Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 330, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664602

RESUMO

Whole-genome doubling leads to cell reprogramming, upregulation of stress genes, and establishment of new pathways of drought stress responses in plants. This study investigated the molecular mechanisms of drought tolerance and cuticular wax characteristics in diploid and tetraploid-induced Erysimum cheiri. According to real-time PCR analysis, tetraploid induced wallflowers exhibited increased expression of several genes encoding transcription factors (TFs), including AREB1 and AREB3; the stress response genes RD29A and ERD1 under drought stress conditions. Furthermore, two cuticular wax biosynthetic pathway genes, CER1 and SHN1, were upregulated in tetraploid plants under drought conditions. Leaf morphological studies revealed that tetraploid leaves were covered with unique cuticular wax crystalloids, which produced a white fluffy appearance, while the diploid leaves were green and smooth. The greater content of epicuticular wax in tetraploid leaves than in diploid leaves can explain the decrease in cuticle permeability as well as the decrease in water loss and improvement in drought tolerance in wallflowers. GC‒MS analysis revealed that the wax components included alkanes, alcohols, aldehydes, and fatty acids. The most abundant wax compound in this plant was alkanes (50%), the most predominant of which was C29. The relative abundance of these compounds increased significantly in tetraploid plants under drought stress conditions. These findings revealed that tetraploid-induced wallflowers presented upregulation of multiple drought-related and wax biosynthesis genes; therefore, polyploidization has proved useful for improving plant drought tolerance.


Assuntos
Diploide , Resistência à Seca , Regulação da Expressão Gênica de Plantas , Tetraploidia , Ceras , Perfilação da Expressão Gênica , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Epiderme Vegetal/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Ceras/metabolismo
2.
Nat Commun ; 8(1): 49, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663550

RESUMO

Chloroplasts communicate information by signalling to nuclei during acclimation to fluctuating light. Several potential operating signals originating from chloroplasts have been proposed, but none have been shown to move to nuclei to modulate gene expression. One proposed signal is hydrogen peroxide (H2O2) produced by chloroplasts in a light-dependent manner. Using HyPer2, a genetically encoded fluorescent H2O2 sensor, we show that in photosynthetic Nicotiana benthamiana epidermal cells, exposure to high light increases H2O2 production in chloroplast stroma, cytosol and nuclei. Critically, over-expression of stromal ascorbate peroxidase (H2O2 scavenger) or treatment with DCMU (photosynthesis inhibitor) attenuates nuclear H2O2 accumulation and high light-responsive gene expression. Cytosolic ascorbate peroxidase over-expression has little effect on nuclear H2O2 accumulation and high light-responsive gene expression. This is because the H2O2 derives from a sub-population of chloroplasts closely associated with nuclei. Therefore, direct H2O2 transfer from chloroplasts to nuclei, avoiding the cytosol, enables photosynthetic control over gene expression.Multiple plastid-derived signals have been proposed but not shown to move to the nucleus to promote plant acclimation to fluctuating light. Here the authors use a fluorescent hydrogen peroxide sensor to provide evidence that H2O2 is transferred directly from chloroplasts to nuclei to control nuclear gene expression.


Assuntos
Núcleo Celular/fisiologia , Cloroplastos/fisiologia , Peróxido de Hidrogênio/metabolismo , Transdução de Sinal Luminoso/fisiologia , Nicotiana/citologia , Regulação da Expressão Gênica de Plantas/fisiologia , Fotossíntese , Epiderme Vegetal/citologia , Epiderme Vegetal/fisiologia
3.
New Phytol ; 210(4): 1219-28, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26991124

RESUMO

A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes.


Assuntos
Carbono/metabolismo , Magnoliopsida/fisiologia , Água/metabolismo , Evolução Biológica , Difusão , Magnoliopsida/anatomia & histologia , Fenótipo , Epiderme Vegetal/anatomia & histologia , Epiderme Vegetal/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal
4.
Plant Cell Environ ; 39(1): 222-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26177782

RESUMO

The accumulation of ultraviolet (UV)-absorbing compounds (flavonoids and related phenylpropanoids) and the resultant decrease in epidermal UV transmittance (TUV ) are primary protective mechanisms employed by plants against potentially damaging solar UV radiation and are critical components of the overall acclimation response of plants to changing solar UV environments. Whether plants can adjust this UV sunscreen protection in response to rapid changes in UV, as occurs on a diurnal basis, is largely unexplored. Here, we use a combination of approaches to demonstrate that plants can modulate their UV-screening properties within minutes to hours, and these changes are driven, in part, by UV radiation. For the cultivated species Abelmoschus esculentus, large (30-50%) and reversible changes in TUV occurred on a diurnal basis, and these adjustments were associated with changes in the concentrations of whole-leaf UV-absorbing compounds and several quercetin glycosides. Similar results were found for two other species (Vicia faba and Solanum lycopersicum), but no such changes were detected in Zea mays. These findings reveal a much more dynamic UV-protection mechanism than previously recognized, raise important questions concerning the costs and benefits of UV-protection strategies in plants and have practical implications for employing UV to enhance crop vigor and quality in controlled environments.


Assuntos
Abelmoschus/efeitos da radiação , Flavonoides/efeitos da radiação , Hibiscus/efeitos da radiação , Solanum lycopersicum/efeitos da radiação , Vicia faba/efeitos da radiação , Zea mays/efeitos da radiação , Abelmoschus/fisiologia , Aclimatação , Ritmo Circadiano , Flavonoides/fisiologia , Hibiscus/fisiologia , Solanum lycopersicum/fisiologia , Epiderme Vegetal/fisiologia , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Luz Solar , Raios Ultravioleta , Vicia faba/fisiologia , Zea mays/fisiologia
5.
Braz. j. biol ; 75(2): 368-371, 05/2015. graf
Artigo em Inglês | LILACS | ID: lil-749688

RESUMO

Studies on the anatomy of Piper leaves demonstrate the presence of a subepidermal tissue distinct from the adjacent epidermis, which cells show thin walls and hyaline contents. Some authors consider such cells a hypodermal tissue, while others refer to them as components of a multiple epidermis. In this study, the nature of this subepidermal tissue was investigated through the analysis of leaf ontogeny in three Piper species. The analysis showed that the referred tissue originates from the ground meristem and, thus, should be considered a hypodermis. The studied species suggests that the role of the hypodermis would be to protect the photosynthetic apparatus from excess light, regulating the intensity of light reaching the chlorophyll parenchyma.


Os estudos de anatomia foliar de espécies de Piper revelam a presença de um tecido subepidérmico distinto da epiderme e cujas células apresentam paredes finas e conteúdo hialino. Estas células são referenciadas por alguns autores como um tecido hipodérmico e por outros, como sendo constituintes de uma epiderme múltipla. Nesse estudo verificou-se a natureza deste tecido subepidérmico a partir da análise da ontogênese foliar de três espécies de Piper. A análise revelou que o referido tecido tem origem do meristema fundamental e, portanto, deve ser denominado de hipoderme. Para as espécies avaliadas, sugere-se que a hipoderme teria função de, proteger o aparato fotossintético do excesso de luminosidade, regulando a intensidade luminosa que atinge o parênquima clorofiliano.


Assuntos
Meristema/citologia , Piper/citologia , Epiderme Vegetal/citologia , Folhas de Planta/citologia , Clorofila/fisiologia , Fluorescência , Meristema/fisiologia , Fotossíntese/fisiologia , Piper/fisiologia , Epiderme Vegetal/fisiologia , Folhas de Planta/fisiologia
6.
Plant Cell Physiol ; 56(1): 48-60, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25305760

RESUMO

The aerial parts of all land plants are covered with hydrophobic cuticular wax layers that act as the first barrier against the environment. The MYB94 transcription factor gene is expressed in abundance in aerial organs and shows a higher expression in the stem epidermis than within the stem. When seedlings were subjected to various treatments, the expression of the MYB94 transcription factor gene was observed to increase approximately 9-fold under drought, 8-fold for ABA treatment and 4-fold for separate NaCl and mannitol treatments. MYB94 harbors the transcriptional activation domain at its C-terminus, and fluorescent signals from MYB94:enhanced yellow fluorescent protein (eYFP) were observed in the nucleus of tobacco epidermis and in transgenic Arabidopsis roots. The total wax loads increased by approximately 2-fold in the leaves of the MYB94-overexpressing (MYB94 OX) lines, as compared with those of the wild type (WT). MYB94 activates the expression of WSD1, KCS2/DAISY, CER2, FAR3 and ECR genes by binding directly to their gene promoters. An increase in the accumulation of cuticular wax was observed to reduce the rate of cuticular transpiration in the leaves of MYB94 OX lines, under drought stress conditions. Taken together, a R2R3-type MYB94 transcription factor activates Arabidopsis cuticular wax biosynthesis and might be important in plant response to environmental stress, including drought.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Transativadores/genética , Ceras/metabolismo , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Secas , Dados de Sequência Molecular , Motivos de Nucleotídeos , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Plantas Geneticamente Modificadas , Ligação Proteica , Plântula/citologia , Plântula/genética , Plântula/fisiologia , Estresse Fisiológico , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima , Ceras/química
7.
Biochemistry (Mosc) ; 79(11): 1226-36, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25540008

RESUMO

The JcERF1 gene, which is related to the ERF family (ethylene responsive factor coding genes), was isolated and characterized from the oil tree Jatropha curcas. The JcERF1 protein contains conserved an AP2/EREBP DNA-binding domain of 58 amino acid residues. The JcERF1 gene could be induced by abscisic acid, high salinity, hormones, and osmotic stress, suggesting that JcERF1 is regulated by certain components of the stress-signaling pathway. The full-length and C-terminus of JcERF1 driven by the GAL4 promoter functioned effectively as a transactivator in yeast, while its N-terminus was completely inactive. Transient expression analysis using a JcERF1-mGFP fusion gene in onion epidermal cells revealed that the JcERF1 protein is targeted to the nucleus. Transgenic tobacco plants carrying CaMV35S::JcERF1 fragments were shown to be much more salt tolerant compared to wild-type plants. Our results indicate that JcERF1 is a new member of the ERF transcription factors family that may play an important role in tolerance to environmental stress.


Assuntos
Jatropha/genética , Nicotiana/genética , Tolerância ao Sal , Fator de Transcrição AP-2/fisiologia , Núcleo Celular/química , Expressão Gênica , Cebolas/genética , Cebolas/fisiologia , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Nicotiana/fisiologia , Fator de Transcrição AP-2/análise , Fator de Transcrição AP-2/genética
8.
Plant Cell Environ ; 37(10): 2325-38, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25132404

RESUMO

Oxygen deprivation is a key determinant of root growth and functioning under waterlogging. In this work, changes in net K(+) flux and membrane potential (MP) of root cells were measured from elongation and mature zones of two barley varieties under hypoxia and anoxia conditions in the medium, and as influenced by ability to transport O2 from the shoot. We show that O2 deprivation results in an immediate K(+) loss from roots, in a tissue- and time-specific manner, affecting root K(+) homeostasis. Both anoxia and hypoxia induced transient membrane depolarization; the extent of this depolarization varied depending on severity of O2 stress and was less pronounced in a waterlogging-tolerant variety. Intact roots of barley were capable of maintaining H(+) -pumping activity under hypoxic conditions while disrupting O2 transport from shoot to root resulted in more pronounced membrane depolarization under O2 -limited conditions and in anoxia a rapid loss of the cell viability. It is concluded that the ability of root cells to maintain MP and cytosolic K(+) homeostasis is central to plant performance under waterlogging, and efficient O2 transport from the shoot may enable operation of the plasma membrane H(+) -ATPase in roots even under conditions of severe O2 limitation in the soil solution.


Assuntos
Adaptação Fisiológica , Hordeum/fisiologia , Oxigênio/metabolismo , Estresse Fisiológico , Transporte Biológico , Sobrevivência Celular , Homeostase , Hordeum/citologia , Hordeum/enzimologia , Potenciais da Membrana/efeitos dos fármacos , Epiderme Vegetal/citologia , Epiderme Vegetal/enzimologia , Epiderme Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Raízes de Plantas/fisiologia , Potássio/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Solo , Água/fisiologia
9.
Plant Cell ; 26(7): 2905-19, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24989044

RESUMO

Gibberellins (GAs) are plant hormones that affect plant growth and regulate gene expression differentially across tissues. To study the molecular mechanisms underlying GA signaling in Arabidopsis thaliana, we focused on a GDSL lipase gene (LIP1) induced by GA and repressed by DELLA proteins. LIP1 contains an L1 box promoter sequence, conserved in the promoters of epidermis-specific genes, that is bound by ATML1, an HD-ZIP transcription factor required for epidermis specification. In this study, we demonstrate that LIP1 is specifically expressed in the epidermis and that its L1 box sequence mediates GA-induced transcription. We show that this sequence is overrepresented in the upstream regulatory regions of GA-induced and DELLA-repressed transcriptomes and that blocking GA signaling in the epidermis represses the expression of L1 box-containing genes and negatively affects seed germination. We show that DELLA proteins interact directly with ATML1 and its paralogue PDF2 and that silencing of both HD-ZIP transcription factors inhibits epidermal gene expression and delays germination. Our results indicate that, upon seed imbibition, increased GA levels reduce DELLA protein abundance and release ATML1/PDF2 to activate L1 box gene expression, thus enhancing germination potential.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Arabidopsis/citologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Genes Reporter , Germinação , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Modelos Genéticos , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes de Fusão , Sementes/citologia , Sementes/genética , Sementes/fisiologia , Transdução de Sinais , Nicotiana/citologia , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Plant Cell Physiol ; 55(8): 1426-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850836

RESUMO

The secretion of organic acid anions from roots is an important mechanism for plant aluminum (Al) tolerance. Here we report cloning and characterizing BoMATE (KF031944), a multidrug and toxic compound extrusion (MATE) family gene from cabbage (Brassica oleracea). The expression of BoMATE was more abundant in roots than in shoots, and it was highly induced by Al treatment. The (14)C-citrate efflux experiments in oocytes demonstrated that BoMATE is a citrate transporter. Electrophysiological analysis and SIET analysis of Xenopus oocytes expressing BoMATE indicated BoMATE is activated by Al. Transient expression of BoMATE in onion epidermal cells demonstrated that it localized to the plasma membrane. Compared with the wild-type Arabidopsis, the transgenic lines constitutively overexpressing BoMATE enhanced Al tolerance and increased citrate secretion. In addition, Arabidopsis transgenic lines had a lower K(+) efflux and higher H(+) efflux, in the presence of Al, than control wild type in the distal elongation zone (DEZ). This is the first direct evidence that MATE protein is involved in the K(+) and H(+) flux in response to Al treatment. Taken together, our results show that BoMATE is an Al-induced citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana.


Assuntos
Alumínio/farmacologia , Arabidopsis/fisiologia , Brassica/genética , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Animais , Arabidopsis/genética , Sequência de Bases , Transporte Biológico , Proteínas de Transporte/genética , Ácido Cítrico/metabolismo , Feminino , Hidrogênio/metabolismo , Dados de Sequência Molecular , Cebolas/genética , Cebolas/fisiologia , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Plantas Geneticamente Modificadas , Potássio/metabolismo , Análise de Sequência de DNA , Estresse Fisiológico , Xenopus
11.
Physiol Plant ; 152(4): 738-48, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24813633

RESUMO

Grafting onto salt-tolerant pumpkin rootstock can increase cucumber salt tolerance. Previous studies have suggested that this can be attributed to pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots. However, the mechanism remains unclear. This study investigated the transport of Na(+) in salt-tolerant pumpkin and salt-sensitive cucumber plants under high (200 mM) or moderate (90 mM) NaCl stress. Scanning ion-selective electrode technique showed that pumpkin roots exhibited a higher capacity to extrude Na(+), and a correspondingly increased H(+) influx under 200 or 90 mM NaCl stress. The 200 mM NaCl induced Na(+)/H(+) exchange in the root was inhibited by amiloride (a Na(+)/H(+) antiporter inhibitor) or vanadate [a plasma membrane (PM) H(+) -ATPase inhibitor], indicating that Na(+) exclusion in salt stressed pumpkin and cucumber roots was the result of an active Na(+)/H(+) antiporter across the PM, and the Na(+)/H(+) antiporter system in salt stressed pumpkin roots was sufficient to exclude Na(+) X-ray microanalysis showed higher Na(+) in the cortex, but lower Na(+) in the stele of pumpkin roots than that in cucumber roots under 90 mM NaCl stress, suggesting that the highly vacuolated root cortical cells of pumpkin roots could sequester more Na(+), limit the radial transport of Na(+) to the stele and thus restrict the transport of Na(+) to the shoot. These results provide direct evidence for pumpkin roots with higher capacity to limit the transport of Na(+) to the shoot than cucumber roots.


Assuntos
Cucumis sativus/fisiologia , Cucurbita/fisiologia , Microanálise por Sonda Eletrônica/métodos , Proteínas de Plantas/metabolismo , Sódio/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Cucumis sativus/efeitos dos fármacos , Cucurbita/efeitos dos fármacos , Eletrodos Seletivos de Íons , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Potássio/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Tolerância ao Sal , Cloreto de Sódio/farmacologia , Trocadores de Sódio-Hidrogênio/metabolismo , Estresse Fisiológico
12.
Plant Cell Environ ; 37(10): 2433-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24548021

RESUMO

Some terrestrial wetland plants, such as rice, have super-hydrophobic leaf surfaces which retain a gas film when submerged. O2 movement through the diffusive boundary layer (DBL) of floodwater, gas film and stomata into leaf mesophyll was explored by means of a reaction-diffusion model that was solved in a three-dimensional leaf anatomy model. The anatomy and dark respiration of leaves of rice (Oryza sativa L.) were measured and used to compute O2 fluxes and partial pressure of O2 (pO2 ) in the DBL, gas film and leaf when submerged. The effects of floodwater pO2 , DBL thickness, cuticle permeability, presence of gas film and stomatal opening were explored. Under O2 -limiting conditions of the bulk water (pO2 < 10 kPa), the gas film significantly increases the O2 flux into submerged leaves regardless of whether stomata are fully or partly open. With a gas film, tissue pO2 substantially increases, even for the slightest stomatal opening, but not when stomata are completely closed. The effect of gas films increases with decreasing cuticle permeability. O2 flux and tissue pO2 decrease with increasing DBL thickness. The present modelling analysis provides a mechanistic understanding of how leaf gas films facilitate O2 entry into submerged plants.


Assuntos
Gases/metabolismo , Modelos Biológicos , Oryza/fisiologia , Oxigênio/metabolismo , Respiração Celular , Simulação por Computador , Escuridão , Difusão , Luz , Oryza/efeitos da radiação , Permeabilidade , Epiderme Vegetal/fisiologia , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal , Água/fisiologia
13.
Plant Cell Environ ; 37(3): 589-600, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23937055

RESUMO

Salt sensitive (pea) and salt tolerant (barley) species were used to understand the physiological basis of differential salinity tolerance in crops. Pea plants were much more efficient in restoring otherwise depolarized membrane potential thereby effectively decreasing K(+) efflux through depolarization-activated outward rectifying potassium channels. At the same time, pea root apex was 10-fold more sensitive to physiologically relevant H2 O2 concentration and accumulated larger amounts of H2 O2 under saline conditions. This resulted in a rapid loss of cell viability in the pea root apex. Barley plants rapidly loaded Na(+) into the xylem; this increase was only transient, and xylem and leaf Na(+) concentration remained at a steady level for weeks. On the contrary, pea plants restricted xylem Na(+) loading during the first few days of treatment but failed to prevent shoot Na(+) elevation in the long term. It is concluded that superior salinity tolerance of barley plants compared with pea is conferred by at least three different mechanisms: (1) efficient control of xylem Na(+) loading; (2) efficient control of H2 O2 accumulation and reduced sensitivity of non-selective cation channels to H2 O2 in the root apex; and (3) higher energy saving efficiency, with less ATP spent to maintain membrane potential under saline conditions.


Assuntos
Hordeum/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Pisum sativum/fisiologia , Canais de Potássio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Xilema/fisiologia , Trifosfato de Adenosina/metabolismo , Biomassa , Gadolínio/farmacologia , Hordeum/efeitos dos fármacos , Hordeum/crescimento & desenvolvimento , Peróxido de Hidrogênio/metabolismo , Cinética , Moduladores de Transporte de Membrana/farmacologia , Especificidade de Órgãos/efeitos dos fármacos , Pisum sativum/efeitos dos fármacos , Pisum sativum/crescimento & desenvolvimento , Permeabilidade/efeitos dos fármacos , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Potássio/metabolismo , Salinidade , Sódio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Xilema/efeitos dos fármacos
14.
Planta ; 239(2): 357-66, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24170337

RESUMO

The regulation of plant hydraulic conductance and gas conductance involves a number of different morphological, physiological and molecular mechanisms working in harmony. At the molecular level, aquaporins play a key role in the transport of water, as well as CO2, through cell membranes. Yet, their tissue-related function, which controls whole-plant gas exchange and water relations, is less understood. In this study, we examined the tissue-specific effects of the stress-induced tobacco Aquaporin1 (NtAQP1), which functions as both a water and CO2 channel, on whole-plant behavior. In tobacco and tomato plants, constitutive overexpression of NtAQP1 increased net photosynthesis (A(N)), mesophyll CO2 conductance (g(m)) and stomatal conductance (g(s)) and, under stress, increased root hydraulic conductivity (L(pr)) as well. Our results revealed that NtAQP1 that is specifically expressed in the mesophyll tissue plays an important role in increasing both A(N) and g(m). Moreover, targeting NtAQP1 expression to the cells of the vascular envelope significantly improved the plants' stress response. Surprisingly, NtAQP1 expression in the guard cells did not have a significant effect under any of the tested conditions. The tissue-specific involvement of NtAQP1 in hydraulic and gas conductance via the interaction between the vasculature and the stomata is discussed.


Assuntos
Aquaporina 1/genética , Arabidopsis/genética , Dióxido de Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Transpiração Vegetal/fisiologia , Arabidopsis/citologia , Arabidopsis/fisiologia , Dióxido de Carbono/análise , Clorofila/metabolismo , Genes Reporter , Células do Mesofilo/metabolismo , Especificidade de Órgãos , Fotossíntese , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Estômatos de Plantas/citologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Regiões Promotoras Genéticas/genética , Cloreto de Sódio/metabolismo , Água/metabolismo
15.
Plant Mol Biol ; 84(6): 605-20, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24287716

RESUMO

Ricinosomes are specialized ER-derived organelles that store the inactive pro-forms of KDEL-tailed cysteine endopeptidases (KDEL-CysEP) associated with programmed cell death (PCD). The Arabidopsis genome encodes three KDEL-CysEP (AtCEP1, AtCEP2, and AtCEP3) that are differentially expressed in vegetative and generative tissues undergoing PCD. These Arabidopsis proteases have not been characterized at a biochemical level, nor have they been localized intracellularly. In this study, we characterized AtCEP2. A 3xHA-mCherry-AtCEP2 gene fusion including pro-peptide and KDEL targeting sequences expressed under control of the endogenous promoter enabled us to isolate AtCEP2 "ex vivo". The purified protein was shown to be activated in a pH-dependent manner. After activation, however, protease activity was pH-independent. Analysis of substrate specificity showed that AtCEP2 accepts proline near the cleavage site, which is a rare feature specific for KDEL-CysEPs. mCherry-AtCEP2 was detected in the epidermal layers of leaves, hypocotyls and roots; in the root, it was predominantly found in the elongation zone and root cap. Co-localization with an ER membrane marker showed that mCherry-AtCEP2 was stored in two different types of ER-derived organelles: 10 µm long spindle shaped organelles as well as round vesicles with a diameter of approximately 1 µm. The long organelles appear to be ER bodies, which are found specifically in Brassicacae. The round vesicles strongly resemble the ricinosomes first described in castor bean. This study provides a first evidence for the existence of ricinosomes in Arabidopsis, and may open up new avenues of research in the field of PCD and developmental tissue remodeling.


Assuntos
Apoptose/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cisteína Endopeptidases/metabolismo , Retículo Endoplasmático/enzimologia , Precursores Enzimáticos/metabolismo , Oligopeptídeos/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Parede Celular/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Ativação Enzimática , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Concentração de Íons de Hidrogênio , Hipocótilo/citologia , Hipocótilo/enzimologia , Hipocótilo/genética , Hipocótilo/fisiologia , Oligopeptídeos/genética , Especificidade de Órgãos , Epiderme Vegetal/citologia , Epiderme Vegetal/enzimologia , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Folhas de Planta/citologia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Proteínas Recombinantes de Fusão , Deleção de Sequência , Especificidade por Substrato
16.
Plant J ; 76(6): 914-29, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118480

RESUMO

The causal relationship between cell division and growth in plants is complex. Although altered expression of cell-cycle genes frequently leads to altered organ growth, there are many examples where manipulation of the division machinery leads to a limited outcome at the level of organ form, despite changes in constituent cell size. One possibility, which has been under-explored, is that altered division patterns resulting from manipulation of cell-cycle gene expression alter the physiology of the organ, and that this has an effect on growth. We performed a series of experiments on retinoblastoma-related protein (RBR), a well characterized regulator of the cell cycle, to investigate the outcome of altered cell division on leaf physiology. Our approach involved combination of high-resolution microCT imaging and physiological analysis with a transient gene induction system, providing a powerful approach for the study of developmental physiology. Our investigation identifies a new role for RBR in mesophyll differentiation that affects tissue porosity and the distribution of air space within the leaf. The data demonstrate the importance of RBR in early leaf development and the extent to which physiology adapts to modified cellular architecture resulting from altered cell-cycle gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Microtomografia por Raio-X/métodos , Antocianinas/análise , Antocianinas/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ciclo Celular , Diferenciação Celular , Tamanho Celular , Clorofila/metabolismo , Genes Reporter , Células do Mesofilo/citologia , Células do Mesofilo/fisiologia , Fenótipo , Complexo de Proteína do Fotossistema II/fisiologia , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/fisiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estômatos de Plantas/citologia , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , RNA Mensageiro/genética
17.
J Exp Bot ; 64(17): 5243-51, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23997204

RESUMO

Stomata are pores in the leaf surface that open and close to regulate gas exchange and minimize water loss. In Arabidopsis, a pair of guard cells surrounds each stoma and they are derived from precursors distributed in an organized pattern on the epidermis. Stomatal differentiation follows a well-defined developmental programme, regulated by stomatal lineage-specific basic helix-loop-helix transcription factors, and stomata are consistently separated by at least one epidermal cell (referred to as the 'one-cell-spacing rule') to allow for proper opening and closure of the stomatal aperture. Peptide signalling is involved in regulating stomatal differentiation and in enforcing the one-cell-spacing rule. The cysteine-rich peptides EPIDERMAL PATTERNING FACTOR 1 (EPF1) and EPF2 negatively regulate stomatal differentiation in cells adjacent to stomatal precursors, while STOMAGEN/EPFL9 is expressed in the mesophyll of developing leaves and positively regulates stomatal development. These peptides work co-ordinately with the ERECTA family of leucine-rich repeat (LRR) receptor-like kinases and the LRR receptor-like protein TOO MANY MOUTHS. Recently, specific ligand-receptor pairs were identified that function at two different stages of stomatal development to restrict entry into the stomatal lineage, and later to orient precursor division away from existing stomata. These studies have provided the groundwork to begin to understand the molecular mechanisms involved in cell-cell communication during stomatal development.


Assuntos
Arabidopsis/fisiologia , Comunicação Celular , Peptídeos/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Padronização Corporal , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Peptídeos/genética , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/fisiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Estresse Fisiológico
18.
Rev. biol. trop ; 61(3): 1053-1065, sep. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-688459

RESUMO

The survival of plants in epiphytic environments depends on vegetative adaptations capable to defraud different stresses. Based on the structural diversity of the Orchidaceae, the current study has the objective of relating the anatomical structure of Dichaea cogniauxiana and Epidendrum secundum with the distinct environments where they live. It was expected that, despite structural similarities as strategies for resource acquisition, some peculiar variations related to the distinct light microenvironments (inside or in the edge of the nebular forest, near to “campo rupestre” area) might be found. Leaves and roots of both species were collected in a nebular forest located at a “campo rupestre” area at Serra da Piedade, Brazil), in January and February 2005. D. cogniauxiana is adhered to trunks, in sites with high atmospheric humidity and shaded, while E. secundum is located at the edge of the nebular forest, in more luminous sites. The leaves of E. secundum had thicker cuticle and higher number of stomata per area than those of D. cogniauxiana, characteristics coherent with their distinct pattern of exhibition to sun light. The suprastomatic chambers formed by the thicker cuticle may function as a barrier of resistance to water evaporation. The succulence of the leaves of E. secundum propitiates organic acids storage at night, and the storage of starch may be involved in PEP-carboxylase metabolism, both propitiating CAM mechanism. Roots with larger number of cell layers of the velamen, and specialized thick walled cortical cells (both in E. secundum) help water absorption and indicate better adaptation to an environment with intense solar radiation and a probable higher water deficit. The remarkable cell wall thickening of E. secundum exodermis can confer more efficient protection against the excess of transpiration at the border of the nebular forest. On the other hand, besides D. cogniauxiana be epiphyte, it is in a low position - in a shaded environment and with high relative humidity. Its thin thickened velamen permits the entrance of the low available light, and photosynthesis, producing oxygen and helping to avoid hypoxia condition. As features registered for D. cogniauxiana and E. secundum roots, we can depict the velamen, distinct exodermis and endodermis, and specialized thick walled cortical cells as characteristic of epiphytic plants.


La sobrevivencia de las plantas epífitas a su ambiente depende de las adaptaciones vegetativas que les permiten afrontar diferentes tipos de estrés. Basado en la diversidad estructural de las Orchidaceae, el presente estudio tiene por objetivo relatar la estructura anatómica de Dichaea cogniauxiana y Epidendrum secundum con relación a los distintos ambientes donde viven. Hojas y raíces fueron recolectados en un bosque nuboso de un campo rupestre en la Serra da Piedade, Brasil. Dichaea cogniauxiana está adherida a los troncos, en sitios con alta humedad atmosférica y sombra, mientras que E. secundum está localizada en el margen del bosque nebular, en sitios más iluminados. Las hojas de E. secundum tienen una cutícula más gruesa y un mayor número de estomas por área que las de D. cogniauxiana, características coherentes con los diferentes patrones de exhibición a la luz del sol. Las cámaras supraestomáticas formadas por la cutícula pueden funcionar como una barrera de resistencia a la evaporación del agua. La suculencia de las hojas de E. secundum propicia el almacenamiento de ácidos orgánicos por la noche, y el almacenamiento de almidón puede estar implícito en el metabolismo de la PEP-carboxilasa. Las raíces con mayor velamen y especializadas paredes gruesas de las células corticales (ambas en E. secundum) ayudan a la absorción e indican una mejor adaptación al ambiente con intensa radiación solar y probable alto déficit de agua. El engrosamiento de la pared celular en la exodermis de E. secundum puede conferir una protección más eficaz contra el exceso de transpiración en el margen del bosque nebular. Por otra parte, D. cogniauxiana además de ser epífita, está en una posición baja, en un ambiente sombreado y con una alta humedad relativa. Su velamen delgado permite la entrada de la baja luz disponible y la fotosíntesis, produciendo oxígeno que ayuda a evitar la condición hipóxica.


Assuntos
Adaptação Fisiológica/fisiologia , Ecossistema , Orchidaceae/fisiologia , Árvores , Brasil , Orchidaceae/classificação , Fotossíntese/fisiologia , Epiderme Vegetal/fisiologia , Folhas de Planta/fisiologia , Simpatria
19.
Plant Cell Physiol ; 54(8): 1253-62, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23686240

RESUMO

The positioning and density of leaf stomata are regulated by three secretory peptides, EPIDERMAL PATTERNING FACTOR 1 (EPF1), EPF2 and stomagen. Several lines of published evidence have suggested a regulatory pathway as follows. EPF1 and EPF2 are perceived by receptor complexes consisting of a receptor-like protein, TOO MANY MOUTHS (TMM), and receptor kinases, ERECTA (ER), ERECTA-LIKE (ERL) 1 and ERL2. These receptors activate a mitogen-activated protein (MAP) kinase module. MAP kinases phosphorylate and destabilize the transcription factor SPEECHLESS (SPCH), resulting in a decrease in the number of stomatal lineage cells. Stomagen acts antagonistically to EPF1 and EPF2. However, there is no direct evidence that EPF1 and EPF2 activate or that stomagen inactivates the MAP kinase cascade, through which they might regulate the SPCH level. Experimental modulation of these peptides in Arabidopsis thaliana would change the number of stomatal lineage cells in developing leaves, which in turn would change the expression of SPCH, making the interpretation difficult. Here we reconstructed this signaling pathway in differentiated leaf cells of Nicotiana benthamiana to examine signaling without the confounding effect of cell type change. We show that EPF1 and EPF2 are able to activate the MAP kinase MPK6, and that both EPF1 and EPF2 are able to decrease the SPCH level, whereas stomagen is able to increase it. Our data also suggest that EPF1 can be recognized by TMM together with any ER family receptor kinase, whereas EPF2 can be recognized by TMM together with ERL1 or ERL2, but not by TMM together with ER.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Genes Reporter , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação , Epiderme Vegetal/citologia , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estômatos de Plantas/citologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Proteínas Recombinantes de Fusão , Nicotiana/citologia , Nicotiana/genética , Nicotiana/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
20.
Physiol Plant ; 147(3): 283-95, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22626455

RESUMO

Cyclic electron flow (CEF) plays an important role in photoprotection for angiosperms under environmental stresses. However, ferns are more sensitive to drought and their water transport systems are not as efficient as those of angiosperms, it is unclear whether CEF also contributes to photoprotection in these plants. Using Microsorum punctatum and Paraleptochillus decurrens, we studied the electron fluxes through both photosystem I (PSI) and photosystem II (PSII) under water stress and their leaf anatomies. Our goal was to determine if CEF functions in the photoprotection of these ferns and, if so, whether CEF stimulation is related to leaf anatomy. Compared with P. decurrens, M. punctatum had thicker leaves and cuticles and higher water storage capacity, but lower stomatal density and slower rate of water loss. During induced drought, the decrease in leaf water potential (Ψ(leaf) ) was more pronounced in P. decurrens than in M. punctatum. For both species, the decline in Ψ(leaf) was associated with a lower effective PSII quantum yield, photochemical quantum yield of PSI and electron transport rate (ETR), whereas increases were found in the quantum yield of regulated energy dissipation, CEF and CEF/ETR(II) ratio. Values for CEF and the CEF/ETR(II) ratio peaked in M. punctatum at a light intensity of 500-600 µmol m(-2) s(-1) vs only 150-200 µmol m(-2) s(-1) in P. decurrens. Therefore, our results indicate that the stimulation of CEF in tropical ferns contributes to their photoprotection under water stress, and is related to their respective drought tolerance and leaf anatomy.


Assuntos
Polypodiaceae/fisiologia , Estresse Fisiológico/fisiologia , Água/metabolismo , Transporte Biológico , Clorofila/metabolismo , Desidratação , Secas , Transporte de Elétrons , Luz , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Epiderme Vegetal/anatomia & histologia , Epiderme Vegetal/metabolismo , Epiderme Vegetal/fisiologia , Epiderme Vegetal/efeitos da radiação , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal/fisiologia , Polypodiaceae/anatomia & histologia , Polypodiaceae/metabolismo , Polypodiaceae/efeitos da radiação , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA