Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Invest Dermatol ; 142(12): 3282-3293, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35691363

RESUMO

Epidermolysis bullosa simplex (EBS) is a severe and potentially life-threatening disorder for which no adequate therapy exists. Most cases are caused by dominant sequence variations in keratin genes K5 or K14, leading to the formation of cytoplasmic keratin aggregates, profound keratinocyte fragility, and cytolysis. We hypothesized that pharmacological reduction of keratin aggregates, which compromise keratinocyte integrity, represents a viable strategy for the treatment of EBS. In this study, we show that the multikinase inhibitor PKC412, which is currently in clinical use for acute myeloid leukemia and advanced systemic mastocytosis, reduced keratin aggregation by 40% in patient-derived K14.R125C EBS-associated keratinocytes. Using a combination of epithelial shear stress assay and real-time impedance spectroscopy, we show that PKC412 restored intercellular adhesion. Molecularly, global phosphoproteomic analysis together with immunoblots using phosphoepitope-specific antibodies revealed that PKC412 treatment altered phosphorylated sites on keratins and desmoplakin. Thus, our data provide a proof of concept to repurpose existing drugs for the targeted treatment of EBS and showcase how one broad-range kinase inhibitor reduced keratin filament aggregation in patient-derived EBS keratinocytes and the fragility of EBS cell monolayers. Our study paves the way for a clinical trial using PKC412 for systemic or local application in patients with EBS.


Assuntos
Epidermólise Bolhosa Simples , Humanos , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Queratinas/metabolismo , Estaurosporina/metabolismo , Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/genética , Queratina-14/genética , Queratina-14/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Mutação
2.
J Invest Dermatol ; 142(2): 382-389, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34536484

RESUMO

Expression-based systematic drug repositioning has been explored to predict novel treatments for a number of skin disorders. In this study, we utilize this approach to identify, to our knowledge, previously unreported therapies for epidermolysis bullosa simplex (EBS). RNA sequencing analysis was performed on skin biopsies of acute blisters (<1 week old) (n = 9) and nonblistered epidermis (n = 11) obtained from 11 patients with EBS. Transcriptomic analysis of blistered epidermis in patients with EBS revealed a set of 1,276 genes dysregulated in EBS blisters. The IL-6, IL-8, and IL-10 pathways were upregulated in the epidermis from EBS. Consistent with this, predicted upstream regulators included TNF-α, IL-1ß, IL-2, IL-6, phosphatidylinositol 3-kinase, and mTOR. The 1,276 gene EBS blister signature was integrated with molecular signatures from cell lines treated with 2,423 drugs using the Connectivity Map CLUE platform. The mTOR inhibitors and phosphatidylinositol 3-kinase inhibitors most opposed the EBS signature. To determine whether mTOR inhibitors could be used clinically in EBS, we conducted an independent pilot study of two patients with EBS treated with topical sirolimus for painful plantar keratoderma due to chronic blistering. Both individuals experienced marked clinical improvement and a notable reduction of keratoderma. In summary, a computational drug repositioning analysis successfully identified, to our knowledge, previously unreported targets in the treatment of EBS.


Assuntos
Reposicionamento de Medicamentos , Epidermólise Bolhosa Simples/tratamento farmacológico , Inibidores de MTOR/uso terapêutico , Sirolimo/uso terapêutico , Administração Cutânea , Adolescente , Adulto , Biópsia , Criança , Pré-Escolar , Biologia Computacional , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Epiderme/patologia , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Inibidores de MTOR/farmacologia , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Projetos Piloto , RNA-Seq , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Resultado do Tratamento , Adulto Jovem
3.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830328

RESUMO

Epidermolysis bullosa simplex (EBS) is a group of inherited keratinopathies that, in most cases, arise due to mutations in keratins and lead to intraepidermal ruptures. The cellular pathology of most EBS subtypes is associated with the fragility of the intermediate filament network, cytolysis of the basal layer of the epidermis, or attenuation of hemidesmosomal/desmosomal components. Mutations in keratins 5/14 or in other genes that encode associated proteins induce structural disarrangements of different strengths depending on their locations in the genes. Keratin aggregates display impaired dynamics of assembly and diminished solubility and appear to be the trigger for endoplasmic reticulum (ER) stress upon being phosphorylated by MAPKs. Global changes in cellular signaling mainly occur in cases of severe dominant EBS mutations. The spectrum of changes initiated by phosphorylation includes the inhibition of proteasome degradation, TNF-α signaling activation, deregulated proliferation, abnormal cell migration, and impaired adherence of keratinocytes. ER stress also leads to the release of proinflammatory danger-associated molecular pattern (DAMP) molecules, which enhance avalanche-like inflammation. Many instances of positive feedback in the course of cellular stress and the development of sterile inflammation led to systemic chronic inflammation in EBS. This highlights the role of keratin in the maintenance of epidermal and immune homeostasis.


Assuntos
Alarminas/genética , Epiderme/metabolismo , Epidermólise Bolhosa Simples/genética , Queratina-14/genética , Queratina-5/genética , Queratinócitos/metabolismo , Alarminas/metabolismo , Estresse do Retículo Endoplasmático/genética , Epiderme/patologia , Epidermólise Bolhosa Simples/metabolismo , Epidermólise Bolhosa Simples/patologia , Regulação da Expressão Gênica , Humanos , Inflamação , Filamentos Intermediários/metabolismo , Filamentos Intermediários/patologia , Filamentos Intermediários/ultraestrutura , Queratina-14/metabolismo , Queratina-5/metabolismo , Queratinócitos/patologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Proteólise , Transdução de Sinais , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
J Invest Dermatol ; 141(3): 523-532.e2, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32890627

RESUMO

Slac2-b, also known as exophilin-5, is a Rab27b effector protein with a role in exosome transport and is encoded by the EXPH5 gene. We previously described biallelic loss-of-function mutations in EXPH5 in an autosomal recessive form of epidermolysis bullosa simplex. However, how the loss of Slac2-b expression leads to skin fragility and erosions is unknown. In this study, we demonstrate that keratinocytes (KCs) isolated from two different individuals with mutations in EXPH5 have significant defects in cell‒matrix adhesion. EXPH5-mutant KCs also showed increased perinuclear accumulation and significantly reduced trafficking of CD63+ vesicles. These phenotypes were also seen in Slac2-b‒deficient KCs. This was coincident with a reduction in Rab27a protein expression in Slac2-b‒mutant KCs as well as reduced secretion of extracellular vesicles containing extracellular matrix proteins. Live imaging analysis revealed a strong correlation between CD63+ vesicle trafficking to the plasma membrane and focal adhesion dynamics. These findings support a role for Slac2-b in regulating local focal adhesion dynamics to support effective KC adhesion and provide insight into the underlying pathophysiology of inherited skin blistering.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Epiderme/patologia , Epidermólise Bolhosa Simples/patologia , Vesículas Extracelulares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Biópsia , Adesão Celular/genética , Movimento Celular/genética , Criança , Epidermólise Bolhosa Simples/genética , Humanos , Microscopia Intravital , Queratinócitos/patologia , Masculino , Mutação , Tetraspanina 30/metabolismo , Imagem com Lapso de Tempo , Proteínas rab27 de Ligação ao GTP/metabolismo
5.
Exp Dermatol ; 29(10): 961-969, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32885477

RESUMO

Epidermolysis bullosa simplex (EBS) is a rare skin disease usually inherited in an autosomal dominant pattern. EBS is resulting from mutations in keratin 5 (KRT5) and keratin 14 (KRT14) genes encoding the keratins 5 and 14 proteins expressed in the keratinocytes of the basal layer of the epidermis. To date, seven pathogenic mutations have been reported to be responsible for EBS in the Canadian population from the province of Quebec: p.Pro25Leu, p.Leu150Pro, p.Met327Thr and p.Arg559X in KRT5; p.Arg125Ser, p.Ile377Thr and p.Ile412Phe in KRT14. Here, we present a novel French-Canadian patient diagnosed with EBS confined to the soles but presenting a severe complication form including blisters, hyperkeratosis, skin erosions and toenail abnormalities. Mutation screening was performed by direct sequencing of the entire coding regions of KRT5 and KRT14 genes and revealed the previously reported missense heterozygous mutation c. 1130T > C in KRT14 (p.Ile377Thr). Furthermore, this patient is carrying a second mutation in KRT5, c.413G > A (p.Gly138Glu), which has been linked to an increased risk of basal cell carcinoma in the literature. We suspect an impact of the p.Gly138Glu variant on the EBS phenotype severity of the studied patient. The pathogenicity and consequences of both genetic variations were simulated by in silico tools.


Assuntos
Epidermólise Bolhosa Simples/genética , Queratina-14/genética , Queratina-15/genética , Simulação por Computador , Epidermólise Bolhosa Simples/patologia , Feminino , Dermatoses do Pé/genética , Úlcera do Pé/genética , Úlcera do Pé/patologia , Dermatoses da Mão/genética , Heterozigoto , Humanos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Doenças da Unha/genética , Fenótipo
6.
Anim Genet ; 51(5): 829-832, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32657488

RESUMO

Epidermolysis bullosa simplex (EBS) is a hereditary blistering disease affecting the skin and mucous membranes. It has been reported in humans, cattle, buffaloes and dogs, but so far not in cats. In humans, EBS is most frequently caused by variants in the KRT5 or KRT14 genes. Here, we report a case of feline epidermolysis bullosa simplex and describe the causative genetic variant. An 11-month-old male domestic shorthair cat presented with a history of sloughed paw pads and ulcerations in the oral cavity and inner aspect of the pinnae, starting a few weeks after birth. Clinical and histopathological findings suggested a congenital blistering disease with a split formation within the basal cell layer of the epidermis and oral mucous epithelium. The genetic investigation revealed a homozygous nonsense variant in the KRT14 gene (c.979C>T, p.Gln327*). Immunohistochemistry showed a complete absence of keratin 14 staining in all epithelia present in the biopsy. To the best of our knowledge, this is the first report of feline EBS, and the first report of a spontaneous pathogenic KRT14 variant in a non-human species. The homozygous genotype in the affected cat suggests an autosomal recessive mode of inheritance.


Assuntos
Doenças do Gato/genética , Epidermólise Bolhosa Simples/veterinária , Queratina-14/genética , Animais , Doenças do Gato/patologia , Gatos , Códon sem Sentido , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/patologia , Queratina-14/metabolismo , Masculino
7.
Stem Cell Res ; 37: 101424, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30933721

RESUMO

We have generated MLi002-A, a new induced pluripotent stem cell (iPSC) line derived from keratinocytes of a skin punch biopsy of a female patient with the severe epidermolysis bullosa simplex Dowling-Meara phenotype and the keratin K5 E475G mutation. Keratinocytes were reprogrammed using non-integrating Sendai virus vectors, and xeno-free culture conditions were used throughout. The characterization of MLi002-A cell line consisted of molecular karyotyping, mutation screening using restriction enzyme digestion and Sanger sequencing, and testing of the pluripotency and differentiation potentials by immunofluorescence of associated markers both in vitro and in vivo. This is the first iPSC model of EB Simplex.


Assuntos
Diferenciação Celular , Reprogramação Celular , Epidermólise Bolhosa Simples/genética , Células-Tronco Pluripotentes Induzidas/patologia , Queratina-5/genética , Queratinócitos/patologia , Mutação , Células Cultivadas , Epidermólise Bolhosa Simples/patologia , Feminino , Heterozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Queratinócitos/metabolismo , Fenótipo
8.
Hum Mutat ; 39(10): 1349-1354, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30016581

RESUMO

Epidermolysis bullosa (EB) is a heterogeneous group of heritable blistering diseases. We developed a next generation sequencing (NGS) panel covering 21 genes associated with skin fragility disorders, and it was applied to DNA from 91 probands with the diagnosis of EB. In one patient, novel homozygous mutations were disclosed in two different, unlinked EB-associated genes: EXPH5, chr11 g.108510085G > A; p.Arg1808Ter and COL17A1, chr10 g.104077423delT; p.Thr68LeufsTer106. Consequences of the COL17A1 mutation were examined by RNAseq which revealed a complex splicing pattern predicting synthesis of a truncated polypeptide (85%) or in-frame deletion of exon 4 (15% of transcripts). Transmission electron microscopy (TEM) and immunostaining revealed findings consistent with EB simplex (EBS) and junctional EB (JEB), and clinical examination revealed a complex phenotype with features of both subtypes. This case illustrates the power of next generation sequencing in identifying mutations in patients with complex EB phenotype, with implications for genotype-phenotype correlations, prenatal testing, and genetic counseling of families at risk for recurrence.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autoantígenos/genética , Epidermólise Bolhosa Simples/diagnóstico , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Juncional/diagnóstico , Epidermólise Bolhosa Juncional/genética , Homozigoto , Mutação , Colágenos não Fibrilares/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alelos , Autoantígenos/metabolismo , Análise Mutacional de DNA , Estudos de Associação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Colágenos não Fibrilares/metabolismo , Linhagem , Fenótipo , Pele/metabolismo , Pele/patologia , Colágeno Tipo XVII
9.
Iran J Immunol ; 14(4): 340-349, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29276186

RESUMO

BACKGROUND: Recent studies have shown that cytokines have an important role in the pathogenesis of inflammatory diseases and can be used as prognostic markers. OBJECTIVE: To evaluate the IL-6/IL-10 ratio in patients with Inherited Epidermolysis Bullosa (EB) as a prognostic marker. METHODS: Serum levels of IL-6 and IL-10 were measured in 13 patients with recessive dystrophic EB (RDEB) as well as 10 with EB Simplex (EBS), and in 18 healthy subjects. Receiver Operating Characteristics (ROC) analyses were used to assess the diagnostic accuracy of the IL-6/IL-10 ratio for detecting severe form of EB. RESULTS: The IL-6/IL-10 ratio was statistically higher in RDEB patients than in EBS patients and healthy subjects. The IL-6/IL-10 ratio significantly correlated with BEBS score. CONCLUSION: Our findings suggest that IL-6/IL-10 ratio >5.6 has a good diagnostic accuracy to identify patients with the highest severity of disease.


Assuntos
Biomarcadores/sangue , Epidermólise Bolhosa Distrófica/diagnóstico , Epidermólise Bolhosa Simples/diagnóstico , Interleucina-10/sangue , Interleucina-6/sangue , Adolescente , Adulto , Criança , Pré-Escolar , Diagnóstico Diferencial , Progressão da Doença , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Simples/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Adulto Jovem
10.
Int J Dermatol ; 56(12): 1406-1413, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29130490

RESUMO

BACKGROUND: Genodermatoses represent genetic anomalies of skin tissues including hair follicles, sebaceous glands, eccrine glands, nails, and teeth. Ten consanguineous families segregating various genodermatosis phenotypes were investigated in the present study. METHODS: Homozygosity mapping, exome, and Sanger sequencing were employed to search for the disease-causing variants in the 10 families. RESULTS: Exome sequencing identified seven homozygous sequence variants in different families, including: c.27delT in FERMT1; c.836delA in ABHD5; c.2453C>T in ERCC5; c.5314C>T in COL7A1; c.1630C>T in ALOXE3; c.502C>T in PPOX; and c.10G>T in ALDH3A2. Sanger sequencing revealed three homozygous variants: c.1718 + 2A>G in FERMT1; c.10459A>T in FLG; and c.92delT in the KRT14 genes as the underlying genetic cause of skin phenotypes. CONCLUSION: This study supports the use of exome sequencing as a powerful, efficient tool for identifying genes that underlie rare monogenic skin disorders.


Assuntos
Doenças Raras/genética , Dermatopatias Genéticas/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Aldeído Oxirredutases/genética , Vesícula/genética , Colágeno Tipo VII/genética , Consanguinidade , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Epidermólise Bolhosa/genética , Epidermólise Bolhosa Distrófica/genética , Epidermólise Bolhosa Simples/genética , Exoma , Feminino , Proteínas Filagrinas , Flavoproteínas/genética , Homozigoto , Humanos , Mutação INDEL , Eritrodermia Ictiosiforme Congênita/genética , Ictiose Vulgar/genética , Ictiose Lamelar/genética , Proteínas de Filamentos Intermediários/genética , Queratina-14/genética , Erros Inatos do Metabolismo Lipídico/genética , Lipoxigenase/genética , Masculino , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Doenças Musculares/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Linhagem , Doenças Periodontais/genética , Fenótipo , Transtornos de Fotossensibilidade/genética , Porfiria Variegada/genética , Protoporfirinogênio Oxidase/genética , Síndrome de Sjogren-Larsson/genética , Fatores de Transcrição/genética , Xeroderma Pigmentoso/genética
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 34(4): 504-508, 2017 Aug 10.
Artigo em Chinês | MEDLINE | ID: mdl-28777847

RESUMO

OBJECTIVE: To determine the molecular etiology for a Chinese pedigree affected with epidermolysis bullosa simplex (EBS). METHODS: Target region sequencing using a hereditary epidermolysis bullosa capture array combined with Sanger sequencing and bioinformatics analysis were used. Mutation taster, PolyPhen-2, Provean, and SIFT software and NCBI online were employed to assess the pathogenicity and conservation of detected mutations. One hundred healthy unrelated individuals were used as controls. RESULTS: Target region sequencing showed that the proband has carried a unreported heterozygous c.1234A>G (p.Ile412Val) mutation of the KRT14 gene, which was confirmed by Sanger sequencing in other 8 affected individuals but not among healthy members of the pedigree. Bioinformatics analysis indicated that the mutation is highly pathogenic. Remarkably, 3 members of the family (2 affected and 1 unaffected) have carried a heterozygous c.1237G>A (p.Ala413Thr) mutation of the KRT14 gene, which was collected in Human Gene Mutation Database (HGMD). Bioinformatics analysis indicated that the mutation may not be pathogenic. Both mutations were not detected among the 100 healthy controls. CONCLUSION: The novel c.1234A>G(p.Ile412Val) mutation of the KRT14 gene is probably responsible for the disease, while c.1237G>A (p.Ala413Thr) mutation of KRT14 gene may be a polymorphism. Compared with Sanger sequencing, target region capture sequencing is more efficient and can significantly reduce the cost of genetic testing for EBS.


Assuntos
Epidermólise Bolhosa Simples/genética , Queratina-14/genética , Mutação/genética , Adulto , Sequência de Aminoácidos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Linhagem , Adulto Jovem
12.
Arch Dermatol Res ; 309(7): 587-593, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28647894

RESUMO

The keratin filament cytoskeleton is vital to the normal function of epithelial cells. It provides structural support and regulates different aspects of cell metabolism. Mutations in keratins 5 and 14 cause a skin fragility disorder, epidermolysis bullosa simplex (EBS). Patients with severe EBS have an increased cumulative risk for basal cell carcinoma. In this study, we tested how keratin 5 and 14 mutant EBS patient-derived keratinocytes behave in the face of two different types of stressors that are able to induce cell death: ionizing radiation and cytokines TNF-α and TRAIL. The data point out to a substantial difference between how normal and keratin mutant keratinocytes deal with such stresses. When case of DNA damage, the ATM/Chk2-pathway is one of the two main tracks that can prevent the progression of mitosis and so allow repair. This was altered in all investigated keratin mutants with a particular down-regulation of the activated form of checkpoint kinase 2 (pChk2). Keratin mutants also appear less sensitive than normal cells to treatment with TNF-α or TRAIL, and this may be linked to the up-regulation of two pro-survival proteins, Bcl-2 and FLIP. Such changes are likely to have a profound effect on mutant keratinocytes ability to survive and withstand stress, and in theory this may be also a contributing factor to cell transformation.


Assuntos
Apoptose/genética , Dano ao DNA/genética , Epidermólise Bolhosa Simples/genética , Queratina-14/genética , Queratina-5/genética , Queratinócitos/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , Proteínas do Citoesqueleto , Citoesqueleto/metabolismo , Dano ao DNA/efeitos da radiação , Epidermólise Bolhosa Simples/patologia , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pele/patologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
16.
Acta Neuropathol Commun ; 4(1): 44, 2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27121971

RESUMO

Mutations of the human plectin gene (PLEC) on chromosome 8q24 cause autosomal recessive epidermolysis bullosa simplex with muscular dystrophy (EBS-MD). In the present study we analyzed the downstream effects of PLEC mutations on plectin protein expression and localization, the structure of the extrasarcomeric desmin cytoskeleton, protein aggregate formation and mitochondrial distribution in skeletal muscle tissue from three EBS-MD patients. PLEC gene analysis in a not previously reported 35-year-old EBS-MD patient with additional disease features of cardiomyopathy and malignant arrhythmias revealed novel compound heterozygous (p.(Phe755del) and p.(Lys1040Argfs*139)) mutations resulting in complete abolition of plectin protein expression. In contrast, the other two patients with different homozygous PLEC mutations showed preserved plectin protein expression with one only expressing rodless plectin variants, and the other markedly reduced protein levels. Analysis of skeletal muscle tissue from all three patients revealed severe disruption of the extrasarcomeric intermediate filament cytoskeleton, protein aggregates positive for desmin, syncoilin, and synemin, degenerative myofibrillar changes, and mitochondrial abnormalities comprising respiratory chain dysfunction and an altered organelle distribution and amount.Our study demonstrates that EBS-MD causing PLEC mutations universally result in a desmin protein aggregate myopathy phenotype despite marked differences in individual plectin protein expression patterns. Since plectin is the key cytolinker protein that regulates the structural and functional organization of desmin filaments, the defective anchorage and spacing of assembled desmin filaments is the key pathogenetic event that triggers the formation of desmin protein aggregates as well as secondary mitochondrial pathology.


Assuntos
Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Mutação , Plectina/genética , Plectina/metabolismo , Adulto , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Epidermólise Bolhosa Simples/patologia , Feminino , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/patologia , Adulto Jovem
18.
J Child Neurol ; 31(3): 392-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26116382

RESUMO

Nucleotide excision repair disorders display a wide range of clinical syndromes and presentations, all associated at the molecular level by dysfunction of genes participating in the nucleotide excision repair pathway. Genotype-phenotype relationships are remarkably complex and not well understood. This article outlines neurodegenerative symptoms seen in nucleotide excision repair disorders and explores the role that nucleotide excision repair dysfunction can play in the pathogenesis of chronic neurodegenerative diseases.


Assuntos
Reparo do DNA , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Raras/genética , Doenças Raras/metabolismo , Criança , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Humanos , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo
19.
J Invest Dermatol ; 135(10): 2437-2445, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25961909

RESUMO

Keratin filaments constitute the major component of the epidermal cytoskeleton from heterodimers of type I and type II keratin subunits. Missense mutations in keratin 5 or keratin 14, highly expressed in the basal epidermis, cause the severe skin blistering disease epidermolysis bullosa simplex (EBS) in humans by rendering the keratin cytoskeleton sensitive to mechanical stress; yet, the mechanisms by which individual mutations cause cell fragility are incompletely understood. Here, we compared the K14p.Arg125Pro with the K5p.Glu477Asp mutation, both giving rise to severe generalized EBS, by stable expression in keratin-free keratinocytes. This revealed distinctly different effects on keratin cytoskeletal organization, in agreement with in vivo observations, thus validating the cell system. Although the K14p.Arg125Pro mutation led to impaired desmosomes, downregulation of desmosomal proteins, and weakened epithelial sheet integrity upon shear stress, the K5p.Glu477Asp mutation did not impair these functions, although causing EBS with squamous cell carcinoma in vivo. Atomic force microscopy demonstrated that K14 mutant cells were even less resistant against deformation compared with keratin-free keratinocytes. Thus, a keratin mutation causing EBS compromises cell stiffness to a greater extent than the lack of keratins. Finally, re-expression of K14 in K14 mutant cells did not rescue the above defects. Collectively, our findings have implications for EBS therapy approaches.


Assuntos
Epidermólise Bolhosa Simples/genética , Queratina-14/genética , Queratina-5/genética , Mutação de Sentido Incorreto , Pele/patologia , Adesão Celular/genética , Células Cultivadas , Citoesqueleto/metabolismo , Progressão da Doença , Epidermólise Bolhosa Simples/patologia , Humanos , Filamentos Intermediários/genética , Queratinócitos/citologia , Queratinócitos/metabolismo , Estudos de Amostragem , Índice de Gravidade de Doença , Estatísticas não Paramétricas
20.
Hum Mol Genet ; 24(16): 4530-44, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26019234

RESUMO

Plectin, a versatile 500-kDa cytolinker protein, is essential for muscle fiber integrity and function. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy. Besides displaying pathological desmin-positive protein aggregates and degenerative changes in the myofibrillar apparatus, skeletal muscle specimens of EBS-MD patients and plectin-deficient mice are characterized by massive mitochondrial alterations. In this study, we demonstrate that structural and functional alterations of mitochondria are a primary aftermath of plectin deficiency in muscle, contributing to myofiber degeneration. We found that in skeletal muscle of conditional plectin knockout mice (MCK-Cre/cKO), mitochondrial content was reduced, and mitochondria were aggregated in sarcoplasmic and subsarcolemmal regions and were no longer associated with Z-disks. Additionally, decreased mitochondrial citrate synthase activity, respiratory function and altered adenosine diphosphate kinetics were characteristic of plectin-deficient muscles. To analyze a mechanistic link between plectin deficiency and mitochondrial alterations, we comparatively assessed mitochondrial morphology and function in whole muscle and teased muscle fibers of wild-type, MCK-Cre/cKO and plectin isoform-specific knockout mice that were lacking just one isoform (either P1b or P1d) while expressing all others. Monitoring morphological alterations of mitochondria, an isoform P1b-specific phenotype affecting the mitochondrial fusion-fission machinery and manifesting with upregulated mitochondrial fusion-associated protein mitofusin-2 could be identified. Our results show that the depletion of distinct plectin isoforms affects mitochondrial network organization and function in different ways.


Assuntos
Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Plectina/deficiência , Animais , Linhagem Celular , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Epidermólise Bolhosa Simples/patologia , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Humanos , Camundongos , Camundongos Knockout , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/patologia , Músculo Esquelético/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/patologia , Isoformas de Proteínas/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA