Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Ann Bot ; 134(1): 131-150, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38551515

RESUMO

BACKGROUND AND AIMS: Structural colour is responsible for the remarkable metallic blue colour seen in the leaves of several plants. Species belonging to only ten genera have been investigated to date, revealing four photonic structures responsible for structurally coloured leaves. One of these is the helicoidal cell wall, known to create structural colour in the leaf cells of five taxa. Here we investigate a broad selection of land plants to understand the phylogenetic distribution of this photonic structure in leaves. METHODS: We identified helicoidal structures in the leaf epidermal cells of 19 species using transmission electron microscopy. Pitch measurements of the helicoids were compared with the reflectance spectra of circularly polarized light from the cells to confirm the structure-colour relationship. RESULTS: By incorporating species examined with a polarizing filter, our results increase the number of taxa with photonic helicoidal cell walls to species belonging to at least 35 genera. These include 19 monocot genera, from the orders Asparagales (Orchidaceae) and Poales (Cyperaceae, Eriocaulaceae, Rapateaceae) and 16 fern genera, from the orders Marattiales (Marattiaceae), Schizaeales (Anemiaceae) and Polypodiales (Blechnaceae, Dryopteridaceae, Lomariopsidaceae, Polypodiaceae, Pteridaceae, Tectariaceae). CONCLUSIONS: Our investigation adds considerably to the recorded diversity of plants with structurally coloured leaves. The iterative evolution of photonic helicoidal walls has resulted in a broad phylogenetic distribution, centred on ferns and monocots. We speculate that the primary function of the helicoidal wall is to provide strength and support, so structural colour could have evolved as a potentially beneficial chance function of this structure.


Assuntos
Evolução Biológica , Parede Celular , Filogenia , Folhas de Planta , Folhas de Planta/ultraestrutura , Folhas de Planta/anatomia & histologia , Parede Celular/ultraestrutura , Microscopia Eletrônica de Transmissão , Cor , Epiderme Vegetal/ultraestrutura
2.
J Integr Plant Biol ; 63(2): 353-364, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33085164

RESUMO

The vacuole is a unique plant organelle that plays an important role in maintaining cellular homeostasis under various environmental stress conditions. However, the effects of biotic stress on vacuole structure has not been examined using three-dimensional (3D) visualization. Here, we performed 3D electron tomography to compare the ultrastructural changes in the vacuole during infection with different viruses. The 3D models revealed that vacuoles are remodeled in cells infected with cucumber mosaic virus (CMV) or tobacco necrosis virus A Chinese isolate (TNV-AC ), resulting in the formation of spherules at the periphery of the vacuole. These spherules contain neck-like channels that connect their interior with the cytosol. Confocal microscopy of CMV replication proteins 1a and 2a and TNV-AC auxiliary replication protein p23 showed that all of these proteins localize to the tonoplast. Electron microscopy revealed that the expression of these replication proteins alone is sufficient to induce spherule formation on the tonoplast, suggesting that these proteins play prominent roles in inducing vacuolar membrane remodeling. This is the first report of the 3D structures of viral replication factories built on the tonoplasts. These findings contribute to our understanding of vacuole biogenesis under normal conditions and during assembly of plant (+) RNA virus replication complexes.


Assuntos
Imageamento Tridimensional , Membranas Intracelulares/metabolismo , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Vacúolos/metabolismo , Cucumovirus/fisiologia , Cucumovirus/ultraestrutura , Tomografia com Microscopia Eletrônica , Membranas Intracelulares/ultraestrutura , Epiderme Vegetal/citologia , Epiderme Vegetal/ultraestrutura , Epiderme Vegetal/virologia , Vírus de Plantas/ultraestrutura , Frações Subcelulares/metabolismo , Nicotiana/citologia , Tombusviridae/fisiologia , Tombusviridae/ultraestrutura , Vacúolos/ultraestrutura , Proteínas Virais/metabolismo , Replicação Viral/fisiologia
3.
New Phytol ; 223(3): 1547-1559, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980530

RESUMO

The leaf outer epidermal cell wall acts as a barrier against pathogen attack and desiccation, and as such is covered by a cuticle, composed of waxes and the polymer cutin. Cutin monomers are formed by the transfer of fatty acids to glycerol by glycerol-3-phosphate acyltransferases, which facilitate their transport to the surface. The extent to which cutin monomers affect leaf cell wall architecture and barrier properties is not known. We report a dual functionality of pathogen-inducible GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE 6 (GPAT6) in controlling pathogen entry and cell wall properties affecting dehydration in leaves. Silencing of Nicotiana benthamiana NbGPAT6a increased leaf susceptibility to infection by the oomycetes Phytophthora infestans and Phytophthora palmivora, whereas overexpression of NbGPAT6a-GFP rendered leaves more resistant. A loss-of-function mutation in tomato SlGPAT6 similarly resulted in increased susceptibility of leaves to Phytophthora infection, concomitant with changes in haustoria morphology. Modulation of GPAT6 expression altered the outer wall diameter of leaf epidermal cells. Moreover, we observed that tomato gpat6-a mutants had an impaired cell wall-cuticle continuum and fewer stomata, but showed increased water loss. This study highlights a hitherto unknown role for GPAT6-generated cutin monomers in influencing epidermal cell properties that are integral to leaf-microbe interactions and in limiting dehydration.


Assuntos
Aciltransferases/metabolismo , Parede Celular/metabolismo , Nicotiana/metabolismo , Epiderme Vegetal/microbiologia , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Botrytis/fisiologia , Parede Celular/ultraestrutura , Resistência à Doença/imunologia , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Phytophthora/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Epiderme Vegetal/metabolismo , Epiderme Vegetal/ultraestrutura , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Estômatos de Plantas/metabolismo , Estômatos de Plantas/microbiologia , Estômatos de Plantas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/genética , Nicotiana/microbiologia , Transcriptoma/genética
4.
Microsc Res Tech ; 82(4): 459-465, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30586200

RESUMO

In present study, multiple microscope techniques were used for the systematics identification of the species Asplenium dalhousiae. The plant was collected from different phytogeographical and its natural habitat of Pakistan, where it shows higher diversity. Morphology, foliar epidermal anatomy, and spore morphological characters of the species were studied in detailed using multiple microscopic techniques through light microscopy (LM) and scanning electron microscopy (SEM). LM and SEM were used for the systematics identification of the species. Traditionally, the species is used in the ailment of many diseases, so the spore morphology, anatomical features, and morphological characters are relevant to describe the species taxonomy. The importance of multiple methods of taxonomic study (e.g., documentation and morphological characteristics) for characterizing herbs are important step in systematic certification to maintain the efficacy of herbal medicines. The aim of the present study is to examine the morphological, anatomical, and spore morphology of the species A. dalhousiae in more detailed for the correct taxonomic identification and their medicinal validation from Pakistan.


Assuntos
Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Polypodiaceae/anatomia & histologia , Polypodiaceae/classificação , Microscopia Eletrônica de Varredura , Paquistão , Epiderme Vegetal/ultraestrutura , Preparações de Plantas/uso terapêutico , Estômatos de Plantas/ultraestrutura , Plantas Medicinais , Pólen/ultraestrutura , Polypodiaceae/química , Esporos/ultraestrutura
5.
Micron ; 111: 36-49, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29857176

RESUMO

Dryopteris and Polystichum are the 2 complex taxonomic genera of Dryopteridaceae. The comparative foliar epidermal anatomy of 12 species of both genera from Pakistan were studied using standard protocols of light microscopy (LM) and scanning electron microscopy (SEM). The objective of which was systematic comparison and investigation to elucidate the taxonomic importance of foliar micromorphology, which may be useful to taxonomists for identifying complex Dryopteridaceae taxa. Principal component analysis and UPGMA clustering analysis were performed to test the validity of leaf anatomical features as method of separating species and genera. The foliar epidermal anatomy described here is a good source of taxonomic characters in both groups that can help genera and species delimitation. This is the first report on leaf micromorphology in most of these species. Observation of foliar anatomy showed that stomata are only present on the abaxial surface; i.e., leaves of all species are hypostomatic. The shapes of epidermal cells in all studied species are irregular. The anticlinal walls are strongly lobed, irregular wavy and elongated wavy. However, substantial variation in epidermal cell size and other stomatal features were observed on both upper and lower surfaces in all investigated species. Two types of stomata were observed in all studied species. The presence of polocytic stomata in Dryopteris and staurocytic stomata in Polystichum are the important characters for the segregation of these genera. Elongate elliptic stomatal shape, narrow kidney shaped guard cells and broad elliptic shaped stomatal pores are diagnostic for all five species of Dryopteris selected. On the other hand, size and number of epidermal cells, lobes per cell, stomatal size, subsidiary cell size, stomatal pore size and stomatal index are the key features for species differentiation in Polystichum. An identification key was developed in order to apply the foliar anatomical characters in the discrimination of the species studied.


Assuntos
Dryopteris/ultraestrutura , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Polystichum/ultraestrutura , Dryopteris/anatomia & histologia , Dryopteris/classificação , Paquistão , Estômatos de Plantas/ultraestrutura , Polystichum/anatomia & histologia , Polystichum/classificação , Análise de Componente Principal
6.
Microsc Res Tech ; 81(5): 474-485, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29484766

RESUMO

Palynological features as well as comparative foliar epidermal using light and scanning electron microscope (SEM) of 17 species (10genera) of Amaranthaceae have been studied for its taxonomic significance. Different foliar and palynological micro-morphological characters were examined to explain their value in resolving the difficulty in identification. All species were amphistomatic but stomata on abaxial surface were more abundant. Taxonomically significant epidermal character including stomata type, trichomes (unicellular, multicellular, and capitate) and epidermal cells shapes (polygonal and irregular) were also observed. Pollens of this family are Polypantoporate, pores large, spheroidal, mesoporous region is sparsely to scabrate, densely psilate, and spinulose. All these characters can be active at species level for identification purpose. This study indicates that at different taxonomic levels, LM and SEM pollen and epidermal morphology is explanatory and significant to identify species and genera.


Assuntos
Amaranthaceae/ultraestrutura , Microscopia Eletrônica de Varredura/métodos , Microscopia/métodos , Epiderme Vegetal/ultraestrutura , Amaranthaceae/citologia , Epiderme Vegetal/citologia
7.
Plant Cell Physiol ; 59(5): 966-977, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29425344

RESUMO

The aerial parts of terrestrial plants are covered with hydrophobic wax layers, which represent the primary barrier between plant cells and the environment and act to protect plants from abiotic and biotic stresses. Although total wax loads are precisely regulated in an environmental- or organ-specific manner, regulatory mechanisms underlying cuticular wax biosynthesis remain largely unknown. In this study, we characterized DEWAX2 (DECREASE WAX BIOSYNTHESIS2) which encodes an APETALA 2 (AP2)/ethylene response element-binding factor (ERF)-type transcription factor and is predominantly expressed in young seedlings, and rosette and cauline leaves. Total wax loads increased by approximately 12% and 16% in rosette and cauline leaves of dewax2, respectively, but were not significantly altered in the stems of dewax2 relative to the wild type (WT). The excess wax phenotype of dewax2 leaves was rescued upon expression of DEWAX2 driven by its own promoter. Overexpression of DEWAX2 decreased total wax loads by approximately 15% and 26% in the stems and rosette leaves compared with those of the WT, respectively. DEWAX2:eYFP (enhanced yellow fluorescent protein) was localized to the nucleus in Arabidopsis roots and hypocotyls. DEWAX2 possessed transcriptional repression activity in tobacco protoplasts. Transcriptome and quantitative real-time PCR analyses showed that the transcript levels of CER1, ACLA2, LACS1, LACS2 and KCS12 were down-regulated in DEWAX2 overexpression lines compared with the WT. Transient transcriptional assays showed that DEWAX2 represses the expression of its putative target genes. Quantitative chromatin immunoprecipitation-PCR revealed that DEWAX2 binds directly to the GCC motifs of the LACS1, LACS2, KCS12 and CER1 promoters. These results suggest that DEWAX2-mediated transcriptional repression may contribute to the total wax load in Arabidopsis leaves.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Vias Biossintéticas , Proteínas de Ligação a DNA/metabolismo , Epiderme Vegetal/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/metabolismo , Ceras/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Hipocótilo/metabolismo , Epiderme Vegetal/ultraestrutura , Raízes de Plantas/metabolismo , Transpiração Vegetal , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica , Transporte Proteico , Protoplastos/metabolismo , Frações Subcelulares/metabolismo , Fatores de Tempo , Nicotiana/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
8.
Microsc Res Tech ; 80(7): 763-778, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28322478

RESUMO

The leaf epidermal morphology of 38 samples, representing 22 Lobelia species from China, was studied using light microscopy and scanning electron microscopy. The stomata and other epidermal features were largely consistent within species, and therefore represented good characters for taxonomic purposes. Diagnostic characters of the leaf epidermis were used to differentiate species of Lobelia. The species pairs L. clavata and L. pyramidalis, L. alsinoides and L. terminalis, and L. davidii and L. erectiuscula, were differentiated using leaf epidermal characters. Results at the micro-structural level partly supported the current subdivisions of Lobelia. Previous taxonomic revisions of Lobelia in China were evaluated based on species epidermal characteristics. The results supported the recognition of Pratia merged with Lobelia, and of L. chevalieri as a distinct species. Lobelia brevisepala should not be included in L. montana. The status of Lobelia in the evolutionary history of Campanulaceae was assessed. The Lobelia species investigated retained many primitive leaf epidermal features.


Assuntos
Lobelia/anatomia & histologia , Lobelia/classificação , Epiderme Vegetal/ultraestrutura , Folhas de Planta/ultraestrutura , China , Lobelia/ultraestrutura , Microscopia Eletrônica de Varredura , Folhas de Planta/anatomia & histologia
9.
Plant Physiol ; 172(3): 1911-1927, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27688623

RESUMO

Nonspecific lipid transfer proteins reversibly bind different types of lipid molecules in a hydrophobic cavity. They facilitate phospholipid transfer between membranes in vitro, play a role in cuticle and possibly in suberin formation, and might be involved in plant pathogen defense signaling. This study focuses on the role of the lipid transfer protein AtLTPI-4 in crown gall development. Arabidopsis (Arabidopsis thaliana) crown gall tumors, which develop upon infection with the virulent Agrobacterium tumefaciens strain C58, highly expressed AtLTPI-4 Crown galls of the atltpI-4 loss-of-function mutant were much smaller compared with those of wild-type plants. The gene expression pattern and localization of the protein to the plasma membrane pointed to a function of AtLTPI-4 in cell wall suberization. Since Arabidopsis crown galls are covered by a suberin-containing periderm instead of a cuticle, we analyzed the suberin composition of crown galls and found a reduction in the amounts of long-chain fatty acids (C18:0) in the atltpI-4 mutant. To demonstrate the impact of AtLtpI-4 on extracellular lipid composition, we expressed the protein in Arabidopsis epidermis cells. This led to a significant increase in the very-long-chain fatty acids C24 and C26 in the cuticular wax fraction. Homology modeling and lipid-protein-overlay assays showed that AtLtpI-4 protein can bind these very-long-chain fatty acids. Thus, AtLtpI-4 protein may facilitate the transfer of long-chain as well as very-long-chain fatty acids into the apoplast, depending on the cell type in which it is expressed. In crown galls, which endogenously express AtLtpI-4, it is involved in suberin formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Lipídeos/biossíntese , Proteínas de Transferência de Fosfolipídeos/metabolismo , Tumores de Planta , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Transporte/química , Membrana Celular/metabolismo , Parede Celular/metabolismo , Ácidos Graxos/metabolismo , Modelos Moleculares , Mutação/genética , Especificidade de Órgãos , Proteínas de Transferência de Fosfolipídeos/química , Epiderme Vegetal/metabolismo , Epiderme Vegetal/ultraestrutura , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico , Nicotiana/genética , Tricomas/metabolismo , Tricomas/ultraestrutura
10.
Plant Cell Rep ; 35(8): 1687-98, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27106031

RESUMO

KEY MESSAGE: WSL3 encodes ß-ketoacyl-CoA reductase (KCR) in rice, in a similar way to YBR159w in yeast, and is essential for VLCFA biosynthesis and leaf wax accumulation. Cuticular waxes on plant surfaces limit non-stomatal water loss, protect plants against deposits of dust and impose a physical barrier to pathogen infection. We identified a wax-deficient mutant of rice, wax crystal-sparse leaf 3 (wsl3), which exhibits a pleiotropic phenotype that includes reduced epicuticular wax crystals on the leaf surface and altered wax composition. Map-based cloning demonstrated that defects in the mutant were caused by two adjacent single-nucleotide changes in a gene encoding ß-ketoacyl-CoA reductase (KCR) that catalyzes the second step of the fatty acid elongation reaction. The identity of WSL3 was further confirmed by genetic complementation. Transient assays of fluorescent protein-tagged WSL3 in tobacco protoplasts showed that WSL3 localizes to the endoplasmic reticulum, the compartment of fatty acid elongation in cells. Quantitative PCR and histochemical staining indicated that WSL3 is universally expressed in tissues. RNA interference of WSL3 caused a phenotype that mimicked the wsl3 mutant. Very long-chain fatty acids (VLCFAs) 20:0 and 22:0, or 20:1Δ(11) and 22:1Δ(13), were detected when WSL3 and Arabidopsis fatty acid elongation 1 (FAE1) were co-expressed in a yeast ybr159wΔ mutant strain. Our results indicated that WSL3 affects rice cuticular wax production by participating in VLCFA elongation.


Assuntos
Oxirredutases do Álcool/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Ceras/metabolismo , Clonagem Molecular , Ácidos Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Mutação/genética , Oryza/genética , Fenótipo , Epiderme Vegetal/ultraestrutura , Interferência de RNA , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência do Ácido Nucleico , Frações Subcelulares/metabolismo
11.
Plant Physiol ; 170(1): 263-72, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26518344

RESUMO

Peroxisomes are highly motile organelles that display a range of motions within a short time frame. In static snapshots, they can be juxtaposed to chloroplasts, which has led to the hypothesis that they are physically interacting. Here, using optical tweezers, we tested the dynamic physical interaction in vivo. Using near-infrared optical tweezers combined with TIRF microscopy, we were able to trap peroxisomes and approximate the forces involved in chloroplast association in vivo in tobacco (Nicotiana tabacum) and observed weaker tethering to additional unknown structures within the cell. We show that chloroplasts and peroxisomes are physically tethered through peroxules, a poorly described structure in plant cells. We suggest that peroxules have a novel role in maintaining peroxisome-organelle interactions in the dynamic environment. This could be important for fatty acid mobilization and photorespiration through the interaction with oil bodies and chloroplasts, highlighting a fundamentally important role for organelle interactions for essential biochemistry and physiological processes.


Assuntos
Cloroplastos/química , Nicotiana/citologia , Pinças Ópticas , Peroxissomos/química , Epiderme Vegetal/citologia , Actinas/química , Actinas/metabolismo , Cloroplastos/metabolismo , Peroxissomos/metabolismo , Epiderme Vegetal/ultraestrutura
12.
Mol Plant Microbe Interact ; 27(12): 1331-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25387134

RESUMO

Potyvirus HCPro is a multifunctional protein that, among other functions, interferes with antiviral defenses in plants and mediates viral transmission by aphid vectors. We have visualized in vivo the subcellular distribution and dynamics of HCPro from Potato virus Y and its homodimers, using green, yellow, and red fluorescent protein tags or their split parts, while assessing their biological activities. Confocal microscopy revealed a pattern of even distribution of fluorescence throughout the cytoplasm, common to all these modified HCPros, when transiently expressed in Nicotiana benthamiana epidermal cells in virus-free systems. However, in some cells, distinct additional patterns, specific to some constructs and influenced by environmental conditions, were observed: i) a small number of large, amorphous cytoplasm inclusions that contained α-tubulin; ii) a pattern of numerous small, similarly sized, dot-like inclusions distributing regularly throughout the cytoplasm and associated or anchored to the cortical endoplasmic reticulum and the microtubule (MT) cytoskeleton; and iii) a pattern that smoothly coated the MT. Furthermore, mixed and intermediate forms from the last two patterns were observed, suggesting dynamic transports between them. HCPro did not colocalize with actin filaments or the Golgi apparatus. Despite its association with MT, this network integrity was required neither for HCPro suppression of silencing in agropatch assays nor for its mediation of virus transmission by aphids.


Assuntos
Afídeos/virologia , Cisteína Endopeptidases/metabolismo , Nicotiana/virologia , Doenças das Plantas/virologia , Potyvirus/metabolismo , Proteínas Virais/metabolismo , Animais , Transporte Biológico , Cisteína Endopeptidases/genética , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Meio Ambiente , Expressão Gênica , Genes Reporter , Corpos de Inclusão Viral/metabolismo , Corpos de Inclusão Viral/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Epiderme Vegetal/ultraestrutura , Epiderme Vegetal/virologia , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , Potyvirus/genética , Potyvirus/ultraestrutura , Proteínas Recombinantes de Fusão , Nicotiana/ultraestrutura , Proteínas Virais/genética
13.
Rev. biol. trop ; 61(2): 539-546, Jun. 2013. ilus
Artigo em Inglês | LILACS | ID: lil-675449

RESUMO

The genus Zamia is morphologically and ecologically the most diverse of the order Cycadales. Throughout its history this genus has been restricted to the New World and is presently almost entirely restricted to the Neotropics. Unusual anatomical traits of the leaflets, such as the sunken stomata and thick cuticle, are common in this and related genera. The objective of this research was to study and compare the leaflet anatomy of Zamia acuminata and Z. pseudomonticola and establish possible phylogenetic relationships between the anatomical traits and the near relatives of these species. The leaf material was obtained from living plants and then processed for electron microscopy study. We found that both species are very similar to each other and to Z. fairchildiana, and that they share several unusual traits with other species of the genus, such as the parenchyma morphology, the spatial distribution of tissues between the veins and the stomata morphology. The main differences between these species were seen in their fiber clusters and in the abundance of trichome basal cells on the epidermis. The anatomical similarities between the three species could be the result of their close phylogenetic relationship and the divergences between them could be the result of recent speciation during the Pleistocene, resulting from geological changes in Southern Costa Rica.


Zamia es morfológica y ecológicamente el género más diverso del orden Cycadales. Este género siempre ha estado restringido a América, pero en la actualidad habita principalmente en la región neotropical. Características anatómicas inusuales en los foliolos como los estomas hundidos y las cutículas gruesas son comunes en Zamia y géneros afines. El objetivo de este trabajo consiste en comparar la anatomía de los foliolos de Zamia acuminata y Z. pseudomonticola y establecer posibles relaciones filogenéticas entre las características anatómicas y los parientes cercanos de esta especie. Las hojas de las especies seleccionadas fueron obtenidas de plantas vivas y luego procesadas para el estudio por microscopía electrónica. Ambas especies son muy similares entre sí y respecto a Z. fairchildiana y comparten varias características en común con otras especies del género como son la morfología del parénquima, de los estomas y la distribución espacial de tejidos alrededor de las haces vasculares. Las diferencias más notables entre especies se vieron a nivel de sus paquetes de fibras y en la abundancia de células basales de los tricomas en la epidermis. Las similitudes anatómicas entre estas tres especies pueden ser el resultado de su cercanía filogenética y las diferencias podrían ser el resultado de especiación durante el Pleistoceno, producto de los eventos geológicos y cambios sucedidos en el sur de Costa Rica en esa época.


Assuntos
Epiderme Vegetal/ultraestrutura , Folhas de Planta/ultraestrutura , Zamiaceae/ultraestrutura , Costa Rica , Microscopia Eletrônica de Varredura , Filogenia , Zamiaceae/classificação
14.
Protoplasma ; 250(6): 1303-13, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23708376

RESUMO

Ultraviolet-B radiation (UVBR) affects plants in many important ways, including reduction of growth rate and primary productivity, and changes in ultrastructures. Rice (Oryza sativa) is one of the most cultivated cereals in the world, along with corn and wheat, representing over 50% of agricultural production. In this study, we examined O. sativa plants exposed to ambient outdoor radiation and laboratory-controlled photosynthetically active radiation (PAR) and PAR + UVBR conditions for 2 h/day during 30 days of cultivation. The samples were studied for morphological and ultrastructural characteristics, and physiological parameters. PAR + UVBR caused changes in the ultrastructure of leaf of O. sativa and leaf morphology (leaf index, leaf area and specific leaf area, trichomes, and papillae), plant biomass (dry and fresh weight), photosynthetic pigments, phenolic compounds, and protein content. As a photoprotective acclimation strategy against PAR + UVBR damage, an increase of 66.24% in phenolic compounds was observed. Furthermore, PAR + UVBR treatment altering the levels of chlorophylls a and b, and total chlorophyll. In addition, total carotenoid contents decreased after PAR + UVBR treatment. The results strongly suggested that PAR + UVBR negatively affects the ultrastructure, morphology, photosynthetic pigments, and growth rates of leaf of O. sativa and, in the long term, it could affect the viability of this economically important plant.


Assuntos
Oryza/fisiologia , Oryza/ultraestrutura , Raios Ultravioleta , Oryza/efeitos da radiação , Fotossíntese/efeitos da radiação , Pigmentos Biológicos/metabolismo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos da radiação , Epiderme Vegetal/ultraestrutura , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/metabolismo , Polifenóis/metabolismo , Solubilidade
15.
Plant Cell Rep ; 32(1): 89-101, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23001535

RESUMO

KEY MESSAGE : Wheat low-molecular-weight-glutenin and α-gliadin were accumulated in the endoplasmic reticulum and formed protein body-like structures in tobacco cells, with the participation of BiP chaperone. Possible interactions between these prolamins were investigated. Wheat prolamins are the major proteins that accumulate in endosperm cells and are largely responsible for the unique biochemical properties of wheat products. They are accumulated in the endoplasmic reticulum (ER) where they form protein bodies (PBs) and are then transported to the storage vacuole where they form a protein matrix in the ripe seeds. Whereas previous studies have been carried out to determine the atypical trafficking pathway of prolamins, the mechanisms leading to ER retention and PB formation are still not clear. In this study, we examined the trafficking of a low-molecular-weight glutenin subunit (LMW-glutenin) and α-gliadin fused to fluorescent proteins expressed in tobacco cells. Through transient transformation in epidermal tobacco leaves, we demonstrated that both LMW-glutenin and α-gliadin were retained in the ER and formed mobile protein body-like structures (PBLS) that generally do not co-localise with Golgi bodies. An increased expression level of BiP in tobacco cells transformed with α-gliadin or LMW-glutenin was observed, suggesting the participation of this chaperone protein in the accumulation of wheat prolamins in tobacco cells. When stably expressed in BY-2 cells, LMW-glutenin fusion was retained longer in the ER before being exported to and degraded in the vacuole, compared with α-gliadin fusion, suggesting the involvement of intermolecular disulphide bonds in ER retention, but not in PBLS formation. Co-localisation experiments showed that gliadins and LMW-glutenin were found in the same PBLS with no particular distribution, which could be due to their ability to interact with each other as indicated by yeast two-hybrid assays.


Assuntos
Gliadina/metabolismo , Glutens/metabolismo , Nicotiana/citologia , Triticum/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Immunoblotting , Peso Molecular , Epiderme Vegetal/citologia , Epiderme Vegetal/ultraestrutura , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico , Proteólise , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo , Nicotiana/metabolismo , Transformação Genética , Vacúolos/metabolismo
16.
Plant Cell ; 24(11): 4717-30, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23192225

RESUMO

In plants, the trans-Golgi network and early endosomes (TGN/EE) function as the central junction for major endomembrane trafficking events, including endocytosis and secretion. Here, we demonstrate that the KEEP ON GOING (KEG) protein of Arabidopsis thaliana localizes to the TGN/EE and plays an essential role in multiple intracellular trafficking processes. Loss-of-function keg mutants exhibited severe defects in cell expansion, which correlated with defects in vacuole morphology. Confocal microscopy revealed that KEG is required for targeting of plasma membrane proteins to the vacuole. This targeting process appeared to be blocked at the step of multivesicular body (MVB) fusion with the vacuolar membrane as the MVB-associated small GTPase ARA6 was also blocked in vacuolar delivery. In addition, loss of KEG function blocked secretion of apoplastic defense proteins, indicating that KEG plays a role in plant immunity. Significantly, KEG was degraded specifically in cells infected by the fungus Golovinomyces cichoracearum, suggesting that this pathogen may target KEG to manipulate the host secretory system as a virulence strategy. Taking these results together, we conclude that KEG is a key component of TGN/EE that regulates multiple post-Golgi trafficking events in plants, including vacuole biogenesis, targeting of membrane-associated proteins to the vacuole, and secretion of apoplastic proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Doenças das Plantas/imunologia , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Ascomicetos/fisiologia , Cotilédone/imunologia , Cotilédone/metabolismo , Cotilédone/microbiologia , Cotilédone/ultraestrutura , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Hipocótilo/imunologia , Hipocótilo/metabolismo , Hipocótilo/microbiologia , Hipocótilo/ultraestrutura , Modelos Biológicos , Corpos Multivesiculares/metabolismo , Mutagênese Insercional , Fenótipo , Doenças das Plantas/microbiologia , Epiderme Vegetal/imunologia , Epiderme Vegetal/metabolismo , Epiderme Vegetal/microbiologia , Epiderme Vegetal/ultraestrutura , Imunidade Vegetal , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Transporte Proteico , Plântula/imunologia , Plântula/metabolismo , Plântula/microbiologia , Plântula/ultraestrutura , Nicotiana/genética , Nicotiana/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/isolamento & purificação , Vacúolos/metabolismo
17.
Rev. biol. trop ; 60(3): 1137-1148, Sept. 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-659575

RESUMO

Smilax L. in Brazil is represented by 32 taxa and it is a taxonomically difficult genus because the plants are dioecious and show wide phenotypic variation. The analysis and use of leaf anatomy characters is recognized as a frequently successful taxonomic method to distinguish between individual taxon, when floral material is absent or minute differences in flowers and foliage exist such as in Smilax. The aim of this study was to characterize the anatomical features of the aerial organs in Smilax syphilitica collected from the Atlantic Rainforest, in Santa Teresa-ES and the Smilax aff. syphilitica from the Amazon Rainforest, in Manaus, Brazil. For this, a total of three samples of Smilax were collected per site. Sample leaves and stems were fixed with FAA 50, embedded in historesin, sectioned on a rotary microtome, stained and mounted in synthetic resin. Additionally, histochemical tests were performed and cuticle ornamentation was analyzed with standard scanning electron microscopy. S. syphilitica and S. aff. syphilitica differed in cuticle ornamentation, epidermal cell arrangement and wall thickness, stomata type and orientation, calcium oxalate crystal type, and position of stem thorns. Leaf blades of S. syphilitica from the Amazon Rainforest have a network of rounded ridges on both sides, while in S. aff. syphilitica, these ridges are parallel and the spaces between them are filled with numerous membranous platelets. Viewed from the front, the epidermal cells of S. syphilitica have sinuous walls (even more pronounced in samples from the Amazon); while in S. aff. syphilitica, these cells are also sinuous but elongated in the cross-section of the blade and arranged in parallel. Stomata of S. syphilitica are paracytic, whereas in S. aff. syphilitica, are both paracytic and anisocytic, and their polar axes are directed towards the mid-vein. Calcium oxalate crystals in S. syphilitica are prisms, whereas in S. aff. syphilitica, crystal sand. Thorns occur in nodes and internodes in S. syphilitica but only in internodes in S. aff. syphilitica. These features have proven to be of diagnostic value and may support a separation into two species, but future studies are needed to confirm that S. aff. syphilitica is indeed a new taxon.


Smilax L. en Brasil está representado por 32 táxones y es un género difícil en lo que respecta a su taxonomía porque las plantas son diocas y presentan mucha variación fenotípica. El análisis y uso de los caracteres anatómicos de la hoja es reconocido frecuentemente como un exitoso método taxonómico para distinguir entre los táxones individuales cuando las flores están ausentes o hay diminutas diferencias. El objetivo de este estudio fue caracterizar los rasgos anatómicos de los órganos aéreos en Smilax syphilitica recolectados en el Bosque Atlántico en Santa Teresa- ES y de Smilax aff. syphilitica del Amazonas, Manaus, Brasil. Un total de tres muestras fueron recolectadas por sitio. Las muestras fueron fijadas en FAA 50, sumergidas en historesina, seccionadas en un micrótomo rotatorio, teñidas y montadas en resina sintética. Se hicieron pruebas histoquímicas y la ornamentación de la cutícula fue analizada con microscopía electrónica de barrido estándar. S. syphilitica y difirieron en la ornamentación de la cutícula, la disposición de células epidérmicas y el grosor de la pared, tipo y orientación de estomas, tipo de cristal de oxalato de calcio y la posición de las espinas del tallo. Estas características han probado ser de valor diagnóstico y pueden apoyar la separación de dos especies, pero se necesitan futuros estudios para confirmar que S. S. aff. syphiliticaaff. syphilitica es un nuevo taxon.


Assuntos
Epiderme Vegetal/ultraestrutura , Folhas de Planta/ultraestrutura , Smilax/classificação , Microscopia Eletrônica de Varredura , Folhas de Planta/anatomia & histologia , Smilax/anatomia & histologia , Smilax/ultraestrutura
18.
Plant Sci ; 195: 120-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22921005

RESUMO

The epidermis and periderm protect plants from water and solute loss, pathogen invasion, and UV radiation. The cell walls of these protective tissues deposit the insoluble lipid biopolyesters cutin and suberin, respectively. These biopolymers interact in turn with polysaccharides, waxes and aromatic compounds to create complex assemblies that are not yet well defined at the molecular level. Non-destructive approaches must be tailored to the insoluble and noncrystalline character of these assemblies to establish the polymer and inter-component interactions needed to create functional barriers and structural supports. In the present mini-review, we illustrate the contribution of solid-state NMR methodology to compare the architecture of intact fruit cuticular polymers in wild-type and single-gene mutant tomatoes. We also show the potential of NMR-based metabolomics to identify the soluble metabolites that contribute to barrier formation in different varieties of potato tubers. Finally, we outline the challenges of these spectroscopic approaches, which include limited spectral resolution in solid state, differential swelling capabilities in solution, and incomplete dissolution in ionic liquids. Given the many genetically modified plants with altered suberin and cutin polymers that are now available, NMR nonetheless offers a promising tool to gain molecular insight into the complexity of these protective materials.


Assuntos
Biopolímeros , Frutas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Epiderme Vegetal/metabolismo , Tubérculos/metabolismo , Solanum lycopersicum/ultraestrutura , Solanum tuberosum/metabolismo , Biopolímeros/química , Biopolímeros/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Frutas/ultraestrutura , Genes de Plantas , Lipídeos/fisiologia , Solanum lycopersicum/genética , Metabolômica/métodos , Doenças das Plantas/prevenção & controle , Epiderme Vegetal/ultraestrutura , Plantas Geneticamente Modificadas , Estresse Fisiológico
19.
J Plant Physiol ; 169(10): 940-8, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22551956

RESUMO

Plant hormones direct many processes of floral and post-floral morphogenesis in Angiosperms. However, their role in shaping floral morphological novelties, such as inflated calyx syndrome (ICS) exhibited by a few genera of the Solanaceae, remains unknown. In Withania and Physalis, sepals resume growth after pollination and encapsulate the mature fruit to form a balloon-like structure, i.e. ICS. The epidermal cells of calyx show enlargement and lobation post-fertilization. Application of hormones to depistillated flower buds of Withania revealed that cytokinins and gibberellins mimic fertilization signals. The ICS development is a synchronous step with fruit development; both processes are under the control of more or less the same set of hormones, including cytokinins and gibberellic acids. Interestingly, inhibition of ethylene in the system is sufficient to yield inflated calyx in Withania. In contrast, Tubocapsicum, a closely related species and an evolutionary natural loss mutant of ICS - showed no response to applied hormones, and ethylene led to inflation of the receptacle indirectly. In addition to hormones, the expression of an MPF2-like MADS-box transcription factor in sepals is essential for ICS formation. Nevertheless, the interactions between MPF2-like genes and hormones are barely detectable at the transcript level. Our data provide insight into the role of hormones in generating floral morphological diversity during evolution.


Assuntos
Etilenos/metabolismo , Flores/anatomia & histologia , Reguladores de Crescimento de Plantas/metabolismo , Solanaceae/anatomia & histologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Citocininas/metabolismo , Etilenos/farmacologia , Fertilização/efeitos dos fármacos , Flores/citologia , Flores/fisiologia , Flores/ultraestrutura , Frutas/efeitos dos fármacos , Frutas/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Giberelinas/metabolismo , Modelos Biológicos , Epiderme Vegetal/citologia , Epiderme Vegetal/ultraestrutura , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinização/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Solanaceae/citologia , Solanaceae/fisiologia , Solanaceae/ultraestrutura , Especificidade da Espécie , Withania/anatomia & histologia , Withania/citologia , Withania/fisiologia , Withania/ultraestrutura
20.
BMC Plant Biol ; 12: 54, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22530652

RESUMO

BACKGROUND: Arabidopsis DMP1 was discovered in a genome-wide screen for senescence-associated membrane proteins. DMP1 is a member of a novel plant-specific membrane protein family of unknown function. In rosette leaves DMP1 expression increases from very low background level several 100fold during senescence progression. RESULTS: Expression of AtDMP1 fused to eGFP in Nicotiana benthamiana triggers a complex process of succeeding membrane remodeling events affecting the structure of the endoplasmic reticulum (ER) and the vacuole. Induction of spherical structures ("bulbs"), changes in the architecture of the ER from tubular to cisternal elements, expansion of smooth ER, formation of crystalloid ER, and emergence of vacuolar membrane sheets and foamy membrane structures inside the vacuole are proceeding in this order. In some cells it can be observed that the process culminates in cell death after breakdown of the entire ER network and the vacuole. The integrity of the plasma membrane, nucleus and Golgi vesicles are retained until this stage. In Arabidopsis thaliana plants expressing AtDMP1-eGFP by the 35S promoter massive ER and vacuole vesiculation is observed during the latest steps of leaf senescence, whereas earlier in development ER and vacuole morphology are not perturbed. Expression by the native DMP1 promoter visualizes formation of aggregates termed "boluses" in the ER membranes and vesiculation of the entire ER network, which precedes disintegration of the central vacuole during the latest stage of senescence in siliques, rosette and cauline leaves and in darkened rosette leaves. In roots tips, DMP1 is strongly expressed in the cortex undergoing vacuole biogenesis. CONCLUSIONS: Our data suggest that DMP1 is directly or indirectly involved in membrane fission during breakdown of the ER and the tonoplast during leaf senescence and in membrane fusion during vacuole biogenesis in roots. We propose that these properties of DMP1, exacerbated by transient overexpression, may cause or contribute to the dramatic membrane remodeling events which lead to cell death in infiltrated tobacco leaves.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fusão de Membrana/genética , Vacúolos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Morte Celular , Expressão Gênica , Complexo de Golgi/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Meristema/genética , Meristema/metabolismo , Meristema/fisiologia , Meristema/ultraestrutura , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Epiderme Vegetal/genética , Epiderme Vegetal/metabolismo , Epiderme Vegetal/fisiologia , Epiderme Vegetal/ultraestrutura , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Transporte Proteico , Proteínas Recombinantes de Fusão , Fatores de Tempo , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA