nonhealing wounds aggravated by scarring and fibrosis. We previously showed that TSP1 is increased in RDEB fibroblasts. Because transforming growth factor-ß (TGF-ß) signaling is also increased in RDEB, and TSP1 is known to activate TGF-ß, we investigated the role of TSP1 in TGF-ß signaling in RDEB patient cells. Knockdown of TSP1 reduced phosphorylation of smad3 (a downstream target of TGF-ß signaling) in RDEB primary fibroblasts, whereas overexpression of collagen VII reduced phosphorylation of smad3. Furthermore, inhibition of TSP1 binding to the LAP/TGF-ß complex decreased fibrosis in engineered extracellular matrix formed by RDEB fibroblasts, as evaluated by picrosirius red staining and analyses of birefringent collagen fibrillar deposits. We show that collagen VII binds TSP1, which could potentially limit TSP1-LAP association and subsequent TGF-ß activation. Our study suggests a previously unreported mechanism for increased TGF-ß signaling in the absence of collagen VII in RDEB patient skin. Moreover, these data identify TSP1 as a possible target for reducing fibrosis in the tumor-promoting dermal microenvironment of RDEB patients.


Assuntos
Epidermólise Bolhosa Distrófica/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Pele/patologia , Trombospondina 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Criança , Pré-Escolar , Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Feminino , Fibroblastos/patologia , Fibrose , Técnicas de Silenciamento de Genes , Genes Recessivos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Mutação/genética , Fosforilação , Ligação Proteica , Transdução de Sinais , Proteína Smad3/metabolismo , Trombospondina 1/genética , Microambiente Tumoral , Adulto Jovem
9.
Stem Cells ; 36(12): 1839-1850, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30247783

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by mutations in the Col7a1 gene. Patients with RDEB suffer from recurrent erosions in skin and mucous membranes and have a high risk for developing cutaneous squamous cell carcinoma (cSCCs). TGFß signaling has been associated with fibrosis and malignancy in RDEB. In this study, the activation of TGFß signaling was demonstrated in col7a1-/- mice as early as a week after birth starting in the interdigital folds of the paws, accompanied by increased deposition of collagen fibrils and elevated dermal expression of matrix metalloproteinase (MMP)-9 and MMP-13. Furthermore, human cord blood-derived unrestricted somatic stem cells (USSCs) that we previously demonstrated to significantly improve wound healing and prolong the survival of col7a1-/- mice showed the ability to suppress TGFß signaling and MMP-9 and MMP-13 expression meanwhile upregulating anti-fibrotic TGFß3 and decorin. In parallel, we cocultured USSCs in a transwell with RDEB patient-derived fibroblasts, keratinocytes, and cSCC, respectively. The patient-derived cells were constitutively active for STAT, but not TGFß signaling. Moreover, the levels of MMP-9 and MMP-13 were significantly elevated in the patient derived-keratinocytes and cSCCs. Although USSC coculture did not inhibit STAT signaling, it significantly suppressed the secretion of MMP-9 and MMP-13, and interferon (IFN)-γ from RDEB patient-derived cells. Since epithelial expression of these MMPs is a biomarker of malignant transformation and correlates with the degree of tumor invasion, these results suggest a potential role for USSCs in mitigating epithelial malignancy, in addition to their anti-inflammatory and anti-fibrotic functions. Stem Cells 2018;36:1839-12.


Assuntos
Epidermólise Bolhosa Distrófica/genética , Sangue Fetal/metabolismo , Fibroblastos/metabolismo , Fibrose/metabolismo , Animais , Diferenciação Celular , Progressão da Doença , Epidermólise Bolhosa Distrófica/metabolismo , Humanos , Camundongos
10.
J Dermatol Sci ; 91(3): 301-310, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29933899

RESUMO

BACKGROUND: Epidermolysis bullosa (EB) is a group of hereditary disorders caused by mutations in the genes encoding structural molecules of the dermal-epidermal junction (DEJ). Cell-based therapies such as allogeneic mesenchymal stem/stromal cell (MSC) transplantation have recently been explored for severe EB types, such as recessive dystrophic EB (RDEB). However, hurdles exist in current MSC-based therapies, such as limited proliferation from a single cell source and limited cell survival due to potential allogenic rejection. OBJECTIVES: We aimed to develop MSCs from keratinocyte-derived induced pluripotent stem cells (iPSCs). METHODS: Keratinocyte-derived iPSCs (KC-iPSCs) of a healthy human and an RDEB patient were cultured with activin A, 6-bromoindirubin-3'-oxime and bone morphogenetic protein 4 to induce mesodermal lineage formation. These induced cells were subjected to immunohistochemical analysis, flow cytometric analysis and RNA microarray analysis in vitro, and were injected subcutaneously and intravenously to wounded immunodeficient mice to assess their wound-healing efficacy. RESULTS: After their induction, KC-iPSC-induced cells were found to be compatible with MSCs. Furthermore, with the subcutaneous and intravenous injection of the KC-iPSC-induced cells into wounded immunodeficient mice, human type VII collagen was detected at the DEJ of epithelized areas. CONCLUSIONS: We successfully established iPSC-derived MSCs from keratinocytes (KC-iPSC-MSCs) of a normal human and an RDEB patient. KC-iPSC-MSCs may have potential in therapies for RDEB.


Assuntos
Linhagem da Célula , Epidermólise Bolhosa Distrófica/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Queratinócitos/patologia , Células-Tronco Mesenquimais/patologia , Pele/patologia , Idoso , Animais , Estudos de Casos e Controles , Separação Celular/métodos , Células Cultivadas , Colágeno Tipo VII/metabolismo , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/transplante , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Fenótipo , Pele/efeitos dos fármacos , Pele/metabolismo , Cicatrização , Ferimentos Penetrantes/metabolismo , Ferimentos Penetrantes/patologia , Ferimentos Penetrantes/cirurgia
11.
Exp Eye Res ; 175: 133-141, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29920270

RESUMO

BACKGROUND: Absence of collagen VII causes blistering of the skin, eyes and many other tissues. This disease is termed dystrophic epidermolysis bullosa (DEB). Corneal fibrosis occurs in up to 41% and vision loss in up to 64% of patients. Standard treatments are supportive and there is no cure. The hypomorphic mouse model for DEB shows production of collagen VII at 10% of wild type levels in skin and spleen, but the eyes have not been described. Our purpose is to characterize the corneas to determine if this is an appropriate model for study of ocular therapeutics. METHODS: Western blot analysis (WB) and immunohistochemistry (IHC) were performed to assess presence and location of collagen VII protein within the hypomorphic mouse cornea. Additional IHC for inflammatory and fibrotic biomarkers transforming growth factor-beta-1 (TGF-ß1), alpha-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), proteinase 3, tenascin C and collagen III were performed. Clinical photographs documenting corneal opacification were assessed and scored independently by 2 examiners. Histology was then used to investigate morphologic changes. RESULTS: IHC and WB confirmed that hypomorphic mice produce less collagen VII production at the level of the basement membrane when compared with wild-types. IHC showed anomalous deposition of collagen III throughout the stroma. Of the 5 biomarkers tested, TGF-ß1 showed the strongest and most consistently staining. Photographs documented corneal opacities only in mice older than 10 weeks, opacities were not seen in younger animals. Histology showed multiple abnormalities, including epithelial hyperplasia, ulceration, fibrosis, edema, dysplasia, neovascularization and bullae formation. CONCLUSIONS: The collagen VII hypomorphic mouse shows reduced collagen VII production at the level of the corneal basement membrane. Corneal changes are similar to pathology seen in humans with this disease. The presence of anomalous stromal collagen III and TGF-ß1 appear to be the most consistent and strongest staining biomarkers in diseased mice. This mouse appears to mimic human corneal disease. It is an appropriate model for testing of therapeutics to treat EB ocular disease.


Assuntos
Colágeno Tipo VII/deficiência , Doenças da Córnea/patologia , Substância Própria/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Actinas/metabolismo , Animais , Western Blotting , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Doenças da Córnea/metabolismo , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/metabolismo , Imuno-Histoquímica , Camundongos , Fenótipo , Serina Endopeptidases/metabolismo , Tenascina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
12.
Matrix Biol ; 68-69: 547-560, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29391280

RESUMO

Genetic or acquired destabilization of the dermal extracellular matrix evokes injury- and inflammation-driven progressive soft tissue fibrosis. Dystrophic epidermolysis bullosa (DEB), a heritable human skin fragility disorder, is a paradigmatic disease to investigate these processes. Studies of DEB have generated abundant new information on cellular and molecular mechanisms at play in skin fibrosis which are not only limited to intractable diseases, but also applicable to some of the most common acquired conditions. Here, we discuss recent advances in understanding the biological and mechanical mechanisms driving the dermal fibrosis in DEB. Much of this progress is owed to the implementation of cell and tissue omics studies, which we pay special attention to. Based on the novel findings and increased understanding of the disease mechanisms in DEB, translational aspects and future therapeutic perspectives are emerging.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/patologia , Animais , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Matriz Extracelular/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Camundongos , Camundongos Transgênicos
13.
Matrix Biol ; 66: 1-21, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29158163

RESUMO

In this study we used a genetic extracellular matrix (ECM) disease to identify mechanisms associated with aggressive behavior of cutaneous squamous cell carcinoma (cSCC). cSCC is one of the most common malignancies and usually has a good prognosis. However, some cSCCs recur or metastasize and cause significant morbidity and mortality. Known factors that are associated with aggressiveness of cSCCs include tumor grading, size, localization and microinvasive behavior. To investigate molecular mechanisms that influence biologic behavior we used global proteomic and histologic analyses of formalin-fixed paraffin-embedded tissue of primary human cSCCs. We compared three groups: non-recurring, non-metastasizing low-risk sporadic cSCCs; metastasizing sporadic cSCCs; and cSCCs from patients with recessive dystrophic epidermolysis bullosa (RDEB). RDEB is a genetic skin blistering and ECM disease caused by collagen VII deficiency. Patients commonly suffer from high-risk early onset cSCCs that frequently metastasize. The results indicate that different processes are associated with formation of RDEB cSCCs compared to sporadic cSCCs. Sporadic cSCCs show signs of UV damage, whereas RDEB cSCCs have higher mutational rates and display tissue damage, inflammation and subsequent remodeling of the dermal ECM as tumor initiating factors. Interestingly the two high-risk groups - high-risk metastasizing sporadic cSCCs and RDEB cSCCs - are both associated with tissue damage and ECM remodeling in gene-ontology enrichment and Search Tool for the Retrieval of Interacting Genes/Proteins analyses. In situ histologic analyses validate these results. The high-risk cSCCs also show signatures of enhanced bacterial challenge. Histologic analyses confirm correlation of bacterial colonization with worse prognosis. Collectively, this unbiased study - performed directly on human patient material - reveals that common microenvironmental alterations linked to ECM remodeling and increased bacterial challenges are denominators of high-risk cSCCs. The proteins identified here could serve as potential diagnostic markers and therapeutic targets in high-risk cSCCs.


Assuntos
Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Epidermólise Bolhosa Distrófica/metabolismo , Matriz Extracelular/metabolismo , Proteômica/métodos , Neoplasias Cutâneas/microbiologia , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Bactérias/metabolismo , Carcinoma de Células Escamosas/metabolismo , Progressão da Doença , Epidermólise Bolhosa Distrófica/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica , Neoplasias Cutâneas/metabolismo , Microambiente Tumoral , Adulto Jovem
14.
Sci Rep ; 7(1): 16958, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209066

RESUMO

The defence collagens C1q and mannose-binding lectin (MBL) are immune recognition proteins that associate with the serine proteinases C1r/C1s and MBL-associated serine proteases (MASPs) to trigger activation of complement, a major innate immune system. Bone morphogenetic protein-1 (BMP-1)/tolloid-like proteinases (BTPs) are metalloproteinases with major roles in extracellular matrix assembly and growth factor signalling. Despite their different functions, C1r/C1s/MASPs and BTPs share structural similarities, including a specific CUB-EGF-CUB domain arrangement found only in these enzymes that mediates interactions with collagen-like proteins, suggesting a possible functional relationship. Here we investigated the potential interactions between the defence collagens C1q and MBL and the BTPs BMP-1 and mammalian tolloid-like-1 (mTLL-1). C1q and MBL bound to immobilized BMP-1 and mTLL-1 with nanomolar affinities. These interactions involved the collagen-like regions of the defence collagens and were inhibited by pre-incubation of C1q or MBL with their cognate complement proteinases. Soluble BMP-1 and mTLL-1 did not inhibit complement activation and the defence collagens were neither substrates nor inhibitors of BMP-1. Finally, C1q co-localized with BMP-1 in skin biopsies following melanoma excision and from patients with recessive dystrophic epidermolysis bullosa. The observed interactions provide support for a functional link between complement and BTPs during inflammation and tissue repair.


Assuntos
Proteína Morfogenética Óssea 1/metabolismo , Complemento C1q/metabolismo , Lectina de Ligação a Manose/metabolismo , Metaloproteases Semelhantes a Toloide/metabolismo , Sítios de Ligação , Proteína Morfogenética Óssea 1/genética , Ativação do Complemento , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Humanos , Melanoma/metabolismo , Melanoma/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
15.
Cell Tissue Res ; 369(1): 63-73, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28432467

RESUMO

Renal-skin syndroms are a group of genetic disorders with renal and cutaneous manifestations that target molecular components present in both organs. Inherited renal-skin syndromes are mainly associated with defects of cell-matrix adhesion. We provide a non-exhaustive overview of the main molecular players at cell-matrix adhesions in mouse models and in human genetic disorders affecting kidney and skin. Renal and urinary tract involvement is described in all four major epidermolysis bullosa types and, in particular, in junctional subtypes and in recessive dystrophic epidermolysis bullosa. Here, we describe in detail those subtypes for which reno-urinary involvement is a constant and primary feature. Furthermore, complex multiorgan disorders with a predisposition to malignancies or attributable to metabolic defects that involve both kidney and skin are briefly summarized.


Assuntos
Epidermólise Bolhosa Distrófica/metabolismo , Nefropatias/metabolismo , Rim/metabolismo , Pele/metabolismo , Animais , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/patologia , Humanos , Rim/patologia , Nefropatias/genética , Nefropatias/patologia , Pele/patologia , Síndrome
16.
JAMA ; 316(17): 1808-1817, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27802546

RESUMO

Importance: Recessive dystrophic epidermolysis bullosa (RDEB) is a devastating, often fatal, inherited blistering disorder caused by mutations in the COL7A1 gene encoding type VII collagen. Support and palliation are the only current therapies. Objective: To evaluate the safety and wound outcomes following genetically corrected autologous epidermal grafts in patients with RDEB. Design, Setting, and Participants: Single-center phase 1 clinical trial conducted in the United States of 4 patients with severe RDEB with a measured area of wounds suitable for grafting of at least 100 cm2. Patients with undetectable type VII collagen keratinocyte expression were excluded. Interventions: Autologous keratinocytes isolated from biopsy samples collected from 4 patients with RDEB were transduced with good manufacturing practice-grade retrovirus carrying full-length human COL7A1 and assembled into epidermal sheet grafts. Type VII collagen gene-corrected grafts (approximately 35 cm2) were transplanted onto 6 wounds in each of the patients (n = 24 grafts). Main Outcomes and Measures: The primary safety outcomes were recombination competent retrovirus, cancer, and autoimmune reaction. Molecular correction was assessed as type VII collagen expression measured by immunofluorescence and immunoelectron microscopy. Wound healing was assessed using serial photographs taken at 3, 6, and 12 months after grafting. Results: The 4 patients (mean age, 23 years [range, 18-32 years]) were all male with an estimated body surface area affected with RDEB of 4% to 30%. All 24 grafts were well tolerated without serious adverse events. Type VII collagen expression at the dermal-epidermal junction was demonstrated on the graft sites by immunofluorescence microscopy in 9 of 10 biopsy samples (90%) at 3 months, in 8 of 12 samples (66%) at 6 months, and in 5 of 12 samples (42%) at 12 months, including correct type VII collagen localization to anchoring fibrils. Wounds with recombinant type VII collagen graft sites displayed 75% or greater healing at 3 months (21 intact graft sites of 24 wound sites; 87%), 6 months (16/24; 67%), and 12 months (12/24; 50%) compared with baseline wound sites. Conclusions and Relevance: In this preliminary study of 4 patients with RDEB, there was wound healing in some type VII collagen gene-corrected grafts, but the response was variable among patients and among grafted sites and generally declined over 1 year. Long-term follow-up is necessary for these patients, and controlled trials are needed with a broader range of patients to better understand the potential long-term efficacy of genetically corrected autologous epidermal grafts. Trial Registration: clinicaltrials.gov Identifier: NCT01263379.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/terapia , Técnicas de Transferência de Genes , Queratinócitos/transplante , Cicatrização , Adolescente , Adulto , Colágeno Tipo VII/metabolismo , Colágeno Tipo VII/uso terapêutico , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Humanos , Masculino , Vírus da Leucemia Murina de Moloney/genética , Pirimidinas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Retalhos Cirúrgicos , Fatores de Tempo , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/terapia , Adulto Jovem
17.
Stem Cell Res Ther ; 7(1): 124, 2016 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-27568180

RESUMO

BACKGROUND: Dystrophic epidermolysis bullosa (DEB), a rare genodermatosis, is characterized by the formation of intra-epidermal blistering and the development of chronic nonhealing skin wounds. Recently, attempts have been made to develop cell-based therapies for this currently intractable disorder. The molecular mechanisms that govern directional migration of the adult stem cells, allowing their efficient and controlled homing to the skin affected with DEB, are poorly understood. The key mechanism that regulates recruitment of leukocytes and progenitor stem cells to distal anatomical tissues affected with disease is chemotaxis, which depends on the signaling molecules, chemokines, and acts primarily as part of the host defense and repair mechanism. METHODS: Comprehensive proteomic screening of chemokines in the blister fluids of DEB-affected mice was conducted to define the inflammatory and immune activities, thus providing potential to examine local biological mechanisms and define the protein signature within lesional skin as a potential marker of disease activity. Also, the therapeutic relevance of identified chemotactic pathways was investigated in vivo, providing a basis for future clinical investigations. RESULTS: Assessment of blister fluid-derived chemokines showed a persistent presence of several chemotactic molecules, including CXCL1 + 2 and CXCL5. The majority of blister-originated chemotactic signals were associated with preferential recruitment of CD45(+)CXCR2(+) and CD11b(+)CXCR2(+) leukocytes. Systemic transplantation of an enriched CXCR2 population of mouse adipose-derived stem cells (mADSC) into DEB-affected mice demonstrated effective recruitment of cells to the blistering skin under the influence of blister-derived ligands and deposition of therapeutic type VII collagen. CONCLUSIONS: Collectively, these studies demonstrate that recruitment of mADSC into DEB skin is tightly controlled by disease-site chemotactic activities and suggest a potential mechanism for effective application of therapeutic stem cells for DEB.


Assuntos
Células-Tronco Adultas/fisiologia , Quimiotaxia/fisiologia , Epidermólise Bolhosa Distrófica/terapia , Células-Tronco Adultas/metabolismo , Animais , Vesícula/metabolismo , Vesícula/terapia , Movimento Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Quimiocinas/metabolismo , Colágeno Tipo VII/metabolismo , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pele/metabolismo , Cicatrização/fisiologia
18.
Sci Adv ; 2(6): e1600102, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27386572

RESUMO

Nonviral gene therapy holds great promise but has not delivered treatments for clinical application to date. Lack of safe and efficient gene delivery vectors is the major hurdle. Among nonviral gene delivery vectors, poly(ß-amino ester)s are one of the most versatile candidates because of their wide monomer availability, high polymer flexibility, and superior gene transfection performance both in vitro and in vivo. However, to date, all research has been focused on vectors with a linear structure. A well-accepted view is that dendritic or branched polymers have greater potential as gene delivery vectors because of their three-dimensional structure and multiple terminal groups. Nevertheless, to date, the synthesis of dendritic or branched polymers has been proven to be a well-known challenge. We report the design and synthesis of highly branched poly(ß-amino ester)s (HPAEs) via a one-pot "A2 + B3 + C2"-type Michael addition approach and evaluate their potential as gene delivery vectors. We find that the branched structure can significantly enhance the transfection efficiency of poly(ß-amino ester)s: Up to an 8521-fold enhancement in transfection efficiency was observed across 12 cell types ranging from cell lines, primary cells, to stem cells, over their corresponding linear poly(ß-amino ester)s (LPAEs) and the commercial transfection reagents polyethyleneimine, SuperFect, and Lipofectamine 2000. Moreover, we further demonstrate that HPAEs can correct genetic defects in vivo using a recessive dystrophic epidermolysis bullosa graft mouse model. Our findings prove that the A2 + B3 + C2 approach is highly generalizable and flexible for the design and synthesis of HPAEs, which cannot be achieved by the conventional polymerization approach; HPAEs are more efficient vectors in gene transfection than the corresponding LPAEs. This provides valuable insight into the development and applications of nonviral gene delivery and demonstrates great prospect for their translation to a clinical environment.


Assuntos
Técnicas de Transferência de Genes , Polímeros/química , Transfecção/métodos , Animais , Linhagem Celular , Modelos Animais de Doenças , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Células HeLa , Humanos , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Transplante de Pele , Transfecção/instrumentação
19.
PLoS One ; 10(9): e0137639, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26380979

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention.


Assuntos
Membrana Basal/enzimologia , Membrana Basal/patologia , Epidermólise Bolhosa Distrófica/enzimologia , Epidermólise Bolhosa Distrófica/patologia , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/análise , Membrana Basal/metabolismo , Transplante de Medula Óssea , Células Cultivadas , Colágeno Tipo VII/análise , Colágeno Tipo VII/metabolismo , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/terapia , Humanos , Queratinócitos/enzimologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Mapas de Interação de Proteínas , Pele/enzimologia , Pele/metabolismo , Pele/patologia
20.
EMBO Mol Med ; 7(4): 380-93, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25724200

RESUMO

There is a widespread agreement from patient and professional organisations alike that the safety of stem cell therapeutics is of paramount importance, particularly for ex vivo autologous gene therapy. Yet current technology makes it difficult to thoroughly evaluate the behaviour of genetically corrected stem cells before they are transplanted. To address this, we have developed a strategy that permits transplantation of a clonal population of genetically corrected autologous stem cells that meet stringent selection criteria and the principle of precaution. As a proof of concept, we have stably transduced epidermal stem cells (holoclones) obtained from a patient suffering from recessive dystrophic epidermolysis bullosa. Holoclones were infected with self-inactivating retroviruses bearing a COL7A1 cDNA and cloned before the progeny of individual stem cells were characterised using a number of criteria. Clonal analysis revealed a great deal of heterogeneity among transduced stem cells in their capacity to produce functional type VII collagen (COLVII). Selected transduced stem cells transplanted onto immunodeficient mice regenerated a non-blistering epidermis for months and produced a functional COLVII. Safety was assessed by determining the sites of proviral integration, rearrangements and hit genes and by whole-genome sequencing. The progeny of the selected stem cells also had a diploid karyotype, was not tumorigenic and did not disseminate after long-term transplantation onto immunodeficient mice. In conclusion, a clonal strategy is a powerful and efficient means of by-passing the heterogeneity of a transduced stem cell population. It guarantees a safe and homogenous medicinal product, fulfilling the principle of precaution and the requirements of regulatory affairs. Furthermore, a clonal strategy makes it possible to envision exciting gene-editing technologies like zinc finger nucleases, TALENs and homologous recombination for next-generation gene therapy.


Assuntos
Colágeno Tipo VII , Epidermólise Bolhosa Distrófica/terapia , Terapia Genética/métodos , Células-Tronco/metabolismo , Transdução Genética , Adulto , Animais , Células Cultivadas , Colágeno Tipo VII/biossíntese , Colágeno Tipo VII/genética , Epiderme , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Distrófica/metabolismo , Epidermólise Bolhosa Distrófica/patologia , Feminino , Xenoenxertos , Humanos , Recém-Nascido , Masculino , Camundongos , Camundongos SCID , Retroviridae/genética , Transplante de Células-Tronco , Células-Tronco/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA